If we swap its arguments, SkTaskGroup::batch() _is_ sk_parallel_for.

Why have two names if we can get away with one?

This kills off sk_parallel_for_thread_count(), which was only used to avoid forcing a deadlock in OncePtrTest on multicore machines in singlethreaded mode... a really niche use case.  Instead just don't explicitly force a race.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1552093002

Review URL: https://codereview.chromium.org/1552093002
This commit is contained in:
mtklein 2016-01-04 19:13:19 -08:00 committed by Commit bot
parent c4a0d73e9a
commit 279c786409
13 changed files with 20 additions and 77 deletions

View File

@ -95,7 +95,7 @@ protected:
sk_tool_utils::create_portable_typeface("sans-serif", SkTypeface::kItalic)};
for (int work = 0; work < loops; work++) {
sk_parallel_for(16, [&](int threadIndex) {
SkTaskGroup().batch(16, [&](int threadIndex) {
SkPaint paint;
paint.setAntiAlias(true);
paint.setSubpixelText(true);

View File

@ -1093,12 +1093,13 @@ int dm_main() {
}
SkTaskGroup tg;
tg.batch([](int i){ run_test(&gThreadedTests[i]); }, gThreadedTests.count());
tg.batch(gThreadedTests.count(), [](int i){ run_test(&gThreadedTests[i]); });
for (int i = 0; i < kNumEnclaves; i++) {
SkTArray<Task>* currentEnclave = &enclaves[i];
switch(i) {
case kAnyThread_Enclave:
tg.batch([currentEnclave](int j) { Task::Run(&(*currentEnclave)[j]); }, currentEnclave->count());
tg.batch(currentEnclave->count(),
[currentEnclave](int j) { Task::Run(&(*currentEnclave)[j]); });
break;
case kGPU_Enclave:
tg.add([currentEnclave](){ run_enclave_and_gpu_tests(currentEnclave); });

View File

@ -619,7 +619,7 @@ static bool contains_only_moveTo(const SkPath& path) {
#include "SkTDArray.h"
static void path_fuzz_stroker(SkBitmap* bitmap, int seed) {
sk_parallel_for(100, [&](int i) {
SkTaskGroup().batch(100, [&](int i) {
int localSeed = seed + i;
FuzzPath fuzzPath;

View File

@ -94,7 +94,7 @@ void SkMultiPictureDraw::draw(bool flush) {
fThreadSafeDrawData[i].draw();
}
#else
sk_parallel_for(fThreadSafeDrawData.count(), [&](int i) {
SkTaskGroup().batch(fThreadSafeDrawData.count(), [&](int i) {
fThreadSafeDrawData[i].draw();
});
#endif

View File

@ -54,12 +54,12 @@ public:
gGlobal->add(fn, pending);
}
static void Batch(std::function<void(int)> fn, int N, SkAtomic<int32_t>* pending) {
static void Batch(int N, std::function<void(int)> fn, SkAtomic<int32_t>* pending) {
if (!gGlobal) {
for (int i = 0; i < N; i++) { fn(i); }
return;
}
gGlobal->batch(fn, N, pending);
gGlobal->batch(N, fn, pending);
}
static void Wait(SkAtomic<int32_t>* pending) {
@ -142,7 +142,7 @@ private:
fWorkAvailable.signal(1);
}
void batch(std::function<void(int)> fn, int N, SkAtomic<int32_t>* pending) {
void batch(int N, std::function<void(int)> fn, SkAtomic<int32_t>* pending) {
pending->fetch_add(+N, sk_memory_order_relaxed); // No barrier needed.
{
AutoLock lock(&fWorkLock);
@ -196,7 +196,6 @@ private:
static ThreadPool* gGlobal;
friend struct SkTaskGroup::Enabler;
friend int ::sk_parallel_for_thread_count();
};
ThreadPool* ThreadPool::gGlobal = nullptr;
@ -216,13 +215,7 @@ SkTaskGroup::SkTaskGroup() : fPending(0) {}
void SkTaskGroup::wait() { ThreadPool::Wait(&fPending); }
void SkTaskGroup::add(SkRunnable* task) { ThreadPool::Add(task, &fPending); }
void SkTaskGroup::add(std::function<void(void)> fn) { ThreadPool::Add(fn, &fPending); }
void SkTaskGroup::batch (std::function<void(int)> fn, int N) {
ThreadPool::Batch(fn, N, &fPending);
void SkTaskGroup::batch(int N, std::function<void(int)> fn) {
ThreadPool::Batch(N, fn, &fPending);
}
int sk_parallel_for_thread_count() {
if (ThreadPool::gGlobal != nullptr) {
return ThreadPool::gGlobal->fThreads.count();
}
return 0;
}

View File

@ -34,7 +34,7 @@ public:
void add(std::function<void(void)> fn);
// Add a batch of N tasks, all calling fn with different arguments.
void batch(std::function<void(int)> fn, int N);
void batch(int N, std::function<void(int)> fn);
// Block until all Tasks previously add()ed to this SkTaskGroup have run.
// You may safely reuse this SkTaskGroup after wait() returns.
@ -47,48 +47,4 @@ private:
// Returns best estimate of number of CPU cores available to use.
int sk_num_cores();
int sk_parallel_for_thread_count();
// Call f(i) for i in [0, end).
template <typename Func>
void sk_parallel_for(int end, const Func& f) {
if (end <= 0) { return; }
struct Chunk {
const Func* f;
int start, end;
};
// TODO(mtklein): this chunking strategy could probably use some tuning.
int max_chunks = sk_num_cores() * 2,
stride = (end + max_chunks - 1 ) / max_chunks,
nchunks = (end + stride - 1 ) / stride;
SkASSERT(nchunks <= max_chunks);
#if defined(GOOGLE3)
// Stack frame size is limited in GOOGLE3.
SkAutoSTMalloc<512, Chunk> chunks(nchunks);
#else
// With the chunking strategy above this won't malloc until we have a machine with >512 cores.
SkAutoSTMalloc<1024, Chunk> chunks(nchunks);
#endif
for (int i = 0; i < nchunks; i++) {
Chunk& c = chunks[i];
c.f = &f;
c.start = i * stride;
c.end = SkTMin(c.start + stride, end);
SkASSERT(c.start < c.end); // Nothing will break if start >= end, but it's a wasted chunk.
}
Chunk* chunkBase = chunks.get();
auto run_chunk = [chunkBase](int i) {
Chunk& c = chunkBase[i];
for (int i = c.start; i < c.end; i++) {
(*c.f)(i);
}
};
SkTaskGroup().batch(run_chunk, nchunks);
}
#endif//SkTaskGroup_DEFINED

View File

@ -98,5 +98,5 @@ DEF_TEST(Blend_premul_begets_premul, r) {
};
// Parallelism helps speed things up on my desktop from ~725s to ~50s.
sk_parallel_for(SkXfermode::kLastMode, test_mode);
SkTaskGroup().batch(SkXfermode::kLastMode, test_mode);
}

View File

@ -18,14 +18,7 @@ DEF_TEST(OncePtr, r) {
return new int(5);
};
SkAtomic<int> force_a_race(sk_parallel_for_thread_count());
if (force_a_race < 1) {
return;
}
sk_parallel_for(sk_num_cores()*4, [&](size_t) {
force_a_race.fetch_add(-1);
while (force_a_race.load() > 0);
SkTaskGroup().batch(sk_num_cores()*4, [&](size_t) {
int* n = once.get(create);
REPORTER_ASSERT(r, *n == 5);
});
@ -39,7 +32,7 @@ DEF_TEST(OnceNoPtr, r) {
static SkAtomic<int> calls(0);
SkAtomic<int> force_a_race(sk_num_cores());
sk_parallel_for(sk_num_cores()*4, [&](size_t) {
SkTaskGroup().batch(sk_num_cores()*4, [&](size_t) {
force_a_race.fetch_add(-1);
while (force_a_race.load() > 0);

View File

@ -32,7 +32,7 @@ SK_DECLARE_STATIC_ONCE(mt_once);
DEF_TEST(SkOnce_Multithreaded, r) {
int x = 0;
// Run a bunch of tasks to be the first to add six to x.
sk_parallel_for(1021, [&](int) {
SkTaskGroup().batch(1021, [&](int) {
void(*add_six)(int*) = [](int* p) { *p += 6; };
SkOnce(&mt_once, add_six, &x);
});

View File

@ -307,7 +307,7 @@ TestRunner::~TestRunner() {
void TestRunner::render() {
// TODO: this doesn't really need to use SkRunnables any more.
// We can just write the code to run in the for-loop directly.
sk_parallel_for(fRunnables.count(), [&](int i) {
SkTaskGroup().batch(fRunnables.count(), [&](int i) {
fRunnables[i]->run();
});
}

View File

@ -16,7 +16,7 @@ PathOpsThreadedTestRunner::~PathOpsThreadedTestRunner() {
}
void PathOpsThreadedTestRunner::render() {
sk_parallel_for(fRunnables.count(), [&](int i) {
SkTaskGroup().batch(fRunnables.count(), [&](int i) {
fRunnables[i]->run();
});
}

View File

@ -28,7 +28,7 @@ DEF_TEST(SkSharedMutexMultiThreaded, r) {
for (int i = 0; i < kSharedSize; ++i) {
shared[i] = 0;
}
sk_parallel_for(8, [&](int threadIndex) {
SkTaskGroup().batch(8, [&](int threadIndex) {
if (threadIndex % 4 != 0) {
for (int c = 0; c < 100000; ++c) {
sm.acquireShared();

View File

@ -171,7 +171,7 @@ SkpSkGrThreadedTestRunner::~SkpSkGrThreadedTestRunner() {
void SkpSkGrThreadedTestRunner::render() {
// TODO: we don't really need to be using SkRunnables here anymore.
// We can just write the code we'd run right in the for loop.
sk_parallel_for(fRunnables.count(), [&](int i) {
SkTaskGroup().batch(fRunnables.count(), [&](int i) {
fRunnables[i]->run();
});
}