Optimize ternary tests that check a const variable.

This enables the ternary to be optimized away in code like:
   const bool SHINY = true;
   color = SHINY ? add_shine(x) : x; // to --> `color = add_shine(x);`

Without constant propagation.

Also, I added a unit test for ternary expression simplification; I
wasn't able to find an existing one.

When the optimization flag is disabled, this CL actually removes the
optimization of `true ? x : y` --> `x` entirely; previously, this
substitution would be made regardless of optimization settings.

Change-Id: I93a8b9d4027902d35f8a19cfd6417170b209d056
Bug: skia:11343
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/379297
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: John Stiles <johnstiles@google.com>
Auto-Submit: John Stiles <johnstiles@google.com>
This commit is contained in:
John Stiles 2021-03-05 15:22:48 -05:00 committed by Skia Commit-Bot
parent 3dc6c190da
commit 28054added
8 changed files with 173 additions and 6 deletions

View File

@ -431,6 +431,7 @@ sksl_shared_tests = [
"/sksl/shared/SwizzleScalar.sksl",
"/sksl/shared/TernaryAsLValueEntirelyFoldable.sksl",
"/sksl/shared/TernaryAsLValueFoldableTest.sksl",
"/sksl/shared/TernaryExpression.sksl",
"/sksl/shared/Texture1D.sksl",
"/sksl/shared/Texture2D.sksl",
"/sksl/shared/TextureSharpen.sksl",

View File

@ -0,0 +1,26 @@
uniform half4 colorGreen, colorRed;
half4 main() {
const bool TRUE = true;
const bool FALSE = false;
bool ok = true;
// Literal test
ok = ok && (true ? true : false);
ok = ok && (false ? false : true);
// Constant boolean test
ok = ok && (TRUE ? true : false);
ok = ok && (FALSE ? false : true);
// Constant-foldable test
ok = ok && (1 == 1 ? true : false);
ok = ok && (0 == 1 ? false : true);
// Unknown-value test
ok = ok && (colorGreen.g == 1 ? true : false);
ok = ok && (colorGreen.r == 1 ? false : true);
return ok ? colorGreen : colorRed;
}

View File

@ -719,6 +719,9 @@ void Compiler::simplifyExpression(DefinitionMap& definitions,
break;
}
case Expression::Kind::kTernary: {
// TODO(skia:11319): this optimization logic is redundant with the optimization code
// found in SkSLTernaryExpression.cpp.
TernaryExpression* t = &expr->as<TernaryExpression>();
if (t->test()->is<BoolLiteral>()) {
// ternary has a constant test, replace it with either the true or

View File

@ -5,6 +5,7 @@
* found in the LICENSE file.
*/
#include "src/sksl/SkSLConstantFolder.h"
#include "src/sksl/SkSLContext.h"
#include "src/sksl/SkSLOperators.h"
#include "src/sksl/SkSLProgramSettings.h"
@ -63,14 +64,15 @@ std::unique_ptr<Expression> TernaryExpression::Make(const Context& context,
SkASSERT(!ifTrue->type().componentType().isOpaque());
SkASSERT(!context.fConfig->strictES2Mode() || !ifTrue->type().isOrContainsArray());
if (test->is<BoolLiteral>()) {
// static boolean test, just return one of the branches
if (test->as<BoolLiteral>().value()) {
return ifTrue;
} else {
return ifFalse;
if (context.fConfig->fSettings.fOptimize) {
const Expression* testExpr = ConstantFolder::GetConstantValueForVariable(*test);
if (testExpr->is<BoolLiteral>()) {
// static boolean test, just return one of the branches
return testExpr->as<BoolLiteral>().value() ? std::move(ifTrue)
: std::move(ifFalse);
}
}
return std::make_unique<TernaryExpression>(test->fOffset, std::move(test),
std::move(ifTrue), std::move(ifFalse));
}

View File

@ -183,6 +183,7 @@ SKSL_TEST(SkSLSwizzleOpt, "shared/SwizzleOpt.sksl")
SKSL_TEST(SkSLSwizzleScalar, "shared/SwizzleScalar.sksl")
SKSL_TEST(SkSLTernaryAsLValueEntirelyFoldable, "shared/TernaryAsLValueEntirelyFoldable.sksl")
SKSL_TEST(SkSLTernaryAsLValueFoldableTest, "shared/TernaryAsLValueFoldableTest.sksl")
SKSL_TEST(SkSLTernaryExpression, "shared/TernaryExpression.sksl")
SKSL_TEST(SkSLUnaryPositiveNegative, "shared/UnaryPositiveNegative.sksl")
SKSL_TEST(SkSLUnusedVariables, "shared/UnusedVariables.sksl")
SKSL_TEST(SkSLVectorConstructors, "shared/VectorConstructors.sksl")

View File

@ -0,0 +1,101 @@
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %_entrypoint "_entrypoint" %sk_FragColor %sk_Clockwise
OpExecutionMode %_entrypoint OriginUpperLeft
OpName %sk_FragColor "sk_FragColor"
OpName %sk_Clockwise "sk_Clockwise"
OpName %_UniformBuffer "_UniformBuffer"
OpMemberName %_UniformBuffer 0 "colorGreen"
OpMemberName %_UniformBuffer 1 "colorRed"
OpName %_entrypoint "_entrypoint"
OpName %main "main"
OpName %ok "ok"
OpDecorate %sk_FragColor RelaxedPrecision
OpDecorate %sk_FragColor Location 0
OpDecorate %sk_FragColor Index 0
OpDecorate %sk_Clockwise RelaxedPrecision
OpDecorate %sk_Clockwise BuiltIn FrontFacing
OpMemberDecorate %_UniformBuffer 0 Offset 0
OpMemberDecorate %_UniformBuffer 0 RelaxedPrecision
OpMemberDecorate %_UniformBuffer 1 Offset 16
OpMemberDecorate %_UniformBuffer 1 RelaxedPrecision
OpDecorate %_UniformBuffer Block
OpDecorate %10 Binding 0
OpDecorate %10 DescriptorSet 0
OpDecorate %27 RelaxedPrecision
OpDecorate %33 RelaxedPrecision
OpDecorate %37 RelaxedPrecision
OpDecorate %42 RelaxedPrecision
OpDecorate %49 RelaxedPrecision
OpDecorate %52 RelaxedPrecision
OpDecorate %53 RelaxedPrecision
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%sk_FragColor = OpVariable %_ptr_Output_v4float Output
%bool = OpTypeBool
%_ptr_Input_bool = OpTypePointer Input %bool
%sk_Clockwise = OpVariable %_ptr_Input_bool Input
%_UniformBuffer = OpTypeStruct %v4float %v4float
%_ptr_Uniform__UniformBuffer = OpTypePointer Uniform %_UniformBuffer
%10 = OpVariable %_ptr_Uniform__UniformBuffer Uniform
%void = OpTypeVoid
%15 = OpTypeFunction %void
%18 = OpTypeFunction %v4float
%_ptr_Function_bool = OpTypePointer Function %bool
%true = OpConstantTrue %bool
%_ptr_Uniform_v4float = OpTypePointer Uniform %v4float
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%float_1 = OpConstant %float 1
%false = OpConstantFalse %bool
%_ptr_Function_v4float = OpTypePointer Function %v4float
%int_1 = OpConstant %int 1
%_entrypoint = OpFunction %void None %15
%16 = OpLabel
%17 = OpFunctionCall %v4float %main
OpStore %sk_FragColor %17
OpReturn
OpFunctionEnd
%main = OpFunction %v4float None %18
%19 = OpLabel
%ok = OpVariable %_ptr_Function_bool Function
%43 = OpVariable %_ptr_Function_v4float Function
OpStore %ok %true
%23 = OpAccessChain %_ptr_Uniform_v4float %10 %int_0
%27 = OpLoad %v4float %23
%28 = OpCompositeExtract %float %27 1
%30 = OpFOrdEqual %bool %28 %float_1
%31 = OpSelect %bool %30 %true %false
OpStore %ok %31
%33 = OpLoad %bool %ok
OpSelectionMerge %35 None
OpBranchConditional %33 %34 %35
%34 = OpLabel
%36 = OpAccessChain %_ptr_Uniform_v4float %10 %int_0
%37 = OpLoad %v4float %36
%38 = OpCompositeExtract %float %37 0
%39 = OpFOrdEqual %bool %38 %float_1
%40 = OpSelect %bool %39 %false %true
OpBranch %35
%35 = OpLabel
%41 = OpPhi %bool %false %19 %40 %34
OpStore %ok %41
%42 = OpLoad %bool %ok
OpSelectionMerge %47 None
OpBranchConditional %42 %45 %46
%45 = OpLabel
%48 = OpAccessChain %_ptr_Uniform_v4float %10 %int_0
%49 = OpLoad %v4float %48
OpStore %43 %49
OpBranch %47
%46 = OpLabel
%50 = OpAccessChain %_ptr_Uniform_v4float %10 %int_1
%52 = OpLoad %v4float %50
OpStore %43 %52
OpBranch %47
%47 = OpLabel
%53 = OpLoad %v4float %43
OpReturnValue %53
OpFunctionEnd

View File

@ -0,0 +1,10 @@
out vec4 sk_FragColor;
uniform vec4 colorGreen;
uniform vec4 colorRed;
vec4 main() {
bool ok = true;
ok = colorGreen.y == 1.0 ? true : false;
ok = ok && (colorGreen.x == 1.0 ? false : true);
return ok ? colorGreen : colorRed;
}

View File

@ -0,0 +1,23 @@
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
struct Uniforms {
float4 colorGreen;
float4 colorRed;
};
struct Inputs {
};
struct Outputs {
float4 sk_FragColor [[color(0)]];
};
fragment Outputs fragmentMain(Inputs _in [[stage_in]], constant Uniforms& _uniforms [[buffer(0)]], bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]) {
Outputs _out;
(void)_out;
bool ok = true;
ok = _uniforms.colorGreen.y == 1.0 ? true : false;
ok = ok && (_uniforms.colorGreen.x == 1.0 ? false : true);
_out.sk_FragColor = ok ? _uniforms.colorGreen : _uniforms.colorRed;
return _out;
}