Revert "CCPR: Initial semi-optimized vertex shader Impl"

This reverts commit a8f6aef13d.

Reason for revert: Looks to failing on ANGLE bots

Original change's description:
> CCPR: Initial semi-optimized vertex shader Impl
> 
> Bug: skia:
> Change-Id: If22f47a3b945ce7336f8e609c2e0c911f09e1d18
> Reviewed-on: https://skia-review.googlesource.com/86820
> Reviewed-by: Brian Salomon <bsalomon@google.com>
> Commit-Queue: Chris Dalton <csmartdalton@google.com>

TBR=egdaniel@google.com,bsalomon@google.com,csmartdalton@google.com

Change-Id: Ic5a73434cba4246a72790db2c27d06e7a50f389a
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:
Reviewed-on: https://skia-review.googlesource.com/88220
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
This commit is contained in:
Brian Osman 2017-12-20 22:15:40 +00:00 committed by Skia Commit-Bot
parent 41c26eaf95
commit 2871436b2a
17 changed files with 89 additions and 633 deletions

View File

@ -301,7 +301,6 @@ skia_gpu_sources = [
"$_src/gpu/ccpr/GrCCPRCoverageOp.h",
"$_src/gpu/ccpr/GrCCPRCoverageProcessor.cpp",
"$_src/gpu/ccpr/GrCCPRCoverageProcessor_GSImpl.cpp",
"$_src/gpu/ccpr/GrCCPRCoverageProcessor_VSImpl.cpp",
"$_src/gpu/ccpr/GrCCPRCoverageProcessor.h",
"$_src/gpu/ccpr/GrCCPRCubicShader.cpp",
"$_src/gpu/ccpr/GrCCPRCubicShader.h",

View File

@ -236,10 +236,6 @@ void CCPRGeometryView::updateGpuData() {
GrCCPRGeometry::Verb::kEndClosedContour == verb) {
continue;
}
if (GrCCPRGeometry::Verb::kLineTo == verb) {
++ptsIdx;
continue;
}
SkASSERT(GrCCPRGeometry::Verb::kMonotonicQuadraticTo == verb);
fTriangleInstances.push_back().set(&geometry.points()[ptsIdx], Sk2f(0, 0));
ptsIdx += 2;
@ -255,14 +251,10 @@ void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ?
static_cast<GrGLGpu*>(state->gpu()) : nullptr;
if (!GrCCPRCoverageProcessor::DoesRenderPass(fView->fRenderPass, *state->caps().shaderCaps())) {
return;
}
GrCCPRCoverageProcessor proc(rp, fView->fRenderPass, *state->caps().shaderCaps());
GrCCPRCoverageProcessor proc(fView->fRenderPass);
SkDEBUGCODE(proc.enableDebugVisualizations(kDebugBloat);)
SkSTArray<1, GrMesh> mesh;
SkSTArray<1, GrMesh, true> mesh;
if (GrCCPRCoverageProcessor::RenderPassIsCubic(fView->fRenderPass)) {
sk_sp<GrBuffer> instBuff(rp->createBuffer(fView->fCubicInstances.count() *
sizeof(CubicInstance), kVertex_GrBufferType,

View File

@ -7,7 +7,6 @@
#include "GrCCPRCoverageOp.h"
#include "GrCaps.h"
#include "GrGpuCommandBuffer.h"
#include "GrOnFlushResourceProvider.h"
#include "GrOpFlushState.h"
@ -397,7 +396,7 @@ void GrCCPRCoverageOp::onExecute(GrOpFlushState* flushState) {
this->drawMaskPrimitives(flushState, pipeline, RenderPass::kTriangleHulls,
&PrimitiveTallies::fTriangles);
this->drawMaskPrimitives(flushState, pipeline, RenderPass::kTriangleEdges,
&PrimitiveTallies::fTriangles); // Might get skipped.
&PrimitiveTallies::fTriangles);
this->drawMaskPrimitives(flushState, pipeline, RenderPass::kTriangleCorners,
&PrimitiveTallies::fTriangles);
@ -420,19 +419,14 @@ void GrCCPRCoverageOp::drawMaskPrimitives(GrOpFlushState* flushState, const GrPi
using ScissorMode = GrCCPRCoverageOpsBuilder::ScissorMode;
SkASSERT(pipeline.getScissorState().enabled());
if (!GrCCPRCoverageProcessor::DoesRenderPass(renderPass, *flushState->caps().shaderCaps())) {
return;
}
fMeshesScratchBuffer.reset();
fDynamicStatesScratchBuffer.reset();
GrCCPRCoverageProcessor proc(flushState->resourceProvider(), renderPass,
*flushState->caps().shaderCaps());
GrCCPRCoverageProcessor proc(renderPass);
if (int instanceCount = fInstanceCounts[(int)ScissorMode::kNonScissored].*instanceType) {
if (const int instanceCount = fInstanceCounts[(int)ScissorMode::kNonScissored].*instanceType) {
SkASSERT(instanceCount > 0);
int baseInstance = fBaseInstances[(int)ScissorMode::kNonScissored].*instanceType;
const int baseInstance = fBaseInstances[(int)ScissorMode::kNonScissored].*instanceType;
proc.appendMesh(fInstanceBuffer.get(), instanceCount, baseInstance, &fMeshesScratchBuffer);
fDynamicStatesScratchBuffer.push_back().fScissorRect.setXYWH(0, 0, fDrawBounds.width(),
fDrawBounds.height());

View File

@ -167,7 +167,7 @@ private:
const SkTArray<ScissorBatch, true> fScissorBatches;
const SkISize fDrawBounds;
mutable SkTArray<GrMesh> fMeshesScratchBuffer;
mutable SkTArray<GrMesh, true> fMeshesScratchBuffer;
mutable SkTArray<GrPipeline::DynamicState, true> fDynamicStatesScratchBuffer;
friend class GrCCPRCoverageOpsBuilder;

View File

@ -11,21 +11,17 @@
#include "ccpr/GrCCPRCubicShader.h"
#include "ccpr/GrCCPRQuadraticShader.h"
#include "ccpr/GrCCPRTriangleShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
void GrCCPRCoverageProcessor::Shader::emitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* coverage,
const char* wind) {
SkASSERT(GrGLSLVarying::Scope::kVertToGeo != scope);
WindHandling windHandling = this->onEmitVaryings(varyingHandler, scope, code, position,
coverage, wind);
SkString* code, const char* position,
const char* coverage, const char* wind) {
WindHandling windHandling = this->onEmitVaryings(varyingHandler, code, position, coverage,
wind);
if (WindHandling::kNotHandled == windHandling) {
fWind.reset(kHalf_GrSLType, scope);
varyingHandler->addFlatVarying("wind", &fWind);
code->appendf("%s = %s;", OutName(fWind), wind);
code->appendf("%s = %s;", fWind.gsOut(), wind);
}
}
@ -84,16 +80,7 @@ int GrCCPRCoverageProcessor::Shader::DefineSoftSampleLocations(GrGLSLPPFragmentB
void GrCCPRCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
int key = (int)fRenderPass << 1;
if (Impl::kGeometryShader == fImpl) {
key |= 1;
}
#ifdef SK_DEBUG
uint32_t bloatBits;
memcpy(&bloatBits, &fDebugBloat, 4);
b->add32(bloatBits);
#endif
b->add32(key);
b->add32((int)fRenderPass);
}
GrGLSLPrimitiveProcessor* GrCCPRCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
@ -119,6 +106,5 @@ GrGLSLPrimitiveProcessor* GrCCPRCoverageProcessor::createGLSLInstance(const GrSh
shader = skstd::make_unique<GrCCPRCubicCornerShader>();
break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
return this->createGSImpl(std::move(shader));
}

View File

@ -9,7 +9,6 @@
#define GrCCPRCoverageProcessor_DEFINED
#include "GrGeometryProcessor.h"
#include "GrShaderCaps.h"
#include "SkNx.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
@ -53,15 +52,14 @@ public:
// render pass. Here we enumerate every render pass needed in order to produce a complete
// coverage count mask. This is an exhaustive list of all ccpr coverage shaders.
//
// During a render pass, the "Impl" (GSImpl or VSimpl) generates conservative geometry for
// During a render pass, the "Impl" (currently only GSImpl) generates conservative geometry for
// rasterization, and the Shader decides the coverage value at each pixel.
enum class RenderPass {
// For a Hull, the Impl generates a "conservative raster hull" around the input points. This
// is the geometry that causes a pixel to be rasterized if it is touched anywhere by the
// input polygon. The initial coverage values sent to the Shader at each vertex are either
// null, or +1 all around if the Impl combines this pass with kTriangleEdges. Logically,
// the conservative raster hull is equivalent to the convex hull of pixel size boxes
// centered on each input point.
// input polygon. Initial coverage values sent to the Shader at each vertex will be null.
// Logically, the conservative raster hull is equivalent to the convex hull of pixel size
// boxes centered on each input point.
kTriangleHulls,
kQuadraticHulls,
kCubicHulls,
@ -72,9 +70,6 @@ public:
// edge geometry and 0 on the inside. This is the only geometry type that associates
// coverage values with the output vertices. Interpolated, these coverage values convert
// jagged conservative raster edges into a smooth antialiased edge.
//
// NOTE: The Impl may combine this pass with kTriangleHulls, in which case DoesRenderPass()
// will be false for kTriangleEdges and it must not be used.
kTriangleEdges,
// For Corners, the Impl Generates the conservative rasters of corner points (i.e.
@ -87,20 +82,10 @@ public:
static bool RenderPassIsCubic(RenderPass);
static const char* RenderPassName(RenderPass);
constexpr static bool DoesRenderPass(RenderPass renderPass, const GrShaderCaps& caps) {
return RenderPass::kTriangleEdges != renderPass || caps.geometryShaderSupport();
}
GrCCPRCoverageProcessor(GrResourceProvider* rp, RenderPass pass, const GrShaderCaps& caps)
GrCCPRCoverageProcessor(RenderPass pass)
: INHERITED(kGrCCPRCoverageProcessor_ClassID)
, fRenderPass(pass)
, fImpl(caps.geometryShaderSupport() ? Impl::kGeometryShader : Impl::kVertexShader) {
SkASSERT(DoesRenderPass(pass, caps));
if (Impl::kGeometryShader == fImpl) {
this->initGS();
} else {
this->initVS(rp);
}
, fRenderPass(pass) {
this->initGS();
}
// Appends a GrMesh that will draw the provided instances. The instanceBuffer must be an array
@ -109,12 +94,8 @@ public:
//
// NOTE: Quadratics use TriangleInstance since both have 3 points.
void appendMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance,
SkTArray<GrMesh>* out) {
if (Impl::kGeometryShader == fImpl) {
this->appendGSMesh(instanceBuffer, instanceCount, baseInstance, out);
} else {
this->appendVSMesh(instanceBuffer, instanceCount, baseInstance, out);
}
SkTArray<GrMesh, true>* out) {
this->appendGSMesh(instanceBuffer, instanceCount, baseInstance, out);
}
// GrPrimitiveProcessor overrides.
@ -159,8 +140,8 @@ public:
const char* repetitionID, const char* wind,
GeometryVars*) const {}
void emitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* coverage, const char* wind);
void emitVaryings(GrGLSLVaryingHandler*, SkString* code, const char* position,
const char* coverage, const char* wind);
void emitFragmentCode(const GrCCPRCoverageProcessor& proc, GrGLSLPPFragmentBuilder*,
const char* skOutputColor, const char* skOutputCoverage) const;
@ -188,23 +169,15 @@ public:
//
// NOTE: the coverage parameter is only relevant for edges (see comments in RenderPass).
// Otherwise it is +1 all around.
virtual WindHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope,
SkString* code, const char* position,
const char* coverage, const char* wind) = 0;
virtual WindHandling onEmitVaryings(GrGLSLVaryingHandler*, SkString* code,
const char* position, const char* coverage,
const char* wind) = 0;
// Emits the fragment code that calculates a pixel's coverage value. If using
// WindHandling::kHandled, this value must be signed appropriately.
virtual void onEmitFragmentCode(GrGLSLPPFragmentBuilder*,
const char* outputCoverage) const = 0;
// Returns the name of a Shader's internal varying at the point where where its value is
// assigned. This is intended to work whether called for a vertex or a geometry shader.
const char* OutName(const GrGLSLVarying& varying) const {
using Scope = GrGLSLVarying::Scope;
SkASSERT(Scope::kVertToGeo != varying.scope());
return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut();
}
// Defines a global float2 array that contains MSAA sample locations as offsets from pixel
// center. Subclasses can use this for software multisampling.
//
@ -212,11 +185,10 @@ public:
static int DefineSoftSampleLocations(GrGLSLPPFragmentBuilder* f, const char* samplesName);
private:
GrGLSLVarying fWind;
GrGLSLVarying fWind{kHalf_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
class GSImpl;
class VSImpl;
private:
// Slightly undershoot a bloat radius of 0.5 so vertices that fall on integer boundaries don't
@ -226,26 +198,12 @@ private:
// Number of bezier points for curves, or 3 for triangles.
int numInputPoints() const { return RenderPassIsCubic(fRenderPass) ? 4 : 3; }
enum class Impl : bool {
kGeometryShader,
kVertexShader
};
void initGS();
void initVS(GrResourceProvider*);
void appendGSMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance,
SkTArray<GrMesh>* out) const;
void appendVSMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance,
SkTArray<GrMesh>* out) const;
SkTArray<GrMesh, true>* out) const;
GrGLSLPrimitiveProcessor* createGSImpl(std::unique_ptr<Shader>) const;
GrGLSLPrimitiveProcessor* createVSImpl(std::unique_ptr<Shader>) const;
const RenderPass fRenderPass;
const Impl fImpl;
sk_sp<const GrBuffer> fVertexBuffer; // Used by VSImpl.
sk_sp<const GrBuffer> fIndexBuffer; // Used by VSImpl.
SkDEBUGCODE(float fDebugBloat = 0;)
typedef GrGeometryProcessor INHERITED;

View File

@ -72,8 +72,7 @@ protected:
}
g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
SkString fnBody;
fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kGeoToFrag, &fnBody,
position, coverage, wind.c_str());
fShader->emitVaryings(varyingHandler, &fnBody, position, coverage, wind.c_str());
g->emitVertex(&fnBody, position, rtAdjust);
return fnBody;
}().c_str(), &emitVertexFn);
@ -293,7 +292,7 @@ public:
};
/**
* Generates conservative rasters around corners. (See comments for RenderPass)
* Generates conservatives around corners. (See comments for RenderPass)
*/
class GSCornerImpl : public GrCCPRCoverageProcessor::GSImpl {
public:
@ -321,7 +320,6 @@ private:
};
void GrCCPRCoverageProcessor::initGS() {
SkASSERT(Impl::kGeometryShader == fImpl);
if (RenderPassIsCubic(fRenderPass)) {
this->addVertexAttrib("x_or_y_values", kFloat4_GrVertexAttribType); // (See appendMesh.)
SkASSERT(sizeof(CubicInstance) == this->getVertexStride() * 2);
@ -333,12 +331,11 @@ void GrCCPRCoverageProcessor::initGS() {
}
void GrCCPRCoverageProcessor::appendGSMesh(GrBuffer* instanceBuffer, int instanceCount,
int baseInstance, SkTArray<GrMesh>* out) const {
int baseInstance, SkTArray<GrMesh, true>* out) const {
// GSImpl doesn't actually make instanced draw calls. Instead, we feed transposed x,y point
// values to the GPU in a regular vertex array and draw kLines (see initGS). Then, each vertex
// invocation receives either the shape's x or y values as inputs, which it forwards to the
// geometry shader.
SkASSERT(Impl::kGeometryShader == fImpl);
GrMesh& mesh = out->emplace_back(GrPrimitiveType::kLines);
mesh.setNonIndexedNonInstanced(instanceCount * 2);
mesh.setVertexData(instanceBuffer, baseInstance * 2);

View File

@ -1,441 +0,0 @@
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPRCoverageProcessor.h"
#include "GrMesh.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
using Shader = GrCCPRCoverageProcessor::Shader;
static constexpr int kAttribIdx_X = 0;
static constexpr int kAttribIdx_Y = 1;
static constexpr int kAttribIdx_VertexData = 2;
/**
* This class and its subclasses implement the coverage processor with vertex shaders.
*/
class GrCCPRCoverageProcessor::VSImpl : public GrGLSLGeometryProcessor {
protected:
VSImpl(std::unique_ptr<Shader> shader) : fShader(std::move(shader)) {}
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
FPCoordTransformIter&& transformIter) final {
this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrCCPRCoverageProcessor& proc = args.fGP.cast<GrCCPRCoverageProcessor>();
// Vertex shader.
GrGLSLVertexBuilder* v = args.fVertBuilder;
int numInputPoints = proc.numInputPoints();
v->codeAppendf("float%ix2 pts = transpose(float2x%i(%s, %s));",
numInputPoints, numInputPoints, proc.getAttrib(kAttribIdx_X).fName,
proc.getAttrib(kAttribIdx_Y).fName);
v->codeAppend ("float area_x2 = determinant(float2x2(pts[0] - pts[1], pts[0] - pts[2]));");
if (4 == numInputPoints) {
v->codeAppend ("area_x2 += determinant(float2x2(pts[0] - pts[2], pts[0] - pts[3]));");
}
v->codeAppend ("half wind = sign(area_x2);");
float bloat = kAABloatRadius;
#ifdef SK_DEBUG
if (proc.debugVisualizationsEnabled()) {
bloat *= proc.debugBloat();
}
#endif
v->defineConstant("bloat", bloat);
const char* coverage = this->emitVertexPosition(proc, v, gpArgs);
SkASSERT(kFloat2_GrSLType == gpArgs->fPositionVar.getType());
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
SkString varyingCode;
fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kVertToFrag, &varyingCode,
gpArgs->fPositionVar.c_str(), coverage, "wind");
v->codeAppend(varyingCode.c_str());
varyingHandler->emitAttributes(proc);
SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform());
// Fragment shader.
fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage);
}
virtual const char* emitVertexPosition(const GrCCPRCoverageProcessor&, GrGLSLVertexBuilder*,
GrGPArgs*) const = 0;
virtual ~VSImpl() {}
const std::unique_ptr<Shader> fShader;
typedef GrGLSLGeometryProcessor INHERITED;
};
/**
* Vertex data tells the shader how to offset vertices for conservative raster, and how/whether to
* calculate initial coverage values for edges. See VSHullAndEdgeImpl.
*/
static constexpr int32_t pack_vertex_data(int32_t bloatIdx, int32_t edgeData,
int32_t cornerVertexID, int32_t cornerIdx) {
return (bloatIdx << 6) | (edgeData << 4) | (cornerVertexID << 2) | cornerIdx;
}
static constexpr int32_t hull_vertex_data(int32_t cornerIdx, int32_t cornerVertexID, int n) {
return pack_vertex_data((cornerIdx + (2 == cornerVertexID ? 1 : n - 1)) % n, 0, cornerVertexID,
cornerIdx);
}
static constexpr int32_t edge_vertex_data(int32_t edgeID, int32_t endptIdx, int32_t endptVertexID,
int n) {
return pack_vertex_data(0 == endptIdx ? (edgeID + 1) % n : edgeID, (endptIdx << 1) | 1,
endptVertexID, 0 == endptIdx ? edgeID : (edgeID + 1) % n);
}
static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(0, 0, 3),
hull_vertex_data(0, 1, 3),
hull_vertex_data(0, 2, 3),
hull_vertex_data(1, 0, 3),
hull_vertex_data(1, 1, 3),
hull_vertex_data(1, 2, 3),
hull_vertex_data(2, 0, 3),
hull_vertex_data(2, 1, 3),
hull_vertex_data(2, 2, 3),
edge_vertex_data(0, 0, 0, 3),
edge_vertex_data(0, 0, 1, 3),
edge_vertex_data(0, 0, 2, 3),
edge_vertex_data(0, 1, 0, 3),
edge_vertex_data(0, 1, 1, 3),
edge_vertex_data(0, 1, 2, 3),
edge_vertex_data(1, 0, 0, 3),
edge_vertex_data(1, 0, 1, 3),
edge_vertex_data(1, 0, 2, 3),
edge_vertex_data(1, 1, 0, 3),
edge_vertex_data(1, 1, 1, 3),
edge_vertex_data(1, 1, 2, 3),
edge_vertex_data(2, 0, 0, 3),
edge_vertex_data(2, 0, 1, 3),
edge_vertex_data(2, 0, 2, 3),
edge_vertex_data(2, 1, 0, 3),
edge_vertex_data(2, 1, 1, 3),
edge_vertex_data(2, 1, 2, 3),
};
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
static constexpr uint16_t kHull3AndEdgeIndices[] = {
// First corner and main body of the hull.
1, 2, 0,
2, 3, 0,
0, 3, 8, // Main body.
// Opposite side and corners of the hull.
4, 5, 3,
5, 6, 3,
3, 6, 8,
6, 7, 8,
// First edge.
10, 9, 11,
9, 14, 11,
11, 14, 12,
14, 13, 12,
// Second edge.
16, 15, 17,
15, 20, 17,
17, 20, 18,
20, 19, 18,
// Third edge.
22, 21, 23,
21, 26, 23,
23, 26, 24,
26, 25, 24,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
static constexpr int32_t kHull4Vertices[] = {
hull_vertex_data(0, 0, 4),
hull_vertex_data(0, 1, 4),
hull_vertex_data(0, 2, 4),
hull_vertex_data(1, 0, 4),
hull_vertex_data(1, 1, 4),
hull_vertex_data(1, 2, 4),
hull_vertex_data(2, 0, 4),
hull_vertex_data(2, 1, 4),
hull_vertex_data(2, 2, 4),
hull_vertex_data(3, 0, 4),
hull_vertex_data(3, 1, 4),
hull_vertex_data(3, 2, 4),
// No edges for now (beziers don't use edges).
};
GR_DECLARE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
static constexpr uint16_t kHull4Indices[] = {
// First half of the hull (split diagonally).
1, 0, 2,
0, 11, 2,
2, 11, 3,
11, 5, 3,
3, 5, 4,
// Second half of the hull.
7, 6, 8,
6, 5, 8,
8, 5, 9,
5, 11, 9,
9, 11, 10,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
/**
* Generates a conservative raster hull around a convex polygon. For triangles, we also generate
* independent conservative rasters around each edge. (See comments for RenderPass)
*/
class VSHullAndEdgeImpl : public GrCCPRCoverageProcessor::VSImpl {
public:
VSHullAndEdgeImpl(std::unique_ptr<Shader> shader, int numSides)
: VSImpl(std::move(shader)), fNumSides(numSides) {}
const char* emitVertexPosition(const GrCCPRCoverageProcessor& proc, GrGLSLVertexBuilder* v,
GrGPArgs* gpArgs) const override {
Shader::GeometryVars vars;
fShader->emitSetupCode(v, "pts", nullptr, "wind", &vars);
const char* hullPts = vars.fHullVars.fAlternatePoints;
if (!hullPts) {
hullPts = "pts";
}
// Reverse all indices if the wind is counter-clockwise: [0, 1, 2] -> [2, 1, 0].
v->codeAppendf("int clockwise_indices = wind > 0 ? %s : 0x%x - %s;",
proc.getAttrib(kAttribIdx_VertexData).fName,
((fNumSides - 1) << 6) | (0xf << 2) | (fNumSides - 1),
proc.getAttrib(kAttribIdx_VertexData).fName);
// Here we generate conservative raster geometry for the input polygon. It is the convex
// hull of N pixel-size boxes, one centered on each the input points. Each corner has three
// vertices, where one or two may cause degenerate triangles. The vertex data tells us how
// to offset each vertex. Triangle edges are also handled here (see kHull3AndEdgeIndices).
// For more details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
v->codeAppendf("float2 bloatpoint = %s[clockwise_indices >> 6];", hullPts);
v->codeAppend ("float2 vertexbloat = float2(bloatpoint.y > corner.y ? -bloat : +bloat, "
"bloatpoint.x > corner.x ? +bloat : -bloat);");
v->codeAppendf("if ((1 << 2) == (%s & (3 << 2))) {",
proc.getAttrib(kAttribIdx_VertexData).fName);
// We are the corner's middle vertex (of 3).
v->codeAppend ( "vertexbloat = float2(-vertexbloat.y, vertexbloat.x);");
v->codeAppend ("}");
v->codeAppendf("if ((2 << 2) == (%s & (3 << 2))) {",
proc.getAttrib(kAttribIdx_VertexData).fName);
// We are the corner's third vertex (of 3).
v->codeAppend ( "vertexbloat = -vertexbloat;");
v->codeAppend ("}");
v->codeAppend ("float2 vertex = corner + vertexbloat;");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
if (4 == fNumSides) {
// We don't generate edges around 4-sided polygons.
return nullptr; // Known hull vertices don't need an initial coverage value.
}
// Find coverage for edge vertices.
Shader::EmitEdgeDistanceEquation(v, "bloatpoint", "corner",
"float3 edge_distance_equation");
v->codeAppend ("half coverage = dot(edge_distance_equation.xy, vertex) + "
"edge_distance_equation.z;");
v->codeAppendf("if (0 == (%s & (1 << 5))) {", proc.getAttrib(kAttribIdx_VertexData).fName);
// We are the opposite endpoint. Invert coverage.
v->codeAppend ( "coverage = -1 - coverage;");
v->codeAppend ("}");
v->codeAppendf("if (0 == (%s & (1 << 4))) {", proc.getAttrib(kAttribIdx_VertexData).fName);
// We are actually a hull vertex. Hull coverage is +1 all around.
v->codeAppend ( "coverage = +1;");
v->codeAppend ("}");
return "coverage";
}
private:
const int fNumSides;
};
static constexpr uint16_t kCornerIndices[] = {
// First corner.
0, 1, 2,
1, 3, 2,
// Second corner.
4, 5, 6,
5, 7, 6,
// Third corner.
8, 9, 10,
9, 11, 10,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
/**
* Generates conservative rasters around corners. (See comments for RenderPass)
*/
class VSCornerImpl : public GrCCPRCoverageProcessor::VSImpl {
public:
VSCornerImpl(std::unique_ptr<Shader> shader) : VSImpl(std::move(shader)) {}
const char* emitVertexPosition(const GrCCPRCoverageProcessor&, GrGLSLVertexBuilder* v,
GrGPArgs* gpArgs) const override {
Shader::GeometryVars vars;
v->codeAppend ("int corner_id = sk_VertexID / 4;");
fShader->emitSetupCode(v, "pts", "corner_id", "wind", &vars);
v->codeAppendf("float2 vertex = %s;", vars.fCornerVars.fPoint);
v->codeAppend ("vertex.x += (0 == (sk_VertexID & 2)) ? -bloat : +bloat;");
v->codeAppend ("vertex.y += (0 == (sk_VertexID & 1)) ? -bloat : +bloat;");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
return nullptr; // Corner vertices don't have an initial coverage value.
}
};
void GrCCPRCoverageProcessor::initVS(GrResourceProvider* rp) {
SkASSERT(Impl::kVertexShader == fImpl);
GrVertexAttribType inputPtsType = RenderPassIsCubic(fRenderPass) ?
kFloat4_GrVertexAttribType : kFloat3_GrVertexAttribType;
SkASSERT(kAttribIdx_X == this->numAttribs());
this->addInstanceAttrib("X", inputPtsType);
SkASSERT(kAttribIdx_Y == this->numAttribs());
this->addInstanceAttrib("Y", inputPtsType);
switch (fRenderPass) {
case RenderPass::kTriangleHulls: {
GR_DEFINE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
sizeof(kHull3AndEdgeVertices),
kHull3AndEdgeVertices,
gHull3AndEdgeVertexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
sizeof(kHull3AndEdgeIndices),
kHull3AndEdgeIndices,
gHull3AndEdgeIndexBufferKey);
SkASSERT(kAttribIdx_VertexData == this->numAttribs());
this->addVertexAttrib("vertexdata", kInt_GrVertexAttribType);
break;
}
case RenderPass::kQuadraticHulls:
case RenderPass::kCubicHulls: {
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4VertexBufferKey);
fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kHull4Vertices),
kHull4Vertices, gHull4VertexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gHull4IndexBufferKey);
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kHull4Indices),
kHull4Indices, gHull4IndexBufferKey);
SkASSERT(kAttribIdx_VertexData == this->numAttribs());
this->addVertexAttrib("vertexdata", kInt_GrVertexAttribType);
break;
}
case RenderPass::kTriangleEdges:
SK_ABORT("kTriangleEdges RenderPass is not used by VSImpl.");
break;
case RenderPass::kTriangleCorners:
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners: {
GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kCornerIndices),
kCornerIndices, gCornerIndexBufferKey);
break;
}
}
#ifdef SK_DEBUG
if (RenderPassIsCubic(fRenderPass)) {
SkASSERT(offsetof(CubicInstance, fX) == this->getAttrib(kAttribIdx_X).fOffsetInRecord);
SkASSERT(offsetof(CubicInstance, fY) == this->getAttrib(kAttribIdx_Y).fOffsetInRecord);
SkASSERT(sizeof(CubicInstance) == this->getInstanceStride());
} else {
SkASSERT(offsetof(TriangleInstance, fX) == this->getAttrib(kAttribIdx_X).fOffsetInRecord);
SkASSERT(offsetof(TriangleInstance, fY) == this->getAttrib(kAttribIdx_Y).fOffsetInRecord);
SkASSERT(sizeof(TriangleInstance) == this->getInstanceStride());
}
if (fVertexBuffer) {
SkASSERT(sizeof(int32_t) == this->getVertexStride());
}
#endif
}
static int num_indices_per_instance(GrCCPRCoverageProcessor::RenderPass pass) {
switch (pass) {
using RenderPass = GrCCPRCoverageProcessor::RenderPass;
case RenderPass::kTriangleHulls:
return SK_ARRAY_COUNT(kHull3AndEdgeIndices);
case RenderPass::kQuadraticHulls:
case RenderPass::kCubicHulls:
return SK_ARRAY_COUNT(kHull4Indices);
case RenderPass::kTriangleEdges:
SK_ABORT("kTriangleEdges RenderPass is not used by VSImpl.");
return 0;
case RenderPass::kTriangleCorners:
return SK_ARRAY_COUNT(kCornerIndices);
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners:
return SK_ARRAY_COUNT(kCornerIndices) * 2/3;
}
SK_ABORT("Invalid RenderPass");
return 0;
}
void GrCCPRCoverageProcessor::appendVSMesh(GrBuffer* instanceBuffer, int instanceCount,
int baseInstance, SkTArray<GrMesh>* out) const {
SkASSERT(Impl::kVertexShader == fImpl);
GrMesh& mesh = out->emplace_back(GrPrimitiveType::kTriangles);
mesh.setIndexedInstanced(fIndexBuffer.get(), num_indices_per_instance(fRenderPass),
instanceBuffer, instanceCount, baseInstance);
if (fVertexBuffer) {
mesh.setVertexData(fVertexBuffer.get(), 0);
}
}
GrGLSLPrimitiveProcessor*
GrCCPRCoverageProcessor::createVSImpl(std::unique_ptr<Shader> shader) const {
switch (fRenderPass) {
case RenderPass::kTriangleHulls:
return new VSHullAndEdgeImpl(std::move(shader), 3);
case RenderPass::kQuadraticHulls:
case RenderPass::kCubicHulls:
return new VSHullAndEdgeImpl(std::move(shader), 4);
case RenderPass::kTriangleEdges:
SK_ABORT("kTriangleEdges RenderPass is not used by VSImpl.");
return nullptr;
case RenderPass::kTriangleCorners:
case RenderPass::kQuadraticCorners:
case RenderPass::kCubicCorners:
return new VSCornerImpl(std::move(shader));
}
SK_ABORT("Invalid RenderPass");
return nullptr;
}

View File

@ -76,29 +76,25 @@ void GrCCPRCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts
}
Shader::WindHandling GrCCPRCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope,
SkString* code, const char* position,
const char* coverage, const char* /*wind*/) {
SkASSERT(!coverage);
fKLMD.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("klmd", &fKLMD);
code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
code->appendf("float d = dot(float3(%s, 1), %s);", position, fEdgeDistanceEquation.c_str());
code->appendf("%s = float4(klm, d);", OutName(fKLMD));
code->appendf("%s = float4(klm, d);", fKLMD.gsOut());
this->onEmitVaryings(varyingHandler, scope, code);
this->onEmitVaryings(varyingHandler, code);
return WindHandling::kNotHandled;
}
void GrCCPRCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fGradMatrix.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addVarying("grad_matrix", &fGradMatrix);
void GrCCPRCubicHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, SkString* code) {
// "klm" was just defined by the base class.
code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str());
varyingHandler->addVarying("grad_matrix", &fGradMatrix);
code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", fGradMatrix.gsOut(), fKLMMatrix.c_str());
code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
fGradMatrix.gsOut(), fKLMMatrix.c_str(), fKLMMatrix.c_str());
}
void GrCCPRCubicHullShader::onEmitFragmentCode(GrGLSLPPFragmentBuilder* f,
@ -117,18 +113,15 @@ void GrCCPRCubicCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const c
vars->fCornerVars.fPoint = "corner";
}
void GrCCPRCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fdKLMDdx.reset(kFloat4_GrSLType, scope);
void GrCCPRCubicCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, SkString* code) {
varyingHandler->addFlatVarying("dklmddx", &fdKLMDdx);
code->appendf("%s = float4(%s[0].x, %s[1].x, %s[2].x, %s.x);",
OutName(fdKLMDdx), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fdKLMDdx.gsOut(), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
fdKLMDdy.reset(kFloat4_GrSLType, scope);
varyingHandler->addFlatVarying("dklmddy", &fdKLMDdy);
code->appendf("%s = float4(%s[0].y, %s[1].y, %s[2].y, %s.y);",
OutName(fdKLMDdy), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fdKLMDdy.gsOut(), fKLMMatrix.c_str(), fKLMMatrix.c_str(),
fKLMMatrix.c_str(), fEdgeDistanceEquation.c_str());
}

View File

@ -29,31 +29,31 @@ protected:
virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const {}
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* coverage, const char* wind) final;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, SkString* code, const char* position,
const char* coverage, const char* wind) final;
virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) = 0;
virtual void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) = 0;
GrShaderVar fKLMMatrix{"klm_matrix", kFloat3x3_GrSLType};
GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
GrGLSLVarying fKLMD;
GrGLSLVarying fKLMD{kFloat4_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
class GrCCPRCubicHullShader : public GrCCPRCubicShader {
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fGradMatrix;
GrGLSLVarying fGradMatrix{kFloat2x2_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
class GrCCPRCubicCornerShader : public GrCCPRCubicShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fdKLMDdx;
GrGLSLVarying fdKLMDdy;
GrGLSLVarying fdKLMDdx{kFloat4_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
GrGLSLVarying fdKLMDdy{kFloat4_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
#endif

View File

@ -7,7 +7,6 @@
#include "GrCCPRQuadraticShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
@ -34,21 +33,19 @@ void GrCCPRQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char*
}
Shader::WindHandling GrCCPRQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope,
SkString* code, const char* position,
const char* coverage,
const char* /*wind*/) {
SkASSERT(!coverage);
fXYD.reset(kFloat3_GrSLType, scope);
varyingHandler->addVarying("xyd", &fXYD);
code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
OutName(fXYD), fCanonicalMatrix.c_str(), position);
fXYD.gsOut(), fCanonicalMatrix.c_str(), position);
code->appendf("%s.z = dot(%s.xy, %s) + %s.z;",
OutName(fXYD), fEdgeDistanceEquation.c_str(), position,
fXYD.gsOut(), fEdgeDistanceEquation.c_str(), position,
fEdgeDistanceEquation.c_str());
this->onEmitVaryings(varyingHandler, scope, code);
this->onEmitVaryings(varyingHandler, code);
return WindHandling::kNotHandled;
}
@ -72,11 +69,10 @@ void GrCCPRQuadraticHullShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, const
}
void GrCCPRQuadraticHullShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fGrad.reset(kFloat2_GrSLType, scope);
SkString* code) {
varyingHandler->addVarying("grad", &fGrad);
code->appendf("%s = float2(2 * %s.x, -1) * float2x2(%s);",
OutName(fGrad), OutName(fXYD), fCanonicalMatrix.c_str());
fGrad.gsOut(), fXYD.gsOut(), fCanonicalMatrix.c_str());
}
void GrCCPRQuadraticHullShader::onEmitFragmentCode(GrGLSLPPFragmentBuilder* f,
@ -95,17 +91,15 @@ void GrCCPRQuadraticCornerShader::onEmitSetupCode(GrGLSLVertexGeoBuilder* s, con
}
void GrCCPRQuadraticCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code) {
fdXYDdx.reset(kFloat3_GrSLType, scope);
SkString* code) {
varyingHandler->addFlatVarying("dXYDdx", &fdXYDdx);
code->appendf("%s = float3(%s[0].x, %s[0].y, %s.x);",
OutName(fdXYDdx), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fdXYDdx.gsOut(), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
fdXYDdy.reset(kFloat3_GrSLType, scope);
varyingHandler->addFlatVarying("dXYDdy", &fdXYDdy);
code->appendf("%s = float3(%s[1].x, %s[1].y, %s.y);",
OutName(fdXYDdy), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fdXYDdy.gsOut(), fCanonicalMatrix.c_str(), fCanonicalMatrix.c_str(),
fEdgeDistanceEquation.c_str());
}

View File

@ -28,14 +28,14 @@ protected:
virtual void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const = 0;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* coverage, const char* wind) final;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, SkString* code, const char* position,
const char* coverage, const char* wind) final;
virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) {}
virtual void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) = 0;
const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType};
const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
GrGLSLVarying fXYD;
GrGLSLVarying fXYD{kFloat3_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
/**
@ -47,10 +47,10 @@ protected:
class GrCCPRQuadraticHullShader : public GrCCPRQuadraticShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fGrad;
GrGLSLVarying fGrad{kFloat2_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
/**
@ -59,11 +59,11 @@ class GrCCPRQuadraticHullShader : public GrCCPRQuadraticShader {
class GrCCPRQuadraticCornerShader : public GrCCPRQuadraticShader {
void onEmitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
GeometryVars*) const override;
void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code) override;
void onEmitVaryings(GrGLSLVaryingHandler*, SkString* code) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fdXYDdx;
GrGLSLVarying fdXYDdy;
GrGLSLVarying fdXYDdx{kFloat3_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
GrGLSLVarying fdXYDdy{kFloat3_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
#endif

View File

@ -13,16 +13,14 @@
using Shader = GrCCPRCoverageProcessor::Shader;
Shader::WindHandling GrCCPRTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope,
SkString* code, const char* /*position*/,
const char* coverage, const char* wind) {
fCoverageTimesWind.reset(kHalf_GrSLType, scope);
if (!coverage) {
varyingHandler->addFlatVarying("wind", &fCoverageTimesWind);
code->appendf("%s = %s;", OutName(fCoverageTimesWind), wind);
code->appendf("%s = %s;", fCoverageTimesWind.gsOut(), wind);
} else {
varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), coverage, wind);
code->appendf("%s = %s * %s;", fCoverageTimesWind.gsOut(), coverage, wind);
}
return WindHandling::kHandled;
}
@ -87,23 +85,18 @@ void GrCCPRTriangleCornerShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const
}
Shader::WindHandling
GrCCPRTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
GrCCPRTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler, SkString* code,
const char* position, const char* coverage,
const char* /*wind*/) {
SkASSERT(!coverage);
fCornerLocationInAABoxes.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addVarying("corner_location_in_aa_boxes", &fCornerLocationInAABoxes);
fBisectInAABoxes.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addFlatVarying("bisect_in_aa_boxes", &fBisectInAABoxes);
code->appendf("for (int i = 0; i < 2; ++i) {");
code->appendf( "%s[i] = %s * %s[i] + %s[i];",
OutName(fCornerLocationInAABoxes), position, fAABoxMatrices.c_str(),
fCornerLocationInAABoxes.gsOut(), position, fAABoxMatrices.c_str(),
fAABoxTranslates.c_str());
code->appendf( "%s[i] = %s[i];", OutName(fBisectInAABoxes), fGeoShaderBisects.c_str());
code->appendf( "%s[i] = %s[i];", fBisectInAABoxes.gsOut(), fGeoShaderBisects.c_str());
code->appendf("}");
return WindHandling::kNotHandled;

View File

@ -11,38 +11,35 @@
#include "ccpr/GrCCPRCoverageProcessor.h"
/**
* Steps 1 & 2: Draw the triangle's conservative raster hull with a coverage of +1, then smooth the
* edges by drawing the conservative rasters of all 3 edges and interpolating from
* coverage=-1 on the outside to coverage=0 on the inside. The Impl may choose to
* implement these steps in either one or two actual render passes.
* Passes 1 & 2: Draw the triangle's conservative raster hull with a coverage of 1, then smooth the
* edges by drawing the conservative rasters of all 3 edges and interpolating from
* coverage=-1 on the outside to coverage=0 on the inside.
*/
class GrCCPRTriangleShader : public GrCCPRCoverageProcessor::Shader {
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* coverage,
const char* wind) override;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, SkString* code, const char* position,
const char* coverage, const char* wind) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder*, const char* outputCoverage) const override;
GrGLSLVarying fCoverageTimesWind;
GrGLSLVarying fCoverageTimesWind{kHalf_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
/**
* Step 3: Touch up the corner pixels. Here we fix the simple distance-to-edge coverage analysis
* Pass 3: Touch up the corner pixels. Here we fix the simple distance-to-edge coverage analysis
* done previously so that it takes into account the region that is outside both edges at
* the same time.
*/
class GrCCPRTriangleCornerShader : public GrCCPRCoverageProcessor::Shader {
void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
const char* wind, GeometryVars*) const override;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
const char* position, const char* coverage,
const char* wind) override;
WindHandling onEmitVaryings(GrGLSLVaryingHandler*, SkString* code, const char* position,
const char* coverage, const char* wind) override;
void onEmitFragmentCode(GrGLSLPPFragmentBuilder* f, const char* outputCoverage) const override;
GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2};
GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2};
GrShaderVar fGeoShaderBisects{"bisects", kFloat2_GrSLType, 2};
GrGLSLVarying fCornerLocationInAABoxes;
GrGLSLVarying fBisectInAABoxes;
GrGLSLVarying fCornerLocationInAABoxes{kFloat2x2_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
GrGLSLVarying fBisectInAABoxes{kFloat2x2_GrSLType, GrGLSLVarying::Scope::kGeoToFrag};
};
#endif

View File

@ -38,12 +38,14 @@ static void crop_path(const SkPath& path, const SkIRect& cropbox, SkPath* out) {
bool GrCoverageCountingPathRenderer::IsSupported(const GrCaps& caps) {
const GrShaderCaps& shaderCaps = *caps.shaderCaps();
return shaderCaps.integerSupport() &&
return shaderCaps.geometryShaderSupport() &&
shaderCaps.integerSupport() &&
shaderCaps.flatInterpolationSupport() &&
caps.instanceAttribSupport() &&
GrCaps::kNone_MapFlags != caps.mapBufferFlags() &&
caps.isConfigTexturable(kAlpha_half_GrPixelConfig) &&
caps.isConfigRenderable(kAlpha_half_GrPixelConfig, /*withMSAA=*/false) &&
GrCaps::kNone_MapFlags != caps.mapBufferFlags() &&
!caps.blacklistCoverageCounting();
}

View File

@ -37,7 +37,6 @@ void GrGLSLVaryingHandler::internalAddVarying(const char* name, GrGLSLVarying* v
VaryingInfo& v = fVaryings.push_back();
SkASSERT(varying);
SkASSERT(kVoid_GrSLType != varying->fType);
v.fType = varying->fType;
v.fIsFlat = flat;
fProgramBuilder->nameVariable(&v.fVsOut, 'v', name);

View File

@ -24,15 +24,8 @@ public:
kGeoToFrag
};
GrGLSLVarying() = default;
GrGLSLVarying(GrSLType type, Scope scope = Scope::kVertToFrag) : fType(type), fScope(scope) {}
void reset(GrSLType type, Scope scope = Scope::kVertToFrag) {
*this = GrGLSLVarying();
fType = type;
fScope = scope;
}
GrSLType type() const { return fType; }
Scope scope() const { return fScope; }
bool isInVertexShader() const { return Scope::kGeoToFrag != fScope; }
@ -44,8 +37,8 @@ public:
const char* fsIn() const { SkASSERT(this->isInFragmentShader()); return fFsIn; }
private:
GrSLType fType = kVoid_GrSLType;
Scope fScope = Scope::kVertToFrag;
const GrSLType fType;
const Scope fScope;
const char* fVsOut = nullptr;
const char* fGsIn = nullptr;
const char* fGsOut = nullptr;