Convert Checksum test to DEF_TEST() macro.
BUG=None TEST=tests R=mtklein@google.com, bungeman@google.com Author: tfarina@chromium.org Review URL: https://codereview.chromium.org/126743003 git-svn-id: http://skia.googlecode.com/svn/trunk@12996 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
parent
857e320300
commit
2b0f7c321c
@ -1,142 +1,53 @@
|
||||
|
||||
/*
|
||||
* Copyright 2012 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
#include "Test.h"
|
||||
|
||||
#include "SkChecksum.h"
|
||||
#include "SkRandom.h"
|
||||
#include "Test.h"
|
||||
#include "TestClassDef.h"
|
||||
|
||||
// Word size that is large enough to hold results of any checksum type.
|
||||
typedef uint64_t checksum_result;
|
||||
|
||||
namespace skiatest {
|
||||
class ChecksumTestClass : public Test {
|
||||
public:
|
||||
static Test* Factory(void*) {return SkNEW(ChecksumTestClass); }
|
||||
protected:
|
||||
virtual void onGetName(SkString* name) { name->set("Checksum"); }
|
||||
virtual void onRun(Reporter* reporter) {
|
||||
this->fReporter = reporter;
|
||||
RunTest();
|
||||
// Murmur3 has an optional third seed argument, so we wrap it to fit a uniform type.
|
||||
static uint32_t murmur_noseed(const uint32_t* d, size_t l) { return SkChecksum::Murmur3(d, l); }
|
||||
|
||||
#define ASSERT(x) REPORTER_ASSERT(r, x)
|
||||
|
||||
DEF_TEST(Checksum, r) {
|
||||
// Algorithms to test. They're currently all uint32_t(const uint32_t*, size_t).
|
||||
typedef uint32_t(*algorithmProc)(const uint32_t*, size_t);
|
||||
const algorithmProc kAlgorithms[] = { &SkChecksum::Compute, &murmur_noseed };
|
||||
|
||||
// Put 128 random bytes into two identical buffers. Any multiple of 4 will do.
|
||||
const size_t kBytes = SkAlign4(128);
|
||||
SkRandom rand;
|
||||
uint32_t data[kBytes/4], tweaked[kBytes/4];
|
||||
for (size_t i = 0; i < SK_ARRAY_COUNT(tweaked); ++i) {
|
||||
data[i] = tweaked[i] = rand.nextU();
|
||||
}
|
||||
|
||||
// Test each algorithm.
|
||||
for (size_t i = 0; i < SK_ARRAY_COUNT(kAlgorithms); ++i) {
|
||||
const algorithmProc algorithm = kAlgorithms[i];
|
||||
|
||||
// Hash of NULL is always 0.
|
||||
ASSERT(algorithm(NULL, 0) == 0);
|
||||
|
||||
const uint32_t hash = algorithm(data, kBytes);
|
||||
// Should be deterministic.
|
||||
ASSERT(hash == algorithm(data, kBytes));
|
||||
|
||||
// Changing any single element should change the hash.
|
||||
for (size_t j = 0; j < SK_ARRAY_COUNT(tweaked); ++j) {
|
||||
const uint32_t saved = tweaked[j];
|
||||
tweaked[j] = rand.nextU();
|
||||
const uint32_t tweakedHash = algorithm(tweaked, kBytes);
|
||||
ASSERT(tweakedHash != hash);
|
||||
ASSERT(tweakedHash == algorithm(tweaked, kBytes));
|
||||
tweaked[j] = saved;
|
||||
}
|
||||
private:
|
||||
enum Algorithm {
|
||||
kSkChecksum,
|
||||
kMurmur3,
|
||||
};
|
||||
|
||||
// Call Compute(data, size) on the appropriate checksum algorithm,
|
||||
// depending on this->fWhichAlgorithm.
|
||||
checksum_result ComputeChecksum(const char *data, size_t size) {
|
||||
switch(fWhichAlgorithm) {
|
||||
case kSkChecksum:
|
||||
REPORTER_ASSERT_MESSAGE(fReporter,
|
||||
reinterpret_cast<uintptr_t>(data) % 4 == 0,
|
||||
"test data pointer is not 32-bit aligned");
|
||||
REPORTER_ASSERT_MESSAGE(fReporter, SkIsAlign4(size),
|
||||
"test data size is not 32-bit aligned");
|
||||
return SkChecksum::Compute(reinterpret_cast<const uint32_t *>(data), size);
|
||||
case kMurmur3:
|
||||
REPORTER_ASSERT_MESSAGE(fReporter,
|
||||
reinterpret_cast<uintptr_t>(data) % 4 == 0,
|
||||
"test data pointer is not 32-bit aligned");
|
||||
REPORTER_ASSERT_MESSAGE(fReporter, SkIsAlign4(size),
|
||||
"test data size is not 32-bit aligned");
|
||||
return SkChecksum::Murmur3(reinterpret_cast<const uint32_t *>(data), size);
|
||||
default:
|
||||
SkString message("fWhichAlgorithm has unknown value ");
|
||||
message.appendf("%d", fWhichAlgorithm);
|
||||
fReporter->reportFailed(message);
|
||||
}
|
||||
// we never get here
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Confirm that the checksum algorithm (specified by fWhichAlgorithm)
|
||||
// generates the same results if called twice over the same data.
|
||||
void TestChecksumSelfConsistency(size_t buf_size) {
|
||||
SkAutoMalloc storage(buf_size);
|
||||
char* ptr = reinterpret_cast<char *>(storage.get());
|
||||
|
||||
REPORTER_ASSERT(fReporter,
|
||||
GetTestDataChecksum(8, 0) ==
|
||||
GetTestDataChecksum(8, 0));
|
||||
REPORTER_ASSERT(fReporter,
|
||||
GetTestDataChecksum(8, 0) !=
|
||||
GetTestDataChecksum(8, 1));
|
||||
|
||||
sk_bzero(ptr, buf_size);
|
||||
checksum_result prev = 0;
|
||||
|
||||
// assert that as we change values (from 0 to non-zero) in
|
||||
// our buffer, we get a different value
|
||||
for (size_t i = 0; i < buf_size; ++i) {
|
||||
ptr[i] = (i & 0x7f) + 1; // need some non-zero value here
|
||||
|
||||
// Try checksums of different-sized chunks, but always
|
||||
// 32-bit aligned and big enough to contain all the
|
||||
// nonzero bytes. (Remaining bytes will still be zero
|
||||
// from the initial sk_bzero() call.)
|
||||
size_t checksum_size = (((i/4)+1)*4);
|
||||
REPORTER_ASSERT(fReporter, checksum_size <= buf_size);
|
||||
|
||||
checksum_result curr = ComputeChecksum(ptr, checksum_size);
|
||||
REPORTER_ASSERT(fReporter, prev != curr);
|
||||
checksum_result again = ComputeChecksum(ptr, checksum_size);
|
||||
REPORTER_ASSERT(fReporter, again == curr);
|
||||
prev = curr;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the checksum of a buffer of bytes 'len' long.
|
||||
// The pattern of values within the buffer will be consistent
|
||||
// for every call, based on 'seed'.
|
||||
checksum_result GetTestDataChecksum(size_t len, char seed=0) {
|
||||
SkAutoMalloc storage(len);
|
||||
char* start = reinterpret_cast<char *>(storage.get());
|
||||
char* ptr = start;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
*ptr++ = ((seed+i) & 0x7f);
|
||||
}
|
||||
checksum_result result = ComputeChecksum(start, len);
|
||||
return result;
|
||||
}
|
||||
|
||||
void RunTest() {
|
||||
const Algorithm algorithms[] = { kSkChecksum, kMurmur3 };
|
||||
for (size_t i = 0; i < SK_ARRAY_COUNT(algorithms); i++) {
|
||||
fWhichAlgorithm = algorithms[i];
|
||||
|
||||
// Test self-consistency of checksum algorithms.
|
||||
TestChecksumSelfConsistency(128);
|
||||
|
||||
// Test checksum results that should be consistent across
|
||||
// versions and platforms.
|
||||
REPORTER_ASSERT(fReporter, ComputeChecksum(NULL, 0) == 0);
|
||||
|
||||
const bool colision1 = GetTestDataChecksum(128) == GetTestDataChecksum(256);
|
||||
const bool colision2 = GetTestDataChecksum(132) == GetTestDataChecksum(260);
|
||||
if (fWhichAlgorithm == kSkChecksum) {
|
||||
// TODO: note the weakness exposed by these collisions...
|
||||
// We need to improve the SkChecksum algorithm.
|
||||
// We would prefer that these asserts FAIL!
|
||||
// Filed as https://code.google.com/p/skia/issues/detail?id=981
|
||||
// ('SkChecksum algorithm allows for way too many collisions')
|
||||
REPORTER_ASSERT(fReporter, colision1);
|
||||
REPORTER_ASSERT(fReporter, colision2);
|
||||
} else {
|
||||
REPORTER_ASSERT(fReporter, !colision1);
|
||||
REPORTER_ASSERT(fReporter, !colision2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reporter* fReporter;
|
||||
Algorithm fWhichAlgorithm;
|
||||
};
|
||||
|
||||
static TestRegistry gReg(ChecksumTestClass::Factory);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user