Allow SkSL compilers to reuse SkSL Pools without reallocating.

When a Program is freed, rather than immediately disposing of its Pool,
it now sends it to Pool::Recycle, which holds onto it. If Pool::Create
is called, it satisfies the request by simply handing back the recycled
pool. Only one pool is kept in recycle storage at a time--recycling
more than one pool in a row will cause all but one to be freed. To avoid
holding onto Pool memory indefinitely, pool recycle storage is cleaned
up whenever a Compiler is destroyed.

Change-Id: I21c1ccde84507e344102d05506d869e62ca095a6
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/329175
Reviewed-by: Brian Osman <brianosman@google.com>
Reviewed-by: Ethan Nicholas <ethannicholas@google.com>
Commit-Queue: John Stiles <johnstiles@google.com>
Auto-Submit: John Stiles <johnstiles@google.com>
This commit is contained in:
John Stiles 2020-10-22 15:42:27 -04:00 committed by Skia Commit-Bot
parent 53281c7121
commit 2d68ea3fbf
4 changed files with 92 additions and 43 deletions

View File

@ -228,7 +228,9 @@ Compiler::Compiler(Flags flags)
fFragmentModule = this->parseModule(Program::kFragment_Kind, MODULE_DATA(frag), fGPUModule); fFragmentModule = this->parseModule(Program::kFragment_Kind, MODULE_DATA(frag), fGPUModule);
} }
Compiler::~Compiler() {} Compiler::~Compiler() {
Pool::FreeRecycledPool();
}
const ParsedModule& Compiler::loadGeometryModule() { const ParsedModule& Compiler::loadGeometryModule() {
if (!fGeometryModule.fSymbols) { if (!fGeometryModule.fSymbols) {
@ -1550,7 +1552,8 @@ std::unique_ptr<Program> Compiler::convertProgram(
// Enable node pooling while converting and optimizing the program for a performance boost. // Enable node pooling while converting and optimizing the program for a performance boost.
// The Program will take ownership of the pool. // The Program will take ownership of the pool.
std::unique_ptr<Pool> pool = Pool::CreatePoolOnThread(2000); std::unique_ptr<Pool> pool = Pool::Create();
pool->attachToThread();
IRGenerator::IRBundle ir = IRGenerator::IRBundle ir =
fIRGenerator->convertProgram(kind, &settings, baseModule, /*isBuiltinCode=*/false, fIRGenerator->convertProgram(kind, &settings, baseModule, /*isBuiltinCode=*/false,
textPtr->c_str(), textPtr->size(), externalValues); textPtr->c_str(), textPtr->size(), externalValues);

View File

@ -7,6 +7,7 @@
#include "src/sksl/SkSLPool.h" #include "src/sksl/SkSLPool.h"
#include "include/private/SkMutex.h"
#include "src/sksl/ir/SkSLIRNode.h" #include "src/sksl/ir/SkSLIRNode.h"
#define VLOG(...) // printf(__VA_ARGS__) #define VLOG(...) // printf(__VA_ARGS__)
@ -79,6 +80,12 @@ static void set_thread_local_pool_data(PoolData* poolData) {
#endif #endif
static Pool* sRecycledPool; // GUARDED_BY recycled_pool_mutex
static SkMutex& recycled_pool_mutex() {
static SkMutex* mutex = new SkMutex;
return *mutex;
}
static PoolData* create_pool_data(int nodesInPool) { static PoolData* create_pool_data(int nodesInPool) {
// Create a PoolData structure with extra space at the end for additional IRNode data. // Create a PoolData structure with extra space at the end for additional IRNode data.
int numExtraIRNodes = nodesInPool - 1; int numExtraIRNodes = nodesInPool - 1;
@ -102,44 +109,42 @@ Pool::~Pool() {
set_thread_local_pool_data(nullptr); set_thread_local_pool_data(nullptr);
} }
// In debug mode, report any leaked nodes. this->checkForLeaks();
#ifdef SK_DEBUG
ptrdiff_t nodeCount = fData->nodeCount();
std::vector<bool> freed(nodeCount);
for (IRNodeData* node = fData->fFreeListHead; node; node = node->fFreeListNext) {
ptrdiff_t nodeIndex = fData->nodeIndex(node);
freed[nodeIndex] = true;
}
bool foundLeaks = false;
for (int index = 0; index < nodeCount; ++index) {
if (!freed[index]) {
IRNode* leak = reinterpret_cast<IRNode*>(fData->fNodes[index].fBuffer);
SkDebugf("Node %d leaked: %s\n", index, leak->description().c_str());
foundLeaks = true;
}
}
if (foundLeaks) {
SkDEBUGFAIL("leaking SkSL pool nodes; if they are later freed, this will likely be fatal");
}
#endif
VLOG("DELETE Pool:0x%016llX\n", (uint64_t)fData); VLOG("DELETE Pool:0x%016llX\n", (uint64_t)fData);
free(fData); free(fData);
} }
std::unique_ptr<Pool> Pool::CreatePoolOnThread(int nodesInPool) { std::unique_ptr<Pool> Pool::Create() {
auto pool = std::unique_ptr<Pool>(new Pool); constexpr int kNodesInPool = 2000;
pool->fData = create_pool_data(nodesInPool);
pool->fData->fFreeListHead = &pool->fData->fNodes[0]; SkAutoMutexExclusive lock(recycled_pool_mutex());
VLOG("CREATE Pool:0x%016llX\n", (uint64_t)pool->fData); std::unique_ptr<Pool> pool;
pool->attachToThread(); if (sRecycledPool) {
pool = std::unique_ptr<Pool>(sRecycledPool);
sRecycledPool = nullptr;
VLOG("REUSE Pool:0x%016llX\n", (uint64_t)pool->fData);
} else {
pool = std::unique_ptr<Pool>(new Pool);
pool->fData = create_pool_data(kNodesInPool);
pool->fData->fFreeListHead = &pool->fData->fNodes[0];
VLOG("CREATE Pool:0x%016llX\n", (uint64_t)pool->fData);
}
return pool; return pool;
} }
void Pool::detachFromThread() { void Pool::Recycle(std::unique_ptr<Pool> pool) {
VLOG("DETACH Pool:0x%016llX\n", (uint64_t)get_thread_local_pool_data()); if (pool) {
SkASSERT(get_thread_local_pool_data() != nullptr); pool->checkForLeaks();
set_thread_local_pool_data(nullptr); }
SkAutoMutexExclusive lock(recycled_pool_mutex());
if (sRecycledPool) {
delete sRecycledPool;
}
VLOG("STASH Pool:0x%016llX\n", pool ? (uint64_t)pool->fData : 0ull);
sRecycledPool = pool.release();
} }
void Pool::attachToThread() { void Pool::attachToThread() {
@ -148,6 +153,12 @@ void Pool::attachToThread() {
set_thread_local_pool_data(fData); set_thread_local_pool_data(fData);
} }
void Pool::detachFromThread() {
VLOG("DETACH Pool:0x%016llX\n", (uint64_t)get_thread_local_pool_data());
SkASSERT(get_thread_local_pool_data() != nullptr);
set_thread_local_pool_data(nullptr);
}
void* Pool::AllocIRNode() { void* Pool::AllocIRNode() {
// Is a pool attached? // Is a pool attached?
PoolData* poolData = get_thread_local_pool_data(); PoolData* poolData = get_thread_local_pool_data();
@ -192,4 +203,26 @@ void Pool::FreeIRNode(void* node_v) {
::operator delete(node_v); ::operator delete(node_v);
} }
void Pool::checkForLeaks() {
#ifdef SK_DEBUG
ptrdiff_t nodeCount = fData->nodeCount();
std::vector<bool> freed(nodeCount);
for (IRNodeData* node = fData->fFreeListHead; node; node = node->fFreeListNext) {
ptrdiff_t nodeIndex = fData->nodeIndex(node);
freed[nodeIndex] = true;
}
bool foundLeaks = false;
for (int index = 0; index < nodeCount; ++index) {
if (!freed[index]) {
IRNode* leak = reinterpret_cast<IRNode*>(fData->fNodes[index].fBuffer);
SkDebugf("Node %d leaked: %s\n", index, leak->description().c_str());
foundLeaks = true;
}
}
if (foundLeaks) {
SkDEBUGFAIL("leaking SkSL pool nodes; if they are later freed, this will likely be fatal");
}
#endif
}
} // namespace SkSL } // namespace SkSL

View File

@ -19,21 +19,28 @@ class Pool {
public: public:
~Pool(); ~Pool();
// Creates a pool to store newly-created IRNodes during program creation and attaches it to the // Creates a pool to store IRNodes during program creation. Call attachToThread() to start using
// current thread. When your program is complete, call pool->detachFromThread() to transfer // the pool for IRNode allocations. When your program is complete, call pool->detachFromThread()
// ownership of those nodes. Before destroying any of the program's nodes, reattach the pool via // to take ownership of the pool and its nodes. Before destroying any of the program's nodes,
// pool->attachToThread(). It is an error to call CreatePoolOnThread if a pool is already // make sure to reattach the pool by calling pool->attachToThread() again.
// attached to the current thread. static std::unique_ptr<Pool> Create();
static std::unique_ptr<Pool> CreatePoolOnThread(int nodesInPool);
// Once a pool has been created and the ephemeral work has completed, detach it from its thread. // Gives up ownership of a pool; conceptually, this deletes it. In practice, on some platforms,
// it is expensive to free and reallocate pools, so this gives us an opportunity to reuse the
// allocation for future CreatePoolOnThread calls.
static void Recycle(std::unique_ptr<Pool> pool);
// Explicitly frees a previously recycled pool (if any), reclaiming the memory.
static void FreeRecycledPool() { Recycle(nullptr); }
// Attaches a pool to the current thread.
// It is an error to call this while a pool is already attached.
void attachToThread();
// Once you are done creating or destroying IRNodes in the pool, detach it from the thread.
// It is an error to call this while no pool is attached. // It is an error to call this while no pool is attached.
void detachFromThread(); void detachFromThread();
// Reattaches a pool to the current thread. It is an error to call this while a pool is already
// attached.
void attachToThread();
// Retrieves a node from the thread pool. If the pool is exhausted, this will allocate a node. // Retrieves a node from the thread pool. If the pool is exhausted, this will allocate a node.
static void* AllocIRNode(); static void* AllocIRNode();
@ -42,6 +49,8 @@ public:
static void FreeIRNode(void* node_v); static void FreeIRNode(void* node_v);
private: private:
void checkForLeaks();
Pool() = default; // use CreatePoolOnThread to make a pool Pool() = default; // use CreatePoolOnThread to make a pool
PoolData* fData = nullptr; PoolData* fData = nullptr;
}; };

View File

@ -188,6 +188,10 @@ struct Program {
fSymbols.reset(); fSymbols.reset();
fModifiers.reset(); fModifiers.reset();
fPool->detachFromThread(); fPool->detachFromThread();
// We are done with the pool; recycle it so that it can be reused for future program
// compilation.
Pool::Recycle(std::move(fPool));
} }
const std::vector<std::unique_ptr<ProgramElement>>& elements() const { return fElements; } const std::vector<std::unique_ptr<ProgramElement>>& elements() const { return fElements; }