Added optional "ambiguous" outgoing argument to XRay queries so that

calling code may choose different y-coordinates for better robustness.
Tested and verified manually inside O3D.

BUG=none
TEST=none

Review URL: http://codereview.appspot.com/1695051


git-svn-id: http://skia.googlecode.com/svn/trunk@586 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
kbr@chromium.org 2010-07-07 22:20:35 +00:00
parent 4040861465
commit 2e086190e5
2 changed files with 77 additions and 14 deletions

View File

@ -26,10 +26,13 @@
*/
typedef SkPoint SkXRay;
/** Given a line segment from pts[0] to pts[1], and ax xray, return true if
they intersect.
/** Given a line segment from pts[0] to pts[1], and an xray, return true if
they intersect. Optional outgoing "ambiguous" argument indicates
whether the answer is ambiguous because the query occurred exactly at
one of the endpoints' y coordinates, indicating that another query y
coordinate is preferred for robustness.
*/
bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2]);
bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous = NULL);
/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
equation.
@ -155,8 +158,12 @@ int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tV
left of the curve, the line is not considered to cross the curve,
but if it is equal to cubic[3].fY then it is considered to
cross.
Optional outgoing "ambiguous" argument indicates whether the answer is
ambiguous because the query occurred exactly at one of the endpoints' y
coordinates, indicating that another query y coordinate is preferred
for robustness.
*/
bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]);
bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous = NULL);
/** Given an arbitrary cubic bezier, return the number of times an xray crosses
the cubic. Valid return values are [0..3]
@ -165,8 +172,12 @@ bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]);
left of the curve, the line is not considered to cross the curve,
but if it is equal to cubic[3].fY then it is considered to
cross.
Optional outgoing "ambiguous" argument indicates whether the answer is
ambiguous because the query occurred exactly at one of the endpoints' y
coordinates or at a tangent point, indicating that another query y
coordinate is preferred for robustness.
*/
int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4]);
int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous = NULL);
///////////////////////////////////////////////////////////////////////////////////////////

View File

@ -19,12 +19,19 @@
#include "Sk64.h"
#include "SkMatrix.h"
bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2]) {
bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
if (ambiguous) {
*ambiguous = false;
}
// Determine quick discards.
// Consider query line going exactly through point 0 to not
// intersect, for symmetry with SkXRayCrossesMonotonicCubic.
if (pt.fY == pts[0].fY)
if (pt.fY == pts[0].fY) {
if (ambiguous) {
*ambiguous = true;
}
return false;
}
if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
return false;
if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
@ -34,10 +41,27 @@ bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2]) {
// Determine degenerate cases
if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
return false;
if (SkScalarNearlyZero(pts[0].fX - pts[1].fX))
if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
// We've already determined the query point lies within the
// vertical range of the line segment.
return pt.fX <= pts[0].fX;
if (pt.fX <= pts[0].fX) {
if (ambiguous) {
*ambiguous = (pt.fY == pts[1].fY);
}
return true;
}
return false;
}
// Ambiguity check
if (pt.fY == pts[1].fY) {
if (pt.fX <= pts[1].fX) {
if (ambiguous) {
*ambiguous = true;
}
return true;
}
return false;
}
// Full line segment evaluation
SkScalar delta_y = pts[1].fY - pts[0].fY;
SkScalar delta_x = pts[1].fX - pts[0].fX;
@ -986,7 +1010,11 @@ int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tV
return count + 1;
}
bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]) {
bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
if (ambiguous) {
*ambiguous = false;
}
// Find the minimum and maximum y of the extrema, which are the
// first and last points since this cubic is monotonic
SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
@ -996,9 +1024,14 @@ bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]) {
|| pt.fY < min_y
|| pt.fY > max_y) {
// The query line definitely does not cross the curve
if (ambiguous) {
*ambiguous = (pt.fY == cubic[0].fY);
}
return false;
}
bool pt_at_extremum = (pt.fY == cubic[3].fY);
SkScalar min_x =
SkMinScalar(
SkMinScalar(
@ -1007,6 +1040,9 @@ bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]) {
cubic[3].fX);
if (pt.fX < min_x) {
// The query line definitely crosses the curve
if (ambiguous) {
*ambiguous = pt_at_extremum;
}
return true;
}
@ -1053,23 +1089,39 @@ bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4]) {
} while (++iter < kMaxIter
&& !SkScalarNearlyZero(eval.fY - pt.fY));
if (pt.fX <= eval.fX) {
if (ambiguous) {
*ambiguous = pt_at_extremum;
}
return true;
}
return false;
}
int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4]) {
int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
int num_crossings = 0;
SkPoint monotonic_cubics[10];
int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0]))
if (ambiguous) {
*ambiguous = false;
}
bool locally_ambiguous;
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
++num_crossings;
if (ambiguous) {
*ambiguous |= locally_ambiguous;
}
if (num_monotonic_cubics > 0)
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3]))
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
++num_crossings;
if (ambiguous) {
*ambiguous |= locally_ambiguous;
}
if (num_monotonic_cubics > 1)
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6]))
if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
++num_crossings;
if (ambiguous) {
*ambiguous |= locally_ambiguous;
}
return num_crossings;
}