Quality and performance fixes for AA tessellating path renderer.

Use quads rather than triangles for the edge geometry. This allows
us to perform a simpler edge categorization (see below). It also
improves performance by reducing the number of edges processed during
the simplify and tessellate steps.

Label AA edges as three types: inner, outer, and connector. This
results in correct alpha values for intersected edges, even when
the top or bottom vertex has been merged with a vertex on edges
of different types.

Changed the "collinear edges" sample from the concavepaths GM for a
"fast-foward" shape, which more clearly shows the problem being fixed
here. (The collinearity from the "collinear edges" was actually being
removed earlier up the stack, causing the path to become convex and
not exercise the concave path renderers anyway.)

NOTE: this will cause changes in the "concavepaths" GM results, and
minor pixel diffs in a number of other tests.

Change-Id: I6c2b0cdb35cda42b01cf1100621271fef5be35b0
Reviewed-on: https://skia-review.googlesource.com/6430
Reviewed-by: Stephan White <senorblanco@chromium.org>
Commit-Queue: Stephan White <senorblanco@chromium.org>
This commit is contained in:
Stephen White 2017-01-03 16:20:01 -05:00 committed by Skia Commit-Bot
parent 021f927e4c
commit 2f4686fa25
2 changed files with 52 additions and 33 deletions

View File

@ -80,15 +80,18 @@ void test_fish(SkCanvas* canvas, const SkPaint& paint) {
canvas->restore();
}
// Collinear edges
void test_collinear_edges(SkCanvas* canvas, const SkPaint& paint) {
// Overlapping "Fast-forward" icon: tests coincidence of inner and outer
// vertices generated by intersection.
void test_fast_forward(SkCanvas* canvas, const SkPaint& paint) {
SkPath path;
canvas->save();
canvas->translate(100, 100);
path.moveTo(SkIntToScalar(20), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(20));
path.lineTo(SkIntToScalar(80), SkIntToScalar(20));
path.lineTo(SkIntToScalar(50), SkIntToScalar(80));
path.lineTo(SkIntToScalar(60), SkIntToScalar(50));
path.lineTo(SkIntToScalar(20), SkIntToScalar(80));
path.moveTo(SkIntToScalar(40), SkIntToScalar(20));
path.lineTo(SkIntToScalar(40), SkIntToScalar(80));
path.lineTo(SkIntToScalar(80), SkIntToScalar(50));
canvas->drawPath(path, paint);
canvas->restore();
}
@ -384,7 +387,7 @@ protected:
test_bowtie(canvas, paint);
test_fake_bowtie(canvas, paint);
test_fish(canvas, paint);
test_collinear_edges(canvas, paint);
test_fast_forward(canvas, paint);
test_hole(canvas, paint);
test_star(canvas, paint);
test_stairstep(canvas, paint);

View File

@ -309,10 +309,12 @@ struct Line {
*/
struct Edge {
Edge(Vertex* top, Vertex* bottom, int winding)
enum class Type { kInner, kOuter, kConnector };
Edge(Vertex* top, Vertex* bottom, int winding, Type type)
: fWinding(winding)
, fTop(top)
, fBottom(bottom)
, fType(type)
, fLeft(nullptr)
, fRight(nullptr)
, fPrevEdgeAbove(nullptr)
@ -332,6 +334,7 @@ struct Edge {
int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
Vertex* fBottom; // The bottom vertex in vertex-sort-order.
Type fType;
Edge* fLeft; // The linked list of edges in the active edge list.
Edge* fRight; // "
Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
@ -531,7 +534,8 @@ struct Poly {
fTail->addEdge(e);
fCount++;
} else {
e = ALLOC_NEW(Edge, (fTail->fLastEdge->fBottom, e->fBottom, 1), alloc);
e = ALLOC_NEW(Edge, (fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner),
alloc);
fTail->addEdge(e);
fCount++;
if (partner) {
@ -767,12 +771,11 @@ inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
}
}
Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c,
int winding_scale = 1) {
int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? winding_scale : -winding_scale;
Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c, Edge::Type type) {
int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
Vertex* top = winding < 0 ? next : prev;
Vertex* bottom = winding < 0 ? prev : next;
return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
return ALLOC_NEW(Edge, (top, bottom, winding, type), alloc);
}
void remove_edge(Edge* edge, EdgeList* edges) {
@ -825,7 +828,10 @@ void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** lef
}
void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
if (activeEdges && activeEdges->contains(edge)) {
if (!activeEdges) {
return;
}
if (activeEdges->contains(edge)) {
if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
remove_edge(edge, activeEdges);
}
@ -1021,7 +1027,7 @@ void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkC
} else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
set_bottom(edge, v, activeEdges, c);
} else {
Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding, edge->fType), alloc);
insert_edge_below(newEdge, v, c);
insert_edge_above(newEdge, edge->fBottom, c);
set_bottom(edge, v, activeEdges, c);
@ -1031,9 +1037,8 @@ void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkC
}
}
Edge* connect(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator c,
int winding_scale = 1) {
Edge* edge = new_edge(prev, next, alloc, c, winding_scale);
Edge* connect(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator c, Edge::Type type) {
Edge* edge = new_edge(prev, next, alloc, c, type);
if (edge->fWinding > 0) {
insert_edge_below(edge, prev, c);
insert_edge_above(edge, next, c);
@ -1063,8 +1068,14 @@ void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkCh
}
uint8_t max_edge_alpha(Edge* a, Edge* b) {
return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
if (a->fType == Edge::Type::kInner && b->fType == Edge::Type::kInner) {
return 255;
} else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
return 0;
} else {
return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
}
}
Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
@ -1169,7 +1180,7 @@ Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAll
for (int i = 0; i < contourCnt; ++i) {
for (Vertex* v = contours[i]; v != nullptr;) {
Vertex* vNext = v->fNext;
connect(v->fPrev, v, alloc, c);
connect(v->fPrev, v, alloc, c, Edge::Type::kInner);
if (prev) {
prev->fNext = v;
v->fPrev = prev;
@ -1295,8 +1306,8 @@ void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
}
} while (restartChecks);
if (v->fAlpha == 0) {
if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
(rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
if ((leftEnclosingEdge && leftEnclosingEdge->fWinding > 0) &&
(rightEnclosingEdge && rightEnclosingEdge->fWinding < 0)) {
v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
}
}
@ -1391,7 +1402,8 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
rightEnclosingEdge->fLeftPoly = rightPoly;
}
}
Edge* join = ALLOC_NEW(Edge, (leftPoly->lastVertex(), v, 1), alloc);
Edge* join = ALLOC_NEW(Edge,
(leftPoly->lastVertex(), v, 1, Edge::Type::kInner), alloc);
leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
}
@ -1469,7 +1481,7 @@ void simplify_boundary(EdgeList* boundary, Comparator& c, SkChunkAlloc& alloc) {
get_edge_normal(e, &normal);
float denom = 0.25f * static_cast<float>(e->fLine.magSq());
if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
Edge* join = new_edge(prev, next, alloc, c);
Edge* join = new_edge(prev, next, alloc, c, Edge::Type::kInner);
insert_edge(join, e, boundary);
remove_edge(prevEdge, boundary);
remove_edge(e, boundary);
@ -1517,8 +1529,8 @@ void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, Sk
Vertex* innerVertex = ALLOC_NEW(Vertex, (innerPoint, 255), alloc);
Vertex* outerVertex = ALLOC_NEW(Vertex, (outerPoint, 0), alloc);
if (innerVertices.fTail && outerVertices.fTail) {
Edge innerEdge(innerVertices.fTail, innerVertex, 1);
Edge outerEdge(outerVertices.fTail, outerVertex, 1);
Edge innerEdge(innerVertices.fTail, innerVertex, 1, Edge::Type::kInner);
Edge outerEdge(outerVertices.fTail, outerVertex, 1, Edge::Type::kInner);
SkVector innerNormal;
get_edge_normal(&innerEdge, &innerNormal);
SkVector outerNormal;
@ -1560,10 +1572,9 @@ void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, Sk
return;
}
do {
connect(outerVertex->fNext, outerVertex, alloc, c);
connect(innerVertex->fNext, innerVertex, alloc, c, 2);
connect(innerVertex, outerVertex->fNext, alloc, c, 2);
connect(outerVertex, innerVertex, alloc, c, 2);
connect(outerVertex->fPrev, outerVertex, alloc, c, Edge::Type::kOuter);
connect(innerVertex->fPrev, innerVertex, alloc, c, Edge::Type::kInner);
connect(outerVertex, innerVertex, alloc, c, Edge::Type::kConnector)->fWinding = 0;
Vertex* innerNext = innerVertex->fNext;
Vertex* outerNext = outerVertex->fNext;
mesh->append(innerVertex);
@ -1637,9 +1648,9 @@ Vertex* contours_to_mesh(Vertex** contours, int contourCnt, bool antialias,
return build_edges(contours, contourCnt, c, alloc);
}
Poly* mesh_to_polys(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
void sort_and_simplify(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
if (!vertices || !*vertices) {
return nullptr;
return;
}
// Sort vertices in Y (secondarily in X).
@ -1652,6 +1663,10 @@ Poly* mesh_to_polys(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
}
#endif
simplify(*vertices, c, alloc);
}
Poly* mesh_to_polys(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
sort_and_simplify(vertices, c, alloc);
return tessellate(*vertices, alloc);
}
@ -1677,7 +1692,8 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, SkPath::FillType fill
boundary_to_aa_mesh(boundary, &aaMesh, c, alloc);
}
}
return mesh_to_polys(&aaMesh.fHead, c, alloc);
sort_and_simplify(&aaMesh.fHead, c, alloc);
return tessellate(aaMesh.fHead, alloc);
}
return polys;
}