Simplify grvx::approx_angle_between_vectors signature

Rather than taking the x and y values separately (ax, ay, bx, by),
simply take two vec<N*2>'s (a, b), where the x's are in a.lo and the
y's in a.hi.

Bug: skia:10419
Change-Id: I21d659c79247ccb625351c20b93c550d0afffe79
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/339458
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Chris Dalton <csmartdalton@google.com>
This commit is contained in:
Chris Dalton 2020-12-01 02:11:24 -07:00 committed by Skia Commit-Bot
parent 540c13a791
commit 356cef301b
2 changed files with 29 additions and 28 deletions

View File

@ -68,30 +68,30 @@ template<int N> SK_ALWAYS_INLINE vec<N> fast_madd(vec<N> f, vec<N> m, vec<N> a)
// infinite at -1 and 1). So the input must still be clamped between -1 and 1.
#define GRVX_FAST_ACOS_MAX_ERROR SkDegreesToRadians(.96f)
template<int N> SK_ALWAYS_INLINE vec<N> approx_acos(vec<N> x) {
static const vec<N> a = -0.939115566365855f;
static const vec<N> b = 0.9217841528914573f;
static const vec<N> c = -1.2845906244690837f;
static const vec<N> d = 0.295624144969963174f;
static const vec<N> pi_over_2 = 1.5707963267948966f;
constexpr static float a = -0.939115566365855f;
constexpr static float b = 0.9217841528914573f;
constexpr static float c = -1.2845906244690837f;
constexpr static float d = 0.295624144969963174f;
constexpr static float pi_over_2 = 1.5707963267948966f;
vec<N> xx = x*x;
vec<N> numer = fast_madd(b,xx,a);
vec<N> denom = fast_madd<N>(xx, fast_madd(d,xx,c), 1);
return fast_madd(x, numer/denom, pi_over_2);
vec<N> numer = fast_madd<N>(b,xx,a);
vec<N> denom = fast_madd<N>(xx, fast_madd<N>(d,xx,c), 1);
return fast_madd<N>(x, numer/denom, pi_over_2);
}
// Approximates the angle between a and b within .96 degrees (GRVX_FAST_ACOS_MAX_ERROR).
// Approximates the angle between vectors a and b within .96 degrees (GRVX_FAST_ACOS_MAX_ERROR).
// a (and b) represent "N" (Nx2/2) 2d vectors in SIMD, with the x values found in a.lo, and the
// y values in a.hi.
//
// Due to fp32 overflow, this method is only valid for max(abs(ax), abs(ay)) and
// max(abs(bx), abs(by)) in the range (2^-31, 2^31) exclusive. Results are undefined if the inputs
// fall outside this range.
// Due to fp32 overflow, this method is only valid for magnitudes in the range (2^-31, 2^31)
// exclusive. Results are undefined if the inputs fall outside this range.
//
// NOTE: If necessary, we can extend our valid range to 2^(+/-63) by normalizing a and b separately.
// i.e.: "cosTheta = dot(a,b) / sqrt(dot(a,a)) / sqrt(dot(b,b))".
template<int N>
SK_ALWAYS_INLINE vec<N> approx_angle_between_vectors(vec<N> ax, vec<N> ay, vec<N> bx, vec<N> by) {
vec<N> ab_cosTheta = fast_madd(ax, bx, ay*by);
vec<N> ab_pow2 = fast_madd(ay, ay, ax*ax) * fast_madd(by, by, bx*bx);
vec<N> cosTheta = ab_cosTheta / skvx::sqrt(ab_pow2);
template<int Nx2>
SK_ALWAYS_INLINE vec<Nx2/2> approx_angle_between_vectors(vec<Nx2> a, vec<Nx2> b) {
auto aa=a*a, bb=b*b, ab=a*b;
auto cosTheta = (ab.lo + ab.hi) / skvx::sqrt((aa.lo + aa.hi) * (bb.lo + bb.hi));
// Clamp cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
cosTheta = skvx::max(skvx::min(1, cosTheta), -1);
return approx_acos(cosTheta);

View File

@ -170,31 +170,32 @@ static bool check_approx_angle_between_vectors(skiatest::Reporter* r, SkVector a
}
static bool check_approx_angle_between_vectors(skiatest::Reporter* r, SkVector a, SkVector b) {
float approxTheta = grvx::approx_angle_between_vectors<1>(a.fX, a.fY, b.fX, b.fY).val;
float approxTheta = grvx::approx_angle_between_vectors(bit_pun<float2>(a),
bit_pun<float2>(b)).val;
return check_approx_angle_between_vectors(r, a, b, approxTheta);
}
DEF_TEST(grvx_approx_angle_between_vectors, r) {
// Test when a and/or b are zero.
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(0,0,0,0).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(1,1,0,0).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(0,0,1,1).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>({0,0}, {0,0}).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>({1,1}, {0,0}).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>({0,0}, {1,1}).val));
check_approx_angle_between_vectors(r, {0,0}, {0,0});
check_approx_angle_between_vectors(r, {1,1}, {0,0});
check_approx_angle_between_vectors(r, {0,0}, {1,1});
// Test infinities.
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(
std::numeric_limits<float>::infinity(),1,2,3).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>(
{std::numeric_limits<float>::infinity(),1}, {2,3}).val));
// Test NaNs.
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(
std::numeric_limits<float>::quiet_NaN(),1,2,3).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>(
{std::numeric_limits<float>::quiet_NaN(),1}, {2,3}).val));
// Test demorms.
float epsilon = std::numeric_limits<float>::denorm_min();
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<1>(
epsilon, epsilon, epsilon, epsilon).val));
REPORTER_ASSERT(r, SkScalarNearlyZero(grvx::approx_angle_between_vectors<2>(
{epsilon, epsilon}, {epsilon, epsilon}).val));
// Test random floats of all types.
uint4 mantissas = {0,0,0,0};
@ -219,7 +220,7 @@ DEF_TEST(grvx_approx_angle_between_vectors, r) {
float4 y0 = bit_pun<float4>(signs | y0exp | mantissas[1]);
float4 x1 = bit_pun<float4>(signs | x1exp | mantissas[2]);
float4 y1 = bit_pun<float4>(signs | y1exp | mantissas[3]);
float4 rads = approx_angle_between_vectors(x0, y0, x1, y1);
float4 rads = approx_angle_between_vectors(skvx::join(x0, y0), skvx::join(x1, y1));
for (int j = 0; j < 4; ++j) {
if (!check_approx_angle_between_vectors(r, {x0[j], y0[j]}, {x1[j], y1[j]}, rads[j])) {
return;