Fix some shadow issues.

* Clamp path polygon points to nearest 1/16th of a pixel to help
  with floating point issues.
* Added check for multiple contour paths.
* Return empty SkVertices for certain degenerate cases to avoid
  unnecessary blurs.
* Check iteration count in SkOffsetPolygon to avoid infinite loops.
* Add new tests to verify these.

Bug: skia:
Change-Id: Ie6ad48d2504e065dcc822609d369f90c56ef3ad3
Reviewed-on: https://skia-review.googlesource.com/136701
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Jim Van Verth <jvanverth@google.com>
This commit is contained in:
Jim Van Verth 2018-06-26 14:58:58 -04:00 committed by Skia Commit-Bot
parent 9396bc3fc6
commit 3645bb069d
4 changed files with 180 additions and 72 deletions

View File

@ -62,12 +62,17 @@ SkMask SkMask::PrepareDestination(int radiusX, int radiusY, const SkMask& src) {
// dstH = srcH + 2 * radiusY;
size_t dstH = safe.add(src.fBounds.height(), safe.add(radiusY, radiusY));
dst.fBounds.set(0, 0, SkTo<int>(dstW), SkTo<int>(dstH));
dst.fBounds.offset(src.fBounds.x(), src.fBounds.y());
dst.fBounds.offset(-radiusX, -radiusY);
if (!SkTFitsIn<int>(dstW) || !SkTFitsIn<int>(dstH)) {
dst.fBounds.setEmpty();
dst.fRowBytes = 0;
} else {
dst.fBounds.set(0, 0, SkTo<int>(dstW), SkTo<int>(dstH));
dst.fBounds.offset(src.fBounds.x(), src.fBounds.y());
dst.fBounds.offset(-radiusX, -radiusY);
dst.fRowBytes = SkTo<uint32_t>(dstW);
}
dst.fImage = nullptr;
dst.fRowBytes = SkTo<uint32_t>(dstW);
dst.fFormat = SkMask::kA8_Format;
size_t toAlloc = safe.mul(dstW, dstH);

View File

@ -311,6 +311,7 @@ bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize
int iterations = 0;
while (prevIndex != currIndex) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > inputPolygonSize*inputPolygonSize) {
return false;
}
@ -698,7 +699,14 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz
prevIndex = edgeDataSize - 1;
currIndex = 0;
int insetVertexCount = edgeDataSize;
int iterations = 0;
while (prevIndex != currIndex) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > edgeDataSize*edgeDataSize) {
return false;
}
if (!edgeData[prevIndex].fValid) {
prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
continue;

View File

@ -209,12 +209,10 @@ bool SkBaseShadowTessellator::accumulateCentroid(const SkPoint& curr, const SkPo
fCentroid.fY += (curr.fY + next.fY) * quadArea;
fArea += quadArea;
// convexity check
if (!SkScalarNearlyZero(quadArea)) {
if (quadArea*fLastArea < 0) {
++fAreaSignFlips;
}
fLastArea = quadArea;
if (quadArea*fLastArea < 0) {
++fAreaSignFlips;
}
fLastArea = quadArea;
return true;
}
@ -400,9 +398,18 @@ static const SkScalar kCubicTolerance = 0.2f;
#endif
static const SkScalar kConicTolerance = 0.5f;
// clamps the point to the nearest 16th of a pixel
static void sanitize_point(const SkPoint& in, SkPoint* out) {
out->fX = SkScalarRoundToScalar(16.f*in.fX)*0.0625f;
out->fY = SkScalarRoundToScalar(16.f*in.fY)*0.0625f;
}
void SkBaseShadowTessellator::handleLine(const SkPoint& p) {
SkPoint pSanitized;
sanitize_point(p, &pSanitized);
if (fPathPolygon.count() > 0) {
if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.count() - 1], p)) {
if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.count() - 1], pSanitized)) {
// skip coincident point
return;
}
@ -411,13 +418,13 @@ void SkBaseShadowTessellator::handleLine(const SkPoint& p) {
if (fPathPolygon.count() > 1) {
if (!checkConvexity(fPathPolygon[fPathPolygon.count() - 2],
fPathPolygon[fPathPolygon.count() - 1],
p)) {
pSanitized)) {
// remove collinear point
fPathPolygon.pop();
}
}
*fPathPolygon.push() = p;
*fPathPolygon.push() = pSanitized;
}
void SkBaseShadowTessellator::handleLine(const SkMatrix& m, SkPoint* p) {
@ -618,7 +625,7 @@ public:
const SkPoint3& zPlaneParams, bool transparent);
private:
void computePathPolygon(const SkPath& path, const SkMatrix& ctm);
bool computePathPolygon(const SkPath& path, const SkMatrix& ctm);
bool computeConvexShadow();
bool computeConcaveShadow();
@ -667,6 +674,15 @@ SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path,
return;
}
if (!this->computePathPolygon(path, ctm)) {
return;
}
if (fPathPolygon.count() < 3 || !SkScalarIsFinite(fArea)) {
fSucceeded = true; // We don't want to try to blur these cases, so we will
// return an empty SkVertices instead.
return;
}
// Outer ring: 3*numPts
// Middle ring: numPts
fPositions.setReserve(4 * path.countPoints());
@ -675,7 +691,6 @@ SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path,
// Middle ring: 0
fIndices.setReserve(12 * path.countPoints());
this->computePathPolygon(path, ctm);
if (fIsConvex) {
fSucceeded = this->computeConvexShadow();
} else {
@ -683,7 +698,7 @@ SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path,
}
}
void SkAmbientShadowTessellator::computePathPolygon(const SkPath& path, const SkMatrix& ctm) {
bool SkAmbientShadowTessellator::computePathPolygon(const SkPath& path, const SkMatrix& ctm) {
fPathPolygon.setReserve(path.countPoints());
// walk around the path, tessellate and generate outer ring
@ -691,28 +706,40 @@ void SkAmbientShadowTessellator::computePathPolygon(const SkPath& path, const Sk
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
bool verbSeen = false;
bool closeSeen = false;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->handleLine(ctm, &pts[1]);
break;
case SkPath::kQuad_Verb:
this->handleQuad(ctm, pts);
break;
case SkPath::kCubic_Verb:
this->handleCubic(ctm, pts);
break;
case SkPath::kConic_Verb:
this->handleConic(ctm, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
if (closeSeen) {
return false;
}
switch (verb) {
case SkPath::kLine_Verb:
this->handleLine(ctm, &pts[1]);
break;
case SkPath::kQuad_Verb:
this->handleQuad(ctm, pts);
break;
case SkPath::kCubic_Verb:
this->handleCubic(ctm, pts);
break;
case SkPath::kConic_Verb:
this->handleConic(ctm, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
if (verbSeen) {
return false;
}
break;
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
closeSeen = true;
break;
}
verbSeen = true;
}
this->finishPathPolygon();
return true;
}
bool SkAmbientShadowTessellator::computeConvexShadow() {
@ -945,7 +972,7 @@ public:
SkScalar lightRadius, bool transparent);
private:
void computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
bool computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
const SkMatrix& shadowTransform);
void computeClipVectorsAndTestCentroid();
bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint);
@ -1035,20 +1062,13 @@ SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMat
return;
}
// TODO: calculate these reserves better
// Penumbra ring: 3*numPts
// Umbra ring: numPts
// Inner ring: numPts
fPositions.setReserve(5 * path.countPoints());
fColors.setReserve(5 * path.countPoints());
// Penumbra ring: 12*numPts
// Umbra ring: 3*numPts
fIndices.setReserve(15 * path.countPoints());
fClipPolygon.setReserve(path.countPoints());
// compute rough clip bounds for umbra, plus offset polygon, plus centroid
this->computeClipAndPathPolygons(path, ctm, shadowTransform);
if (fClipPolygon.count() < 3 || fPathPolygon.count() < 3) {
if (!this->computeClipAndPathPolygons(path, ctm, shadowTransform)) {
return;
}
if (fClipPolygon.count() < 3 || fPathPolygon.count() < 3 || !SkScalarIsFinite(fArea)) {
fSucceeded = true; // We don't want to try to blur these cases, so we will
// return an empty SkVertices instead.
return;
}
@ -1087,6 +1107,16 @@ SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMat
}
}
// TODO: calculate these reserves better
// Penumbra ring: 3*numPts
// Umbra ring: numPts
// Inner ring: numPts
fPositions.setReserve(5 * path.countPoints());
fColors.setReserve(5 * path.countPoints());
// Penumbra ring: 12*numPts
// Umbra ring: 3*numPts
fIndices.setReserve(15 * path.countPoints());
if (fIsConvex) {
fSucceeded = this->computeConvexShadow(radius);
} else {
@ -1134,10 +1164,11 @@ void SkSpotShadowTessellator::addToClip(const SkPoint& point) {
}
}
void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
bool SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm,
const SkMatrix& shadowTransform) {
fPathPolygon.setReserve(path.countPoints());
fClipPolygon.setReserve(path.countPoints());
// Walk around the path and compute clip polygon and path polygon.
// Will also accumulate sum of areas for centroid.
@ -1146,8 +1177,6 @@ void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, con
SkPoint pts[4];
SkPath::Verb verb;
fClipPolygon.reset();
// coefficients to compute cubic Bezier at t = 5/16
static constexpr SkScalar kA = 0.32495117187f;
static constexpr SkScalar kB = 0.44311523437f;
@ -1156,7 +1185,12 @@ void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, con
SkPoint curvePoint;
SkScalar w;
bool closeSeen = false;
bool verbSeen = false;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
if (closeSeen) {
return false;
}
switch (verb) {
case SkPath::kLine_Verb:
ctm.mapPoints(&pts[1], 1);
@ -1197,16 +1231,23 @@ void SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, con
this->handleCubic(shadowTransform, pts);
break;
case SkPath::kMove_Verb:
if (verbSeen) {
return false;
}
break;
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
closeSeen = true;
break;
default:
SkDEBUGFAIL("unknown verb");
}
verbSeen = true;
}
this->finishPathPolygon();
fCurrClipPoint = fClipPolygon.count() - 1;
return true;
}
void SkSpotShadowTessellator::computeClipVectorsAndTestCentroid() {

View File

@ -13,31 +13,40 @@
#include "SkVertices.h"
#include "Test.h"
void tessellate_shadow(skiatest::Reporter* reporter, const SkPath& path, const SkMatrix& ctm,
bool expectSuccess) {
enum ExpectVerts {
kDont_ExpectVerts,
kDo_ExpectVerts
};
auto heightParams = SkPoint3::Make(0, 0, 4);
void check_result(skiatest::Reporter* reporter, sk_sp<SkVertices> verts,
ExpectVerts expectVerts, bool expectSuccess) {
if (expectSuccess != SkToBool(verts)) {
ERRORF(reporter, "Expected shadow tessellation to %s but it did not.",
expectSuccess ? "succeed" : "fail");
}
if (SkToBool(verts)) {
if (kDont_ExpectVerts == expectVerts && verts->vertexCount()) {
ERRORF(reporter, "Expected shadow tessellation to generate no vertices but it did.");
} else if (kDo_ExpectVerts == expectVerts && !verts->vertexCount()) {
ERRORF(reporter, "Expected shadow tessellation to generate vertices but it didn't.");
}
}
}
void tessellate_shadow(skiatest::Reporter* reporter, const SkPath& path, const SkMatrix& ctm,
const SkPoint3& heightParams, ExpectVerts expectVerts, bool expectSuccess) {
auto verts = SkShadowTessellator::MakeAmbient(path, ctm, heightParams, true);
if (expectSuccess != SkToBool(verts)) {
ERRORF(reporter, "Expected shadow tessellation to %s but it did not.",
expectSuccess ? "succeed" : "fail");
}
check_result(reporter, verts, expectVerts, expectSuccess);
verts = SkShadowTessellator::MakeAmbient(path, ctm, heightParams, false);
if (expectSuccess != SkToBool(verts)) {
ERRORF(reporter, "Expected shadow tessellation to %s but it did not.",
expectSuccess ? "succeed" : "fail");
}
check_result(reporter, verts, expectVerts, expectSuccess);
verts = SkShadowTessellator::MakeSpot(path, ctm, heightParams, {0, 0, 128}, 128.f, false);
if (expectSuccess != SkToBool(verts)) {
ERRORF(reporter, "Expected shadow tessellation to %s but it did not.",
expectSuccess ? "succeed" : "fail");
}
check_result(reporter, verts, expectVerts, expectSuccess);
verts = SkShadowTessellator::MakeSpot(path, ctm, heightParams, {0, 0, 128}, 128.f, false);
if (expectSuccess != SkToBool(verts)) {
ERRORF(reporter, "Expected shadow tessellation to %s but it did not.",
expectSuccess ? "succeed" : "fail");
}
check_result(reporter, verts, expectVerts, expectSuccess);
}
DEF_TEST(ShadowUtils, reporter) {
@ -45,19 +54,64 @@ DEF_TEST(ShadowUtils, reporter) {
SkPath path;
path.cubicTo(100, 50, 20, 100, 0, 0);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), true);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 4}, kDo_ExpectVerts, true);
// super high path
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 4.0e+37f},
kDo_ExpectVerts, true);
// This line segment has no area and no shadow.
path.reset();
path.lineTo(10.f, 10.f);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), false);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 4}, kDont_ExpectVerts, true);
// A series of colinear line segments
// A series of collinear line segments
path.reset();
for (int i = 0; i < 10; ++i) {
path.lineTo((SkScalar)i, (SkScalar)i);
}
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), false);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 4}, kDont_ExpectVerts, true);
// ugly degenerate path
path.reset();
path.moveTo(-134217728, 2.22265153e+21f);
path.cubicTo(-2.33326106e+21f, 7.36298265e-41f, 3.72237738e-22f, 5.99502692e-36f,
1.13631943e+22f, 2.0890786e+33f);
path.cubicTo(1.03397626e-25f, 5.99502692e-36f, 9.18354962e-41f, 0, 4.6142745e-37f, -213558848);
path.lineTo(-134217728, 2.2226515e+21f);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 9}, kDont_ExpectVerts, true);
// simple concave path (star of David)
path.reset();
path.moveTo(0.0f, -50.0f);
path.lineTo(14.43f, -25.0f);
path.lineTo(43.30f, -25.0f);
path.lineTo(28.86f, 0.0f);
path.lineTo(43.30f, 25.0f);
path.lineTo(14.43f, 25.0f);
path.lineTo(0.0f, 50.0f);
path.lineTo(-14.43f, 25.0f);
path.lineTo(-43.30f, 25.0f);
path.lineTo(-28.86f, 0.0f);
path.lineTo(-43.30f, -25.0f);
path.lineTo(-14.43f, -25.0f);
// uncomment when transparent concave shadows are working
// tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 9}, kDo_ExpectVerts, true);
// complex concave path (bowtie)
path.reset();
path.moveTo(-50, -50);
path.lineTo(-50, 50);
path.lineTo(50, -50);
path.lineTo(50, 50);
path.lineTo(-50, -50);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 9}, kDont_ExpectVerts, false);
// multiple contour path
path.close();
path.moveTo(0, 0);
path.lineTo(1, 0);
path.lineTo(0, 1);
tessellate_shadow(reporter, path, canvas.getTotalMatrix(), {0, 0, 9}, kDont_ExpectVerts, false);
}
void check_xformed_bounds(skiatest::Reporter* reporter, const SkPath& path, const SkMatrix& ctm) {