replace SkOpts::hash_fn

This new version always delivers the same results,
and I think can be simplified like this without
spoiling any of the bulk speed.

Change-Id: I20e42e58418e658278bb5db9472c39722b33160a
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/338339
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
This commit is contained in:
Mike Klein 2020-11-24 13:51:29 -06:00 committed by Skia Commit-Bot
parent 888c5d3e57
commit 3e2e7b28b6
2 changed files with 123 additions and 180 deletions

View File

@ -12,199 +12,125 @@
#include "include/private/SkChecksum.h"
#include "src/core/SkUtils.h" // sk_unaligned_load
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42
// This function is designed primarily to deliver consistent results no matter the platform,
// but then also is optimized for speed on modern machines with CRC32c instructions.
// (ARM supports both CRC32 and CRC32c, but Intel only CRC32c, so we use CRC32c.)
#if 1 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42
#include <immintrin.h>
#elif defined(SK_ARM_HAS_CRC32)
static uint32_t crc32c_1(uint32_t seed, uint8_t v) { return _mm_crc32_u8 (seed, v); }
static uint32_t crc32c_8(uint32_t seed, uint64_t v) {
#if 1 && (defined(__x86_64__) || defined(_M_X64))
return _mm_crc32_u64(seed, v);
#else
seed = _mm_crc32_u32(seed, (uint32_t)(v ));
return _mm_crc32_u32(seed, (uint32_t)(v >> 32));
#endif
}
#elif 1 && defined(SK_ARM_HAS_CRC32)
#include <arm_acle.h>
static uint32_t crc32c_1(uint32_t seed, uint8_t v) { return __crc32cb(seed, v); }
static uint32_t crc32c_8(uint32_t seed, uint64_t v) { return __crc32cd(seed, v); }
#else
// See https://www.w3.org/TR/PNG/#D-CRCAppendix,
// but this is CRC32c, so built with 0x82f63b78, not 0xedb88320 like you'll see there.
#if 0
static std::array<uint32_t, 256> table = []{
std::array<uint32_t, 256> t;
for (int i = 0; i < 256; i++) {
t[i] = i;
for (int rounds = 8; rounds --> 0; ) {
t[i] = (t[i] & 1) ? (t[i] >> 1) ^ 0x82f63b78
: (t[i] >> 1);
}
printf("0x%08x,%s", t[i], (i+1) % 8 ? "" : "\n");
}
return t;
}();
#endif
static constexpr uint32_t crc32c_table[256] = {
0x00000000,0xf26b8303,0xe13b70f7,0x1350f3f4, 0xc79a971f,0x35f1141c,0x26a1e7e8,0xd4ca64eb,
0x8ad958cf,0x78b2dbcc,0x6be22838,0x9989ab3b, 0x4d43cfd0,0xbf284cd3,0xac78bf27,0x5e133c24,
0x105ec76f,0xe235446c,0xf165b798,0x030e349b, 0xd7c45070,0x25afd373,0x36ff2087,0xc494a384,
0x9a879fa0,0x68ec1ca3,0x7bbcef57,0x89d76c54, 0x5d1d08bf,0xaf768bbc,0xbc267848,0x4e4dfb4b,
0x20bd8ede,0xd2d60ddd,0xc186fe29,0x33ed7d2a, 0xe72719c1,0x154c9ac2,0x061c6936,0xf477ea35,
0xaa64d611,0x580f5512,0x4b5fa6e6,0xb93425e5, 0x6dfe410e,0x9f95c20d,0x8cc531f9,0x7eaeb2fa,
0x30e349b1,0xc288cab2,0xd1d83946,0x23b3ba45, 0xf779deae,0x05125dad,0x1642ae59,0xe4292d5a,
0xba3a117e,0x4851927d,0x5b016189,0xa96ae28a, 0x7da08661,0x8fcb0562,0x9c9bf696,0x6ef07595,
0x417b1dbc,0xb3109ebf,0xa0406d4b,0x522bee48, 0x86e18aa3,0x748a09a0,0x67dafa54,0x95b17957,
0xcba24573,0x39c9c670,0x2a993584,0xd8f2b687, 0x0c38d26c,0xfe53516f,0xed03a29b,0x1f682198,
0x5125dad3,0xa34e59d0,0xb01eaa24,0x42752927, 0x96bf4dcc,0x64d4cecf,0x77843d3b,0x85efbe38,
0xdbfc821c,0x2997011f,0x3ac7f2eb,0xc8ac71e8, 0x1c661503,0xee0d9600,0xfd5d65f4,0x0f36e6f7,
0x61c69362,0x93ad1061,0x80fde395,0x72966096, 0xa65c047d,0x5437877e,0x4767748a,0xb50cf789,
0xeb1fcbad,0x197448ae,0x0a24bb5a,0xf84f3859, 0x2c855cb2,0xdeeedfb1,0xcdbe2c45,0x3fd5af46,
0x7198540d,0x83f3d70e,0x90a324fa,0x62c8a7f9, 0xb602c312,0x44694011,0x5739b3e5,0xa55230e6,
0xfb410cc2,0x092a8fc1,0x1a7a7c35,0xe811ff36, 0x3cdb9bdd,0xceb018de,0xdde0eb2a,0x2f8b6829,
0x82f63b78,0x709db87b,0x63cd4b8f,0x91a6c88c, 0x456cac67,0xb7072f64,0xa457dc90,0x563c5f93,
0x082f63b7,0xfa44e0b4,0xe9141340,0x1b7f9043, 0xcfb5f4a8,0x3dde77ab,0x2e8e845f,0xdce5075c,
0x92a8fc17,0x60c37f14,0x73938ce0,0x81f80fe3, 0x55326b08,0xa759e80b,0xb4091bff,0x466298fc,
0x1871a4d8,0xea1a27db,0xf94ad42f,0x0b21572c, 0xdfeb33c7,0x2d80b0c4,0x3ed04330,0xccbbc033,
0xa24bb5a6,0x502036a5,0x4370c551,0xb11b4652, 0x65d122b9,0x97baa1ba,0x84ea524e,0x7681d14d,
0x2892ed69,0xdaf96e6a,0xc9a99d9e,0x3bc21e9d, 0xef087a76,0x1d63f975,0x0e330a81,0xfc588982,
0xb21572c9,0x407ef1ca,0x532e023e,0xa145813d, 0x758fe5d6,0x87e466d5,0x94b49521,0x66df1622,
0x38cc2a06,0xcaa7a905,0xd9f75af1,0x2b9cd9f2, 0xff56bd19,0x0d3d3e1a,0x1e6dcdee,0xec064eed,
0xc38d26c4,0x31e6a5c7,0x22b65633,0xd0ddd530, 0x0417b1db,0xf67c32d8,0xe52cc12c,0x1747422f,
0x49547e0b,0xbb3ffd08,0xa86f0efc,0x5a048dff, 0x8ecee914,0x7ca56a17,0x6ff599e3,0x9d9e1ae0,
0xd3d3e1ab,0x21b862a8,0x32e8915c,0xc083125f, 0x144976b4,0xe622f5b7,0xf5720643,0x07198540,
0x590ab964,0xab613a67,0xb831c993,0x4a5a4a90, 0x9e902e7b,0x6cfbad78,0x7fab5e8c,0x8dc0dd8f,
0xe330a81a,0x115b2b19,0x020bd8ed,0xf0605bee, 0x24aa3f05,0xd6c1bc06,0xc5914ff2,0x37faccf1,
0x69e9f0d5,0x9b8273d6,0x88d28022,0x7ab90321, 0xae7367ca,0x5c18e4c9,0x4f48173d,0xbd23943e,
0xf36e6f75,0x0105ec76,0x12551f82,0xe03e9c81, 0x34f4f86a,0xc69f7b69,0xd5cf889d,0x27a40b9e,
0x79b737ba,0x8bdcb4b9,0x988c474d,0x6ae7c44e, 0xbe2da0a5,0x4c4623a6,0x5f16d052,0xad7d5351,
};
static uint32_t crc32c_1(uint32_t seed, uint8_t v) {
return crc32c_table[(seed ^ v) & 0xff]
^ (seed >> 8);
}
static uint32_t crc32c_8(uint32_t seed, uint64_t v) {
// Nothing special... just crc32c_1() each byte.
for (int i = 0; i < 8; i++) {
seed = crc32c_1(seed, (uint8_t)v);
v >>= 8;
}
return seed;
}
#endif
namespace SK_OPTS_NS {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42 && (defined(__x86_64__) || defined(_M_X64))
// This is not a CRC32. It's Just A Hash that uses those instructions because they're fast.
/*not static*/ inline uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t seed) {
auto data = (const uint8_t*)vdata;
inline uint32_t hash_fn(const void* data, size_t len, uint32_t seed) {
auto ptr = (const uint8_t*)data;
// _mm_crc32_u64() operates on 64-bit registers, so we use uint64_t for a while.
uint64_t hash = seed;
if (bytes >= 24) {
// We'll create 3 independent hashes, each using _mm_crc32_u64()
// to hash 8 bytes per step. Both 3 and independent are important:
// we can execute 3 of these instructions in parallel on a single core.
uint64_t a = hash,
b = hash,
c = hash;
size_t steps = bytes/24;
while (steps --> 0) {
a = _mm_crc32_u64(a, sk_unaligned_load<uint64_t>(data+ 0));
b = _mm_crc32_u64(b, sk_unaligned_load<uint64_t>(data+ 8));
c = _mm_crc32_u64(c, sk_unaligned_load<uint64_t>(data+16));
data += 24;
// Handle the bulk with a few data-parallel independent hashes,
// taking advantage of pipelining and superscalar execution.
// TODO: four parallel hashes looks faster than three?
if (len >= 24) {
uint32_t a = seed,
b = seed,
c = seed;
while (len >= 24) {
a = crc32c_8(a, sk_unaligned_load<uint64_t>(ptr + 0));
b = crc32c_8(b, sk_unaligned_load<uint64_t>(ptr + 8));
c = crc32c_8(c, sk_unaligned_load<uint64_t>(ptr + 16));
ptr += 24;
len -= 24;
}
bytes %= 24;
hash = _mm_crc32_u32(a, _mm_crc32_u32(b, c));
seed = crc32c_8(a, crc32c_8(b,c));
}
SkASSERT(bytes < 24);
if (bytes >= 16) {
hash = _mm_crc32_u64(hash, sk_unaligned_load<uint64_t>(data));
bytes -= 8;
data += 8;
while (len >= 8) {
seed = crc32c_8(seed, sk_unaligned_load<uint64_t>(ptr));
ptr += 8;
len -= 8;
}
SkASSERT(bytes < 16);
if (bytes & 8) {
hash = _mm_crc32_u64(hash, sk_unaligned_load<uint64_t>(data));
data += 8;
while (len >= 1) {
seed = crc32c_1(seed, sk_unaligned_load<uint8_t >(ptr));
ptr += 1;
len -= 1;
}
// The remainder of these _mm_crc32_u*() operate on a 32-bit register.
// We don't lose anything here: only the bottom 32-bits were populated.
auto hash32 = (uint32_t)hash;
if (bytes & 4) {
hash32 = _mm_crc32_u32(hash32, sk_unaligned_load<uint32_t>(data));
data += 4;
}
if (bytes & 2) {
hash32 = _mm_crc32_u16(hash32, sk_unaligned_load<uint16_t>(data));
data += 2;
}
if (bytes & 1) {
hash32 = _mm_crc32_u8(hash32, sk_unaligned_load<uint8_t>(data));
}
return hash32;
return seed;
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42
// 32-bit version of above, using _mm_crc32_u32() but not _mm_crc32_u64().
/*not static*/ inline uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
auto data = (const uint8_t*)vdata;
if (bytes >= 12) {
// We'll create 3 independent hashes, each using _mm_crc32_u32()
// to hash 4 bytes per step. Both 3 and independent are important:
// we can execute 3 of these instructions in parallel on a single core.
uint32_t a = hash,
b = hash,
c = hash;
size_t steps = bytes/12;
while (steps --> 0) {
a = _mm_crc32_u32(a, sk_unaligned_load<uint32_t>(data+0));
b = _mm_crc32_u32(b, sk_unaligned_load<uint32_t>(data+4));
c = _mm_crc32_u32(c, sk_unaligned_load<uint32_t>(data+8));
data += 12;
}
bytes %= 12;
hash = _mm_crc32_u32(a, _mm_crc32_u32(b, c));
}
SkASSERT(bytes < 12);
if (bytes >= 8) {
hash = _mm_crc32_u32(hash, sk_unaligned_load<uint32_t>(data));
bytes -= 4;
data += 4;
}
SkASSERT(bytes < 8);
if (bytes & 4) {
hash = _mm_crc32_u32(hash, sk_unaligned_load<uint32_t>(data));
data += 4;
}
if (bytes & 2) {
hash = _mm_crc32_u16(hash, sk_unaligned_load<uint16_t>(data));
data += 2;
}
if (bytes & 1) {
hash = _mm_crc32_u8(hash, sk_unaligned_load<uint8_t>(data));
}
return hash;
}
#elif defined(SK_ARM_HAS_CRC32)
/*not static*/ inline uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
auto data = (const uint8_t*)vdata;
if (bytes >= 24) {
uint32_t a = hash,
b = hash,
c = hash;
size_t steps = bytes/24;
while (steps --> 0) {
a = __crc32d(a, sk_unaligned_load<uint64_t>(data+ 0));
b = __crc32d(b, sk_unaligned_load<uint64_t>(data+ 8));
c = __crc32d(c, sk_unaligned_load<uint64_t>(data+16));
data += 24;
}
bytes %= 24;
hash = __crc32w(a, __crc32w(b, c));
}
SkASSERT(bytes < 24);
if (bytes >= 16) {
hash = __crc32d(hash, sk_unaligned_load<uint64_t>(data));
bytes -= 8;
data += 8;
}
SkASSERT(bytes < 16);
if (bytes & 8) {
hash = __crc32d(hash, sk_unaligned_load<uint64_t>(data));
data += 8;
}
if (bytes & 4) {
hash = __crc32w(hash, sk_unaligned_load<uint32_t>(data));
data += 4;
}
if (bytes & 2) {
hash = __crc32h(hash, sk_unaligned_load<uint16_t>(data));
data += 2;
}
if (bytes & 1) {
hash = __crc32b(hash, sk_unaligned_load<uint8_t>(data));
}
return hash;
}
#else
// This is Murmur3.
/*not static*/ inline uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
auto data = (const uint8_t*)vdata;
size_t original_bytes = bytes;
// Handle 4 bytes at a time while possible.
while (bytes >= 4) {
uint32_t k = sk_unaligned_load<uint32_t>(data);
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
hash ^= k;
hash = (hash << 13) | (hash >> 19);
hash *= 5;
hash += 0xe6546b64;
bytes -= 4;
data += 4;
}
// Handle last 0-3 bytes.
uint32_t k = 0;
switch (bytes & 3) {
case 3: k ^= data[2] << 16; [[fallthrough]];
case 2: k ^= data[1] << 8; [[fallthrough]];
case 1: k ^= data[0] << 0;
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
hash ^= k;
}
hash ^= original_bytes;
return SkChecksum::Mix(hash);
}
#endif
} // namespace SK_OPTS_NS
#endif//SkChecksum_opts_DEFINED

View File

@ -71,3 +71,20 @@ DEF_TEST(ChecksumCollisions, r) {
REPORTER_ASSERT(r, SkOpts::hash(a, sizeof(a)) != SkOpts::hash(b, sizeof(b)));
}
}
DEF_TEST(ChecksumConsistent, r) {
// We've decided to make SkOpts::hash() always return consistent results, so spot check a few:
uint8_t bytes[256];
for (int i = 0; i < 256; i++) {
bytes[i] = i;
}
REPORTER_ASSERT(r, SkOpts::hash(bytes, 0) == 0x00000000, "%08x", SkOpts::hash(bytes, 0));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 1) == 0x00000000, "%08x", SkOpts::hash(bytes, 1));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 2) == 0xf26b8303, "%08x", SkOpts::hash(bytes, 2));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 7) == 0x18678721, "%08x", SkOpts::hash(bytes, 7));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 32) == 0x2d3617af, "%08x", SkOpts::hash(bytes, 32));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 63) == 0xd482f6b1, "%08x", SkOpts::hash(bytes, 63));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 64) == 0x2e5a06a9, "%08x", SkOpts::hash(bytes, 64));
REPORTER_ASSERT(r, SkOpts::hash(bytes, 99) == 0x5214485b, "%08x", SkOpts::hash(bytes, 99));
REPORTER_ASSERT(r, SkOpts::hash(bytes,255) == 0xce206bd3, "%08x", SkOpts::hash(bytes,255));
}