Add Loop Blinn hairline conics to GPU

BUG=
R=bsalomon@google.com

Review URL: https://codereview.chromium.org/21036008

git-svn-id: http://skia.googlecode.com/svn/trunk@10487 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
egdaniel@google.com 2013-08-01 17:09:11 +00:00
parent 7fb83c8c72
commit 3f2a2d5fdc
2 changed files with 165 additions and 89 deletions

View File

@ -35,6 +35,7 @@ protected:
canvas->save();
canvas->scale(1000 * SK_Scalar1, 1000 * SK_Scalar1);
SkRandom rand;
SkRandom randW;
SkPath curves;
SkPath hulls;
SkPath ctrlPts;
@ -78,6 +79,27 @@ protected:
ctrlPts.addCircle(pts[2], pts[3], SK_Scalar1 / 200);
ctrlPts.addCircle(pts[4], pts[5], SK_Scalar1 / 200);
}
for (int i = 0; i < 100; ++i) {
SkScalar pts[] = {
rand.nextUScalar1(), rand.nextUScalar1(),
rand.nextUScalar1(), rand.nextUScalar1(),
rand.nextUScalar1(), rand.nextUScalar1(),
};
SkScalar weight = randW.nextUScalar1() * 2.0f;
curves.moveTo(pts[0], pts[1]);
curves.conicTo(pts[2], pts[3],
pts[4], pts[5],
weight);
hulls.moveTo(pts[0], pts[1]);
hulls.lineTo(pts[2], pts[3]);
hulls.lineTo(pts[4], pts[5]);
ctrlPts.addCircle(pts[0], pts[1], SK_Scalar1 / 200);
ctrlPts.addCircle(pts[2], pts[3], SK_Scalar1 / 200);
ctrlPts.addCircle(pts[4], pts[5], SK_Scalar1 / 200);
}
for (int i = 0; i < 100; ++i) {
SkScalar pts[] = {
rand.nextUScalar1(), rand.nextUScalar1(),

View File

@ -1,4 +1,3 @@
/*
* Copyright 2011 Google Inc.
*
@ -146,9 +145,9 @@ int get_float_exp(float x) {
// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the orginal conic. If it returns 2 the dst[0]
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
int chop_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0) {
if (dst) {
@ -165,6 +164,21 @@ int chop_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
}
}
// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
SkConic dstTemp[2];
int conicCnt = split_conic(src, dstTemp, weight);
if (2 == conicCnt) {
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
} else {
dst[0] = dstTemp[0];
}
return conicCnt;
}
// returns 0 if quad/conic is degen or close to it
// in this case approx the path with lines
// otherwise returns 1
@ -271,7 +285,10 @@ int generate_lines_and_quads(const SkPath& path,
SkPath::Verb verb = iter.next(pathPts);
switch (verb) {
case SkPath::kConic_Verb: {
SkConic dst[2];
SkConic dst[4];
// We chop the conics to create tighter clipping to hide error
// that appears near max curvature of very thin conics. Thin
// hyperbolas with high weight still show error.
int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
for (int i = 0; i < conicCnt; ++i) {
SkPoint* chopPnts = dst[i].fPts;
@ -424,21 +441,18 @@ struct Vertex {
SkScalar fC;
} fLine;
struct {
SkScalar fA;
SkScalar fB;
SkScalar fC;
SkScalar fD;
SkScalar fE;
SkScalar fF;
SkScalar fK;
SkScalar fL;
SkScalar fM;
} fConic;
GrVec fQuadCoord;
struct {
SkScalar fBogus[6];
SkScalar fBogus[4];
};
};
};
GR_STATIC_ASSERT(sizeof(Vertex) == 4 * sizeof(GrPoint));
GR_STATIC_ASSERT(sizeof(Vertex) == 3 * sizeof(GrPoint));
void intersect_lines(const SkPoint& ptA, const SkVector& normA,
const SkPoint& ptB, const SkVector& normB,
@ -538,43 +552,67 @@ void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
DevToUV.apply<kVertsPerQuad, sizeof(Vertex), sizeof(GrPoint)>(verts);
}
// Input:
// Three control points: p[0], p[1], p[2] and weight: w
// Output:
// Let:
// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
void calc_conic_klm(const SkPoint p[3], const SkScalar weight,
SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
const SkScalar w2 = 2 * weight;
l[0] = w2 * (p[1].fY - p[0].fY);
l[1] = w2 * (p[0].fX - p[1].fX);
l[2] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
m[0] = w2 * (p[2].fY - p[1].fY);
m[1] = w2 * (p[1].fX - p[2].fX);
m[2] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
k[0] = p[2].fY - p[0].fY;
k[1] = p[0].fX - p[2].fX;
k[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
// scale the max absolute value of coeffs to 10
SkScalar scale = 0.0f;
for (int i = 0; i < 3; ++i) {
scale = SkMaxScalar(scale, SkScalarAbs(k[i]));
scale = SkMaxScalar(scale, SkScalarAbs(l[i]));
scale = SkMaxScalar(scale, SkScalarAbs(m[i]));
}
GrAssert(scale > 0);
scale /= 10.0f;
k[0] /= scale;
k[1] /= scale;
k[2] /= scale;
l[0] /= scale;
l[1] /= scale;
l[2] /= scale;
m[0] /= scale;
m[1] /= scale;
m[2] /= scale;
}
// Equations based off of Loop-Blinn Quadratic GPU Rendering
// Input Parametric:
// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
// Output Implicit:
// Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
// A = 4w^2*(y0-y1)(y1-y2)-(y0-y2)^2
// B = 4w^2*((x0-x1)(y2-y1)+(x1-x2)(y1-y0)) + 2(x0-x2)(y0-y2)
// C = 4w^2(x0-x1)(x1-x2) - (x0-x2)^2
// D = 4w^2((x0y1-x1y0)(y1-y2)+(x1y2-x2y1)(y0-y1)) + 2(y2-y0)(x0y2-x2y0)
// E = 4w^2((y0x1-y1x0)(x1-x2)+(y1x2-y2x1)(x0-x1)) + 2(x2-x0)(y0x2-y2x0)
// F = 4w^2(x1y2-x2y1)(x0y1-x1y0) - (x2y0-x0y2)^2
// f(x, y, w) = f(P) = K^2 - LM
// K = dot(k, P), L = dot(l, P), M = dot(m, P)
// k, l, m are calculated in function calc_conic_klm
void set_conic_coeffs(const SkPoint p[3], Vertex verts[kVertsPerQuad], const float weight) {
const float ww4 = 4 * weight * weight;
const float x0Mx1 = p[0].fX - p[1].fX;
const float x1Mx2 = p[1].fX - p[2].fX;
const float x0Mx2 = p[0].fX - p[2].fX;
const float y0My1 = p[0].fY - p[1].fY;
const float y1My2 = p[1].fY - p[2].fY;
const float y0My2 = p[0].fY - p[2].fY;
const float x0y1Mx1y0 = p[0].fX*p[1].fY - p[1].fX*p[0].fY;
const float x1y2Mx2y1 = p[1].fX*p[2].fY - p[2].fX*p[1].fY;
const float x0y2Mx2y0 = p[0].fX*p[2].fY - p[2].fX*p[0].fY;
const float a = ww4 * y0My1 * y1My2 - y0My2 * y0My2;
const float b = -ww4 * (x0Mx1 * y1My2 + x1Mx2 * y0My1) + 2 * x0Mx2 * y0My2;
const float c = ww4 * x0Mx1 * x1Mx2 - x0Mx2 * x0Mx2;
const float d = ww4 * (x0y1Mx1y0 * y1My2 + x1y2Mx2y1 * y0My1) - 2 * y0My2 * x0y2Mx2y0;
const float e = -ww4 * (x0y1Mx1y0 * x1Mx2 + x1y2Mx2y1 * x0Mx1) + 2 * x0Mx2 * x0y2Mx2y0;
const float f = ww4 * x1y2Mx2y1 * x0y1Mx1y0 - x0y2Mx2y0 * x0y2Mx2y0;
SkScalar k[3];
SkScalar l[3];
SkScalar m[3];
calc_conic_klm(p, weight, k, l, m);
for (int i = 0; i < kVertsPerQuad; ++i) {
verts[i].fConic.fA = a/f;
verts[i].fConic.fB = b/f;
verts[i].fConic.fC = c/f;
verts[i].fConic.fD = d/f;
verts[i].fConic.fE = e/f;
verts[i].fConic.fF = f/f;
const SkPoint pnt = verts[i].fPos;
verts[i].fConic.fK = pnt.fX * k[0] + pnt.fY * k[1] + k[2];
verts[i].fConic.fL = pnt.fX * l[0] + pnt.fY * l[1] + l[2];
verts[i].fConic.fM = pnt.fX * m[0] + pnt.fY * m[1] + m[2];
}
}
@ -651,12 +689,47 @@ void add_line(const SkPoint p[2],
}
/**
* Shader is based off of Loop-Blinn Quadratic GPU Rendering
* The output of this effect is a hairline edge for conics.
* Conics specified by implicit equation Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.
* A, B, C, D are the first vec4 of vertex attributes and
* E and F are the vec2 attached to 2nd vertex attrribute.
* Conics specified by implicit equation K^2 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage is max(0, 1-distance).
*/
/**
* Test were also run using a second order distance approximation.
* There were two versions of the second order approx. The first version
* is of roughly the form:
* f(q) = |f(p)| - ||f'(p)||*||q-p|| - ||f''(p)||*||q-p||^2.
* The second is similar:
* f(q) = |f(p)| + ||f'(p)||*||q-p|| + ||f''(p)||*||q-p||^2.
* The exact version of the equations can be found in the paper
* "Distance Approximations for Rasterizing Implicit Curves" by Gabriel Taubin
*
* In both versions we solve the quadratic for ||q-p||.
* Version 1:
* gFM is magnitude of first partials and gFM2 is magnitude of 2nd partials (as derived from paper)
* builder->fsCodeAppend("\t\tedgeAlpha = (sqrt(gFM*gFM+4.0*func*gF2M) - gFM)/(2.0*gF2M);\n");
* Version 2:
* builder->fsCodeAppend("\t\tedgeAlpha = (gFM - sqrt(gFM*gFM-4.0*func*gF2M))/(2.0*gF2M);\n");
*
* Also note that 2nd partials of k,l,m are zero
*
* When comparing the two second order approximations to the first order approximations,
* the following results were found. Version 1 tends to underestimate the distances, thus it
* basically increases all the error that we were already seeing in the first order
* approx. So this version is not the one to use. Version 2 has the opposite effect
* and tends to overestimate the distances. This is much closer to what we are
* looking for. It is able to render ellipses (even thin ones) without the need to chop.
* However, it can not handle thin hyperbolas well and thus would still rely on
* chopping to tighten the clipping. Another side effect of the overestimating is
* that the curves become much thinner and "ropey". If all that was ever rendered
* were "not too thin" curves and ellipses then 2nd order may have an advantage since
* only one geometry would need to be rendered. However no benches were run comparing
* chopped first order and non chopped 2nd order.
*/
class HairConicEdgeEffect : public GrEffect {
public:
static GrEffectRef* Create() {
@ -689,38 +762,32 @@ public:
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) SK_OVERRIDE {
const char *vsCoeffABCDName, *fsCoeffABCDName;
const char *vsCoeffEFName, *fsCoeffEFName;
const char *vsName, *fsName;
SkAssertResult(builder->enableFeature(
GrGLShaderBuilder::kStandardDerivatives_GLSLFeature));
builder->addVarying(kVec4f_GrSLType, "ConicCoeffsABCD",
&vsCoeffABCDName, &fsCoeffABCDName);
builder->addVarying(kVec4f_GrSLType, "ConicCoeffs",
&vsName, &fsName);
const SkString* attr0Name =
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]);
builder->vsCodeAppendf("\t%s = %s;\n", vsCoeffABCDName, attr0Name->c_str());
builder->vsCodeAppendf("\t%s = %s;\n", vsName, attr0Name->c_str());
builder->addVarying(kVec2f_GrSLType, "ConicCoeffsEF",
&vsCoeffEFName, &fsCoeffEFName);
const SkString* attr1Name =
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[1]);
builder->vsCodeAppendf("\t%s = %s;\n", vsCoeffEFName, attr1Name->c_str());
builder->fsCodeAppend("\t\tfloat edgeAlpha;\n");
// Based on Gustavson 2006: "Beyond the Pixel: towards infinite resolution textures"
builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n");
builder->fsCodeAppendf("\t\tvec3 uv1 = vec3(%s.xy, 1);\n", builder->fragmentPosition());
builder->fsCodeAppend("\t\tvec3 u2uvv2 = uv1.xxy * uv1.xyy;\n");
builder->fsCodeAppendf("\t\tvec3 ABC = %s.xyz;\n", fsCoeffABCDName);
builder->fsCodeAppendf("\t\tvec3 DEF = vec3(%s.w, %s.xy);\n",
fsCoeffABCDName, fsCoeffEFName);
builder->fsCodeAppend("\t\tfloat dfdx = dot(uv1,vec3(2.0*ABC.x,ABC.y,DEF.x));\n");
builder->fsCodeAppend("\t\tfloat dfdy = dot(uv1,vec3(ABC.y, 2.0*ABC.z,DEF.y));\n");
builder->fsCodeAppend("\t\tfloat gF = dfdx*dfdx + dfdy*dfdy;\n");
builder->fsCodeAppend("\t\tedgeAlpha = dot(ABC,u2uvv2) + dot(DEF,uv1);\n");
builder->fsCodeAppend("\t\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / gF);\n");
builder->fsCodeAppend("\t\tedgeAlpha = max((1.0 - edgeAlpha), 0.0);\n");
builder->fsCodeAppendf("\t\tvec3 dklmdx = dFdx(%s.xyz);\n", fsName);
builder->fsCodeAppendf("\t\tvec3 dklmdy = dFdy(%s.xyz);\n", fsName);
builder->fsCodeAppendf("\t\tfloat dfdx =\n"
"\t\t\t2.0*%s.x*dklmdx.x - %s.y*dklmdx.z - %s.z*dklmdx.y;\n",
fsName, fsName, fsName);
builder->fsCodeAppendf("\t\tfloat dfdy =\n"
"\t\t\t2.0*%s.x*dklmdy.x - %s.y*dklmdy.z - %s.z*dklmdy.y;\n",
fsName, fsName, fsName);
builder->fsCodeAppend("\t\tvec2 gF = vec2(dfdx, dfdy);\n");
builder->fsCodeAppend("\t\tfloat gFM = sqrt(dot(gF, gF));\n");
builder->fsCodeAppendf("\t\tfloat func = abs(%s.x*%s.x - %s.y*%s.z);\n", fsName, fsName,
fsName, fsName);
builder->fsCodeAppend("\t\tedgeAlpha = func / gFM;\n");
builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
// Add line below for smooth cubic ramp
// builder->fsCodeAppend("\t\tedgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);\n");
@ -742,8 +809,6 @@ public:
private:
HairConicEdgeEffect() {
this->addVertexAttrib(kVec4f_GrSLType);
this->addVertexAttrib(kVec2f_GrSLType);
this->setWillReadFragmentPosition();
}
virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE {
@ -761,9 +826,8 @@ GrEffectRef* HairConicEdgeEffect::TestCreate(SkMWCRandom* random,
GrContext*,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
return HairConicEdgeEffect::Create();
return caps.shaderDerivativeSupport() ? HairConicEdgeEffect::Create() : NULL;
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a hairline edge for quadratics.
@ -965,14 +1029,6 @@ extern const GrVertexAttrib gHairlineAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}
};
// Conic
// position + ABCD + EF
extern const GrVertexAttrib gConicVertexAttribs[] = {
{ kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding },
{ kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 3*sizeof(GrPoint), kEffect_GrVertexAttribBinding }
};
};
bool GrAAHairLinePathRenderer::createGeom(
@ -1011,7 +1067,7 @@ bool GrAAHairLinePathRenderer::createGeom(
int vertCnt = kVertsPerLineSeg * *lineCnt + kVertsPerQuad * *quadCnt +
kVertsPerQuad * *conicCnt;
target->drawState()->setVertexAttribs<gConicVertexAttribs>(SK_ARRAY_COUNT(gConicVertexAttribs));
target->drawState()->setVertexAttribs<gHairlineAttribs>(SK_ARRAY_COUNT(gHairlineAttribs));
GrAssert(sizeof(Vertex) == target->getDrawState().getVertexSize());
if (!arg->set(target, vertCnt, 0)) {
@ -1056,13 +1112,11 @@ bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
return false;
}
static const uint32_t gReqDerivMask = SkPath::kCubic_SegmentMask |
SkPath::kQuad_SegmentMask;
if (!target->caps()->shaderDerivativeSupport() &&
(gReqDerivMask & path.getSegmentMasks())) {
return false;
if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
target->caps()->shaderDerivativeSupport()) {
return true;
}
return true;
return false;
}
bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,