Add cubic clipping, similar to that of quad clipping. Both Newton-Raphson and Bisection are implemented, because it is not clear which one will yield the highest performance on a given platform. Bisection is turned on as the default.
git-svn-id: http://skia.googlecode.com/svn/trunk@101 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
parent
98de2bdbd1
commit
4896f9e017
@ -27,6 +27,7 @@ SkColorFilter.cpp \
|
||||
SkColorTable.cpp \
|
||||
SkComposeShader.cpp \
|
||||
SkCordic.cpp \
|
||||
skCubicClipper.cpp \
|
||||
SkDebug.cpp \
|
||||
SkDebug_stdio.cpp \
|
||||
SkDeque.cpp \
|
||||
|
166
src/core/SkCubicClipper.cpp
Normal file
166
src/core/SkCubicClipper.cpp
Normal file
@ -0,0 +1,166 @@
|
||||
/*
|
||||
* Copyright (C) 2009 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "SkCubicClipper.h"
|
||||
#include "SkGeometry.h"
|
||||
|
||||
SkCubicClipper::SkCubicClipper() {}
|
||||
|
||||
void SkCubicClipper::setClip(const SkIRect& clip) {
|
||||
// conver to scalars, since that's where we'll see the points
|
||||
fClip.set(clip);
|
||||
}
|
||||
|
||||
|
||||
static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
|
||||
SkScalar ycrv[4];
|
||||
ycrv[0] = pts[0].fY - y;
|
||||
ycrv[1] = pts[1].fY - y;
|
||||
ycrv[2] = pts[2].fY - y;
|
||||
ycrv[3] = pts[3].fY - y;
|
||||
|
||||
#ifdef NEWTON_RAPHSON // Quadratic convergence, typically <= 3 iterations.
|
||||
// Initial guess.
|
||||
// TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
|
||||
// is not only monotonic but degenerate.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
|
||||
#else // !SK_SCALAR_IS_FLOAT
|
||||
SkScalar t1 = SkDivBits(ycrv[0], ycrv[0] - ycrv[3], 16);
|
||||
#endif // !SK_SCALAR_IS_FLOAT
|
||||
|
||||
// Newton's iterations.
|
||||
const SkScalar tol = SK_Scalar1 / 16384; // This leaves 2 fixed noise bits.
|
||||
SkScalar t0;
|
||||
const int maxiters = 5;
|
||||
int iters = 0;
|
||||
bool converged;
|
||||
do {
|
||||
t0 = t1;
|
||||
SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], t0);
|
||||
SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], t0);
|
||||
SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], t0);
|
||||
SkScalar y012 = SkScalarInterp(y01, y12, t0);
|
||||
SkScalar y123 = SkScalarInterp(y12, y23, t0);
|
||||
SkScalar y0123 = SkScalarInterp(y012, y123, t0);
|
||||
SkScalar yder = (y123 - y012) * 3;
|
||||
// TODO(turk): check for yder==0: horizontal.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
t1 -= y0123 / yder;
|
||||
#else // !SK_SCALAR_IS_FLOAT
|
||||
t1 -= SkDivBits(y0123, yder, 16);
|
||||
#endif // !SK_SCALAR_IS_FLOAT
|
||||
converged = SkScalarAbs(t1 - t0) <= tol; // NaN-safe
|
||||
++iters;
|
||||
} while (!converged && (iters < maxiters));
|
||||
*t = t1; // Return the result.
|
||||
|
||||
// The result might be valid, even if outside of the range [0, 1], but
|
||||
// we never evaluate a Bezier outside this interval, so we return false.
|
||||
if (t1 < 0 || t1 > SK_Scalar1)
|
||||
return false; // This shouldn't happen, but check anyway.
|
||||
return converged;
|
||||
|
||||
#else // BISECTION // Linear convergence, typically 16 iterations.
|
||||
|
||||
// Check that the endpoints straddle zero.
|
||||
SkScalar tNeg, tPos; // Parameter where the function is negative and positive, respectively.
|
||||
if (ycrv[0] < 0) {
|
||||
if (ycrv[3] < 0)
|
||||
return false;
|
||||
tNeg = 0;
|
||||
tPos = SK_Scalar1;
|
||||
} else if (ycrv[0] > 0) {
|
||||
if (ycrv[3] > 0)
|
||||
return false;
|
||||
tNeg = SK_Scalar1;
|
||||
tPos = 0;
|
||||
} else {
|
||||
*t = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
const SkScalar tol = SK_Scalar1 / 65536; // 1 for fixed, 1e-5 for float.
|
||||
int iters = 0;
|
||||
do {
|
||||
SkScalar tMid = (tPos + tNeg) / 2;
|
||||
SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], tMid);
|
||||
SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], tMid);
|
||||
SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], tMid);
|
||||
SkScalar y012 = SkScalarInterp(y01, y12, tMid);
|
||||
SkScalar y123 = SkScalarInterp(y12, y23, tMid);
|
||||
SkScalar y0123 = SkScalarInterp(y012, y123, tMid);
|
||||
if (y0123 == 0) {
|
||||
*t = tMid;
|
||||
return true;
|
||||
}
|
||||
if (y0123 < 0) tNeg = tMid;
|
||||
else tPos = tMid;
|
||||
++iters;
|
||||
} while (!(SkScalarAbs(tPos - tNeg) <= tol)); // Nan-safe
|
||||
|
||||
*t = (tNeg + tPos) / 2;
|
||||
return true;
|
||||
#endif // BISECTION
|
||||
}
|
||||
|
||||
|
||||
bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
|
||||
bool reverse;
|
||||
|
||||
// we need the data to be monotonically descending in Y
|
||||
if (srcPts[0].fY > srcPts[2].fY) {
|
||||
dst[0] = srcPts[3];
|
||||
dst[1] = srcPts[2];
|
||||
dst[2] = srcPts[1];
|
||||
dst[3] = srcPts[0];
|
||||
reverse = true;
|
||||
} else {
|
||||
memcpy(dst, srcPts, 3 * sizeof(SkPoint));
|
||||
reverse = false;
|
||||
}
|
||||
|
||||
// are we completely above or below
|
||||
const SkScalar ctop = fClip.fTop;
|
||||
const SkScalar cbot = fClip.fBottom;
|
||||
if (dst[2].fY <= ctop || dst[0].fY >= cbot) {
|
||||
return false;
|
||||
}
|
||||
|
||||
SkScalar t;
|
||||
SkPoint tmp[5]; // for SkChopCubicAt
|
||||
|
||||
// are we partially above
|
||||
if (dst[0].fY < ctop && chopMonoCubicAtY(dst, ctop, &t)) {
|
||||
SkChopCubicAt(dst, tmp, t);
|
||||
dst[0] = tmp[2];
|
||||
dst[1] = tmp[3];
|
||||
}
|
||||
|
||||
// are we partially below
|
||||
if (dst[2].fY > cbot && chopMonoCubicAtY(dst, cbot, &t)) {
|
||||
SkChopCubicAt(dst, tmp, t);
|
||||
dst[1] = tmp[1];
|
||||
dst[2] = tmp[2];
|
||||
}
|
||||
|
||||
if (reverse) {
|
||||
SkTSwap<SkPoint>(dst[0], dst[3]);
|
||||
SkTSwap<SkPoint>(dst[1], dst[2]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
41
src/core/SkCubicClipper.h
Normal file
41
src/core/SkCubicClipper.h
Normal file
@ -0,0 +1,41 @@
|
||||
/*
|
||||
* Copyright (C) 2009 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef SkCubicClipper_DEFINED
|
||||
#define SkCubicClipper_DEFINED
|
||||
|
||||
#include "SkPoint.h"
|
||||
#include "SkRect.h"
|
||||
|
||||
/** This class is initialized with a clip rectangle, and then can be fed cubics,
|
||||
which must already be monotonic in Y.
|
||||
|
||||
In the future, it might return a series of segments, allowing it to clip
|
||||
also in X, to ensure that all segments fit in a finite coordinate system.
|
||||
*/
|
||||
class SkCubicClipper {
|
||||
public:
|
||||
SkCubicClipper();
|
||||
|
||||
void setClip(const SkIRect& clip);
|
||||
|
||||
bool clipCubic(const SkPoint src[4], SkPoint dst[4]);
|
||||
|
||||
private:
|
||||
SkRect fClip;
|
||||
};
|
||||
|
||||
#endif // SkCubicClipper_DEFINED
|
@ -24,6 +24,7 @@ SOURCE := \
|
||||
SkColorTable.cpp \
|
||||
SkComposeShader.cpp \
|
||||
SkCordic.cpp \
|
||||
SkCubicClipper.cpp \
|
||||
SkDebug.cpp \
|
||||
SkDebug_stdio.cpp \
|
||||
SkDeque.cpp \
|
||||
|
Loading…
Reference in New Issue
Block a user