Revert of SSE4 opaque blend using intrinsics instead of assembly. (patchset #16 id:300001 of https://codereview.chromium.org/874863002/)

Reason for revert:
This causes a bug on the 'hittestpath' GM on MacMini 4,1

See:

https://gold.skia.org/#/triage/hittestpath?head=0

for details.

Original issue's description:
> SSE4 opaque blend using intrinsics instead of assembly.
>
> Since we had such a hard time with the assembly versions of this blit (to the
> point that we have them completely disabled everywhere), I thought I'd take
> a shot at writing a version of the blit using intrinsics.
>
> The key feature of SSE4 we're exploiting is that we can use ptest (_mm_test*)
> to skip the blend when the 16 src pixels we consider each loop are all opaque
> or all transparent.  _mm_shuffle_epi8 from SSSE3 also lends a hand to extract
> all those alphas.
>
> It's worth looking to see if we can backport this type of logic to SSE2 using
> _mm_movemask_epi8, or up to 32 pixels at a time using AVX.
>
> My local performance testing doesn't show this to be an unambiguous win
> (there are probably microbenchmarks and SKPs where we'd be better off just
> powering through the blend rather than looking at alphas), but the potential
> does seem tantalizing enough to let skiaperf vet it on the bots.  (< 1.0x is a win.)
>
> DM says it draws pixel perfect compare to the old code.
>
> Microbenchmarks:
>                bitmap_RGBA_8888_A_source_stripes_two	  14us -> 14.4us	1.03x
>              bitmap_RGBA_8888_A_source_stripes_three	14.3us -> 14.5us	1.01x
>                        bitmap_RGBA_8888_scale_bilerp	61.9us -> 62.2us	1.01x
> bitmap_RGBA_8888_update_volatile_scale_rotate_bilerp	 102us ->  101us	0.99x
>                 bitmap_RGBA_8888_scale_rotate_bilerp	 103us ->  101us	0.99x
>                               bitmap_RGBA_8888_scale	18.4us -> 18.2us	0.99x
>              bitmap_RGBA_8888_A_scale_rotate_bicubic	  71us ->   70us	0.99x
>          bitmap_RGBA_8888_update_scale_rotate_bilerp	 103us ->  101us	0.99x
>               bitmap_RGBA_8888_A_scale_rotate_bilerp	 112us ->  109us	0.98x
>                     bitmap_RGBA_8888_update_volatile	5.72us -> 5.58us	0.98x
>                                     bitmap_RGBA_8888	5.73us -> 5.58us	0.97x
>                              bitmap_RGBA_8888_update	5.78us ->  5.6us	0.97x
>                      bitmap_RGBA_8888_A_scale_bilerp	70.7us ->   68us	0.96x
>                     bitmap_RGBA_8888_A_scale_bicubic	23.7us -> 21.8us	0.92x
>                                   bitmap_RGBA_8888_A	13.9us -> 10.9us	0.78x
>                     bitmap_RGBA_8888_A_source_opaque	  14us -> 6.29us	0.45x
>                bitmap_RGBA_8888_A_source_transparent	  14us -> 3.65us	0.26x
>
> Running over our ~70 SKP web page captures, this looks like we spend 0.7x
> the time in S32A_Opaque_BlitRow compared to the SSE2 version, which should
> be a decent predictor of real-world impact.
>
> BUG=chromium:399842
>
> Committed: https://skia.googlesource.com/skia/+/04bc91b972417038fecfa87c484771eac2b9b785
>
> CQ_EXTRA_TRYBOTS=client.skia:Test-Mac10.6-MacMini4.1-GeForce320M-x86_64-Release-Trybot
>
> Committed: https://skia.googlesource.com/skia/+/6dbfb21a6c88af6d94e8c823c3ad559f1a41b493

TBR=henrik.smiding@intel.com,mtklein@google.com,herb@google.com,reed@google.com,thakis@chromium.org,mtklein@chromium.org
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=chromium:399842

Review URL: https://codereview.chromium.org/873553003
This commit is contained in:
stephana 2015-02-02 09:52:43 -08:00 committed by Commit bot
parent db204e301b
commit 4988891a11
7 changed files with 972 additions and 81 deletions

View File

@ -79,6 +79,5 @@
],
'sse41_sources': [
'<(skia_src_path)/opts/SkBlurImage_opts_SSE4.cpp',
'<(skia_src_path)/opts/SkBlitRow_opts_SSE4.cpp',
],
}

View File

@ -1,67 +0,0 @@
#include "SkBlitRow_opts_SSE4.h"
// Some compilers can't compile SSSE3 or SSE4 intrinsics. We give them stub methods.
// The stubs should never be called, so we make them crash just to confirm that.
#if SK_CPU_SSE_LEVEL < SK_CPU_SSE_LEVEL_SSE41
void S32A_Opaque_BlitRow32_SSE4(SkPMColor* SK_RESTRICT, const SkPMColor* SK_RESTRICT, int, U8CPU) {
sk_throw();
}
#else
#include <emmintrin.h> // SSE2: Most _mm_foo() in this file.
#include <smmintrin.h> // SSE4.1: _mm_testz_si128 and _mm_testc_si128.
#include "SkColorPriv.h"
#include "SkColor_opts_SSE2.h"
void S32A_Opaque_BlitRow32_SSE4(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count,
U8CPU alpha) {
SkASSERT(alpha == 255);
// As long as we can, we'll work on 16 pixel pairs at once.
int count16 = count / 16;
__m128i* dst4 = (__m128i*)dst;
const __m128i* src4 = (const __m128i*)src;
for (int i = 0; i < count16 * 4; i += 4) {
// Load 16 source pixels.
__m128i s0 = _mm_loadu_si128(src4+i+0),
s1 = _mm_loadu_si128(src4+i+1),
s2 = _mm_loadu_si128(src4+i+2),
s3 = _mm_loadu_si128(src4+i+3);
const __m128i alphaMask = _mm_set1_epi32(0xFF << SK_A32_SHIFT);
const __m128i ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (_mm_testz_si128(ORed, alphaMask)) {
// All 16 source pixels are fully transparent. There's nothing to do!
continue;
}
const __m128i ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (_mm_testc_si128(ANDed, alphaMask)) {
// All 16 source pixels are fully opaque. There's no need to read dst or blend it.
_mm_storeu_si128(dst4+i+0, s0);
_mm_storeu_si128(dst4+i+1, s1);
_mm_storeu_si128(dst4+i+2, s2);
_mm_storeu_si128(dst4+i+3, s3);
continue;
}
// The general slow case: do the blend for all 16 pixels.
_mm_storeu_si128(dst4+i+0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(dst4+i+0)));
_mm_storeu_si128(dst4+i+1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(dst4+i+1)));
_mm_storeu_si128(dst4+i+2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(dst4+i+2)));
_mm_storeu_si128(dst4+i+3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(dst4+i+3)));
}
// Wrap up the last <= 15 pixels.
SkASSERT(count - (count16*16) <= 15);
for (int i = count16*16; i < count; i++) {
// This check is not really necessarily, but it prevents pointless autovectorization.
if (src[i] & 0xFF000000) {
dst[i] = SkPMSrcOver(src[i], dst[i]);
}
}
}
#endif

View File

@ -10,9 +10,24 @@
#include "SkBlitRow.h"
void S32A_Opaque_BlitRow32_SSE4(SkPMColor* SK_RESTRICT,
const SkPMColor* SK_RESTRICT,
int count,
U8CPU alpha);
#ifdef CRBUG_399842_FIXED
/* Check if we are able to build assembly code, GCC/AT&T syntax:
* 1) Clang and GCC are generally OK. OS X's old LLVM-GCC 4.2 can't handle it;
* 2) We're intentionally not linking this in even when supported (Clang) on Windows;
* 3) MemorySanitizer cannot instrument assembly at all.
*/
#if /* 1)*/ (defined(__clang__) || (defined(__GNUC__) && !defined(SK_BUILD_FOR_MAC))) \
/* 2)*/ && !defined(SK_BUILD_FOR_WIN) \
/* 3)*/ && !defined(MEMORY_SANITIZER)
extern "C" void S32A_Opaque_BlitRow32_SSE4_asm(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, U8CPU alpha);
#define SK_ATT_ASM_SUPPORTED
#endif
#endif // CRBUG_399842_FIXED
#endif

View File

@ -0,0 +1,475 @@
/*
* Copyright 2014 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifdef CRBUG_399842_FIXED
#if defined(__clang__) || (defined(__GNUC__) && !defined(SK_BUILD_FOR_MAC))
#define CFI_PUSH(REG) \
.cfi_adjust_cfa_offset 4; \
.cfi_rel_offset REG, 0
#define CFI_POP(REG) \
.cfi_adjust_cfa_offset -4; \
.cfi_restore REG
#define PUSH(REG) pushl REG; CFI_PUSH (REG)
#define POP(REG) popl REG; CFI_POP (REG)
#define RETURN POP(%edi); ret
#define EXTRACT_ALPHA(var1, var2) \
movdqa %var1, %var2; /* Clone source pixels to extract alpha */\
psrlw $8, %var2; /* Discard red and blue, leaving alpha and green */\
pshufhw $0xF5, %var2, %var2; /* Repeat alpha for scaling (high) */\
movdqa %xmm6, %xmm4; \
pshuflw $0xF5, %var2, %var2; /* Repeat alpha for scaling (low) */\
movdqa %xmm5, %xmm3; \
psubw %var2, %xmm4 /* Finalize alpha calculations */
#define SCALE_PIXELS \
psllw $8, %xmm5; /* Filter out red and blue components */\
pmulhuw %xmm4, %xmm5; /* Scale red and blue */\
psrlw $8, %xmm3; /* Filter out alpha and green components */\
pmullw %xmm4, %xmm3 /* Scale alpha and green */
/*
* void S32A_Opaque_BlitRow32_SSE4(SkPMColor* SK_RESTRICT dst,
* const SkPMColor* SK_RESTRICT src,
* int count, U8CPU alpha)
*
* This function is divided into six blocks: initialization, blit 4-15 pixels,
* blit 0-3 pixels, align destination for 16+ pixel blits,
* blit 16+ pixels with source unaligned, blit 16+ pixels with source aligned.
* There are some code reuse between the blocks.
*
* The primary optimization comes from checking the source pixels' alpha value.
* If the alpha is zero, the pixel can be skipped entirely.
* If the alpha is fully opaque, the pixel can be copied directly to the destination.
* According to collected statistics, these two cases are the most common.
* The main loop(s) uses pre-loading and unrolling in an attempt to reduce the
* memory latency worse-case.
*/
#ifdef __clang__
.text
#else
.section .text.sse4.2,"ax",@progbits
.type S32A_Opaque_BlitRow32_SSE4_asm, @function
#endif
.p2align 4
#if defined(SK_BUILD_FOR_MAC)
.global _S32A_Opaque_BlitRow32_SSE4_asm
.private_extern _S32A_Opaque_BlitRow32_SSE4_asm
_S32A_Opaque_BlitRow32_SSE4_asm:
#else
.global S32A_Opaque_BlitRow32_SSE4_asm
.hidden S32A_Opaque_BlitRow32_SSE4_asm
S32A_Opaque_BlitRow32_SSE4_asm:
#endif
.cfi_startproc
movl 8(%esp), %eax // Source pointer
movl 12(%esp), %ecx // Pixel count
movl 4(%esp), %edx // Destination pointer
prefetcht0 (%eax)
// Setup SSE constants
pcmpeqd %xmm7, %xmm7 // 0xFF000000 mask to check alpha
pslld $24, %xmm7
pcmpeqw %xmm6, %xmm6 // 16-bit 256 to calculate inv. alpha
psrlw $15, %xmm6
psllw $8, %xmm6
pcmpeqw %xmm0, %xmm0 // 0x00FF00FF mask (Must be in xmm0 because of pblendvb)
psrlw $8, %xmm0
subl $4, %ecx // Check if we have only 0-3 pixels
js .LReallySmall
PUSH(%edi)
cmpl $11, %ecx // Do we have enough pixels to run the main loop?
ja .LBigBlit
// Handle small blits (4-15 pixels)
////////////////////////////////////////////////////////////////////////////////
xorl %edi, %edi // Reset offset to zero
.LSmallLoop:
lddqu (%eax, %edi), %xmm1 // Load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LSmallAlphaNotOpaqueOrZero
jz .LSmallAlphaZero // If all alphas are zero, skip the pixels completely
movdqu %xmm1, (%edx, %edi) // Store four destination pixels
.LSmallAlphaZero:
addl $16, %edi
subl $4, %ecx // Check if there are four additional pixels, at least
jns .LSmallLoop
jmp .LSmallRemaining
// Handle mixed alphas (calculate and scale)
.p2align 4
.LSmallAlphaNotOpaqueOrZero:
lddqu (%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addl $16, %edi
subl $4, %ecx // Check if there are four additional pixels, at least
pblendvb %xmm5, %xmm3 // Mask in %xmm0, implicitly
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqu %xmm1, -16(%edx, %edi) // Store four destination pixels
jns .LSmallLoop
// Handle the last 0-3 pixels (also used by the main loops)
.LSmallRemaining:
cmpl $-4, %ecx // Check if we are done
je .LSmallExit
sall $2, %ecx // Calculate offset for last pixels
addl %ecx, %edi
lddqu (%eax, %edi), %xmm1 // Load last four source pixels (overlapping)
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
jc .LSmallRemainingStoreAll// If all alphas are opaque, just store (overlapping)
jz .LSmallExit // If all alphas are zero, skip the pixels completely
// Handle mixed alphas (calculate and scale)
lddqu (%edx, %edi), %xmm5 // Load last four destination pixels (overlapping)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
psllw $8, %xmm3 // Filter out red and blue components
pmulhuw %xmm4, %xmm3 // Scale red and blue
movdqa %xmm5, %xmm2
psrlw $8, %xmm2 // Filter out alpha and green components
pmullw %xmm4, %xmm2 // Scale alpha and green
cmpl $-8, %ecx // Check how many pixels should be written
pblendvb %xmm3, %xmm2 // Combine results (mask in %xmm0, implicitly)
paddb %xmm2, %xmm1 // Add source and destination pixels together
jb .LSmallPixelsLeft1
ja .LSmallPixelsLeft3 // To avoid double-blending the overlapping pixels...
pblendw $0xF0, %xmm1, %xmm5 // Merge only the final two pixels to the destination
movdqu %xmm5, (%edx, %edi) // Store last two destination pixels
.LSmallExit:
RETURN
.LSmallPixelsLeft1:
pblendw $0xC0, %xmm1, %xmm5 // Merge only the final pixel to the destination
movdqu %xmm5, (%edx, %edi) // Store last destination pixel
RETURN
.LSmallPixelsLeft3:
pblendw $0xFC, %xmm1, %xmm5 // Merge only the final three pixels to the destination
movdqu %xmm5, (%edx, %edi) // Store last three destination pixels
RETURN
.LSmallRemainingStoreAll:
movdqu %xmm1, (%edx, %edi) // Store last destination pixels (overwrite)
RETURN
// Handle really small blits (0-3 pixels)
////////////////////////////////////////////////////////////////////////////////
.LReallySmall:
addl $4, %ecx
jle .LReallySmallExit
pcmpeqd %xmm1, %xmm1
cmp $2, %ecx // Check how many pixels should be read
pinsrd $0x0, (%eax), %xmm1 // Load one source pixel
pinsrd $0x0, (%edx), %xmm5 // Load one destination pixel
jb .LReallySmallCalc
pinsrd $0x1, 4(%eax), %xmm1 // Load second source pixel
pinsrd $0x1, 4(%edx), %xmm5 // Load second destination pixel
je .LReallySmallCalc
pinsrd $0x2, 8(%eax), %xmm1 // Load third source pixel
pinsrd $0x2, 8(%edx), %xmm5 // Load third destination pixel
.LReallySmallCalc:
ptest %xmm7, %xmm1 // Check if all alphas are opaque
jc .LReallySmallStore // If all alphas are opaque, just store
// Handle mixed alphas (calculate and scale)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
pand %xmm0, %xmm5 // Filter out red and blue components
pmullw %xmm4, %xmm5 // Scale red and blue
psrlw $8, %xmm3 // Filter out alpha and green components
pmullw %xmm4, %xmm3 // Scale alpha and green
psrlw $8, %xmm5 // Combine results
pblendvb %xmm5, %xmm3 // Mask in %xmm0, implicitly
paddb %xmm3, %xmm1 // Add source and destination pixels together
.LReallySmallStore:
cmp $2, %ecx // Check how many pixels should be written
pextrd $0x0, %xmm1, (%edx) // Store one destination pixel
jb .LReallySmallExit
pextrd $0x1, %xmm1, 4(%edx) // Store second destination pixel
je .LReallySmallExit
pextrd $0x2, %xmm1, 8(%edx) // Store third destination pixel
.LReallySmallExit:
ret
// Handle bigger blit operations (16+ pixels)
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LBigBlit:
// Align destination?
testl $0xF, %edx
lddqu (%eax), %xmm1 // Pre-load four source pixels
jz .LAligned
movl %edx, %edi // Calculate alignment of destination pointer
negl %edi
andl $0xF, %edi
// Handle 1-3 pixels to align destination
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
jz .LAlignDone // If all alphas are zero, just skip
lddqu (%edx), %xmm5 // Load four destination pixels
jc .LAlignStore // If all alphas are opaque, just store
// Handle mixed alphas (calculate and scale)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
psllw $8, %xmm3 // Filter out red and blue components
pmulhuw %xmm4, %xmm3 // Scale red and blue
movdqa %xmm5, %xmm2
psrlw $8, %xmm2 // Filter out alpha and green components
pmullw %xmm4, %xmm2 // Scale alpha and green
pblendvb %xmm3, %xmm2 // Combine results (mask in %xmm0, implicitly)
paddb %xmm2, %xmm1 // Add source and destination pixels together
.LAlignStore:
cmp $8, %edi // Check how many pixels should be written
jb .LAlignPixelsLeft1
ja .LAlignPixelsLeft3
pblendw $0x0F, %xmm1, %xmm5 // Blend two pixels
jmp .LAlignStorePixels
.LAlignPixelsLeft1:
pblendw $0x03, %xmm1, %xmm5 // Blend one pixel
jmp .LAlignStorePixels
.LAlignPixelsLeft3:
pblendw $0x3F, %xmm1, %xmm5 // Blend three pixels
.LAlignStorePixels:
movdqu %xmm5, (%edx) // Store destination pixels
.LAlignDone:
addl %edi, %eax // Adjust pointers and pixel count
addl %edi, %edx
shrl $2, %edi
lddqu (%eax), %xmm1 // Pre-load new source pixels (after alignment)
subl %edi, %ecx
.LAligned: // Destination is guaranteed to be 16 byte aligned
xorl %edi, %edi // Reset offset to zero
subl $8, %ecx // Decrease counter (Reserve four pixels for the cleanup)
testl $0xF, %eax // Check alignment of source pointer
jz .LAlignedLoop
// Source not aligned to destination
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LUnalignedLoop: // Main loop for unaligned, handles eight pixels per iteration
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero00
lddqu 16(%eax, %edi), %xmm2 // Pre-load four source pixels
jz .LAlphaZero00
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero00:
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero01
lddqu 32(%eax, %edi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero01
movdqa %xmm2, 16(%edx, %edi) // Store four destination pixels
.LAlphaZero01:
addl $32, %edi // Adjust offset and pixel count
subl $8, %ecx
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup0
.p2align 4
.LAlphaNotOpaqueOrZero00:
movdqa (%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
lddqu 16(%eax, %edi), %xmm2 // Pre-load four source pixels
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
// Handle next four pixels
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero01
lddqu 32(%eax, %edi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero02
movdqa %xmm2, 16(%edx, %edi) // Store four destination pixels
.LAlphaZero02:
addl $32, %edi // Adjust offset and pixel count
subl $8, %ecx
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup0
.p2align 4
.LAlphaNotOpaqueOrZero01:
movdqa 16(%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm2, xmm1) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
lddqu 32(%eax, %edi), %xmm1 // Pre-load four source pixels
addl $32, %edi
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm2 // Add source and destination pixels together
subl $8, %ecx
movdqa %xmm2, -16(%edx, %edi) // Store four destination pixels
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
// Cleanup - handle pending pixels from loop
.LLoopCleanup0:
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero02
jz .LAlphaZero03
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero03:
addl $16, %edi
subl $4, %ecx
js .LSmallRemaining // Reuse code from small loop
.LRemain0:
lddqu (%eax, %edi), %xmm1 // Load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero02
jz .LAlphaZero04
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero04:
addl $16, %edi
subl $4, %ecx
jmp .LSmallRemaining // Reuse code from small loop
.LAlphaNotOpaqueOrZero02:
movdqa (%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addl $16, %edi
subl $4, %ecx
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, -16(%edx, %edi) // Store four destination pixels
js .LSmallRemaining // Reuse code from small loop
jmp .LRemain0
// Source aligned to destination
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LAlignedLoop: // Main loop for aligned, handles eight pixels per iteration
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero10
movdqa 16(%eax, %edi), %xmm2 // Pre-load four source pixels
jz .LAlphaZero10
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero10:
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero11
movdqa 32(%eax, %edi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero11
movdqa %xmm2, 16(%edx, %edi) // Store four destination pixels
.LAlphaZero11:
addl $32, %edi // Adjust offset and pixel count
subl $8, %ecx
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup1
.p2align 4
.LAlphaNotOpaqueOrZero10:
movdqa (%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
movdqa 16(%eax, %edi), %xmm2 // Pre-load four source pixels
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
// Handle next four pixels
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero11
movdqa 32(%eax, %edi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero12
movdqa %xmm2, 16(%edx, %edi) // Store four destination pixels
.LAlphaZero12:
addl $32, %edi // Adjust offset and pixel count
subl $8, %ecx
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup1
.p2align 4
.LAlphaNotOpaqueOrZero11:
movdqa 16(%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm2, xmm1) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
movdqa 32(%eax, %edi), %xmm1 // Pre-load four source pixels
addl $32, %edi
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm2 // Add source and destination pixels together
subl $8, %ecx
movdqa %xmm2, -16(%edx, %edi) // Store four destination pixels
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
// Cleanup - handle pending pixels from loop
.LLoopCleanup1:
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero12
jz .LAlphaZero13
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero13:
addl $16, %edi
subl $4, %ecx
js .LSmallRemaining // Reuse code from small loop
.LRemain1:
movdqa (%eax, %edi), %xmm1 // Load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero12
jz .LAlphaZero14
movdqa %xmm1, (%edx, %edi) // Store four destination pixels
.LAlphaZero14:
addl $16, %edi
subl $4, %ecx
jmp .LSmallRemaining // Reuse code from small loop
.LAlphaNotOpaqueOrZero12:
movdqa (%edx, %edi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addl $16, %edi
subl $4, %ecx
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, -16(%edx, %edi) // Store four destination pixels
js .LSmallRemaining // Reuse code from small loop
jmp .LRemain1
.cfi_endproc
#ifndef __clang__
.size S32A_Opaque_BlitRow32_SSE4_asm, .-S32A_Opaque_BlitRow32_SSE4_asm
#endif
#endif
#endif // CRBUG_399842_FIXED

View File

@ -0,0 +1,472 @@
/*
* Copyright 2014 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifdef CRBUG_399842_FIXED
#if defined(__clang__) || (defined(__GNUC__) && !defined(SK_BUILD_FOR_MAC))
#define EXTRACT_ALPHA(var1, var2) \
movdqa %var1, %var2; /* Clone source pixels to extract alpha */\
psrlw $8, %var2; /* Discard red and blue, leaving alpha and green */\
pshufhw $0xF5, %var2, %var2; /* Repeat alpha for scaling (high) */\
movdqa %xmm6, %xmm4; \
pshuflw $0xF5, %var2, %var2; /* Repeat alpha for scaling (low) */\
movdqa %xmm5, %xmm3; \
psubw %var2, %xmm4 /* Finalize alpha calculations */
#define SCALE_PIXELS \
psllw $8, %xmm5; /* Filter out red and blue components */\
pmulhuw %xmm4, %xmm5; /* Scale red and blue */\
psrlw $8, %xmm3; /* Filter out alpha and green components */\
pmullw %xmm4, %xmm3 /* Scale alpha and green */
/*
* void S32A_Opaque_BlitRow32_SSE4(SkPMColor* SK_RESTRICT dst,
* const SkPMColor* SK_RESTRICT src,
* int count, U8CPU alpha)
*
* This function is divided into six blocks: initialization, blit 4-15 pixels,
* blit 0-3 pixels, align destination for 16+ pixel blits,
* blit 16+ pixels with source unaligned, blit 16+ pixels with source aligned.
* There are some code reuse between the blocks.
*
* The primary optimization comes from checking the source pixels' alpha value.
* If the alpha is zero, the pixel can be skipped entirely.
* If the alpha is fully opaque, the pixel can be copied directly to the destination.
* According to collected statistics, these two cases are the most common.
* The main loop(s) uses pre-loading and unrolling in an attempt to reduce the
* memory latency worse-case.
*/
#ifdef __clang__
.text
#else
.section .text.sse4.2,"ax",@progbits
.type S32A_Opaque_BlitRow32_SSE4_asm, @function
#endif
.p2align 4
#if defined(SK_BUILD_FOR_MAC)
.global _S32A_Opaque_BlitRow32_SSE4_asm
.private_extern _S32A_Opaque_BlitRow32_SSE4_asm
_S32A_Opaque_BlitRow32_SSE4_asm:
#else
.global S32A_Opaque_BlitRow32_SSE4_asm
.hidden S32A_Opaque_BlitRow32_SSE4_asm
S32A_Opaque_BlitRow32_SSE4_asm:
#endif
.cfi_startproc
prefetcht0 (%rsi)
movl %edx, %ecx // Pixel count
movq %rdi, %rdx // Destination pointer
movq %rsi, %rax // Source pointer
// Setup SSE constants
movdqa .LAlphaCheckMask(%rip), %xmm7 // 0xFF000000 mask to check alpha
movdqa .LInverseAlphaCalc(%rip), %xmm6// 16-bit 256 to calculate inv. alpha
movdqa .LResultMergeMask(%rip), %xmm0 // 0x00FF00FF mask (Must be in xmm0 because of pblendvb)
subl $4, %ecx // Check if we have only 0-3 pixels
js .LReallySmall
cmpl $11, %ecx // Do we have enough pixels to run the main loop?
ja .LBigBlit
// Handle small blits (4-15 pixels)
////////////////////////////////////////////////////////////////////////////////
xorq %rdi, %rdi // Reset offset to zero
.LSmallLoop:
lddqu (%rax, %rdi), %xmm1 // Load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LSmallAlphaNotOpaqueOrZero
jz .LSmallAlphaZero
movdqu %xmm1, (%rdx, %rdi) // Store four destination pixels
.LSmallAlphaZero:
addq $16, %rdi
subl $4, %ecx // Check if there are four additional pixels, at least
jns .LSmallLoop
jmp .LSmallRemaining
// Handle mixed alphas (calculate and scale)
.p2align 4
.LSmallAlphaNotOpaqueOrZero:
lddqu (%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addq $16, %rdi
subl $4, %ecx // Check if there are four additional pixels, at least
pblendvb %xmm5, %xmm3 // Mask in %xmm0, implicitly
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqu %xmm1, -16(%rdx, %rdi) // Store four destination pixels
jns .LSmallLoop
// Handle the last 0-3 pixels (also used by the main loops)
.LSmallRemaining:
cmpl $-4, %ecx // Check if we are done
je .LSmallExit
sall $2, %ecx // Calculate offset for last pixels
movslq %ecx, %rcx
addq %rcx, %rdi
lddqu (%rax, %rdi), %xmm1 // Load last four source pixels (overlapping)
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
jc .LSmallRemainingStoreAll// If all alphas are opaque, just store (overlapping)
jz .LSmallExit // If all alphas are zero, skip the pixels completely
// Handle mixed alphas (calculate and scale)
lddqu (%rdx, %rdi), %xmm5 // Load last four destination pixels (overlapping)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
psllw $8, %xmm3 // Filter out red and blue components
pmulhuw %xmm4, %xmm3 // Scale red and blue
movdqa %xmm5, %xmm2
psrlw $8, %xmm2 // Filter out alpha and green components
pmullw %xmm4, %xmm2 // Scale alpha and green
cmpl $-8, %ecx // Check how many pixels should be written
pblendvb %xmm3, %xmm2 // Combine results (mask in %xmm0, implicitly)
paddb %xmm2, %xmm1 // Add source and destination pixels together
jb .LSmallPixelsLeft1
ja .LSmallPixelsLeft3 // To avoid double-blending the overlapping pixels...
pblendw $0xF0, %xmm1, %xmm5 // Merge only the final two pixels to the destination
movdqu %xmm5, (%rdx, %rdi) // Store last two destination pixels
.LSmallExit:
ret
.LSmallPixelsLeft1:
pblendw $0xC0, %xmm1, %xmm5 // Merge only the final pixel to the destination
movdqu %xmm5, (%rdx, %rdi) // Store last destination pixel
ret
.LSmallPixelsLeft3:
pblendw $0xFC, %xmm1, %xmm5 // Merge only the final three pixels to the destination
movdqu %xmm5, (%rdx, %rdi) // Store last three destination pixels
ret
.LSmallRemainingStoreAll:
movdqu %xmm1, (%rdx, %rdi) // Store last destination pixels (overwrite)
ret
// Handle really small blits (0-3 pixels)
////////////////////////////////////////////////////////////////////////////////
.LReallySmall:
addl $4, %ecx
jle .LReallySmallExit
pcmpeqd %xmm1, %xmm1
cmpl $2, %ecx // Check how many pixels should be read
pinsrd $0x0, (%rax), %xmm1 // Load one source pixel
pinsrd $0x0, (%rdx), %xmm5 // Load one destination pixel
jb .LReallySmallCalc
pinsrd $0x1, 4(%rax), %xmm1 // Load second source pixel
pinsrd $0x1, 4(%rdx), %xmm5 // Load second destination pixel
je .LReallySmallCalc
pinsrd $0x2, 8(%rax), %xmm1 // Load third source pixel
pinsrd $0x2, 8(%rdx), %xmm5 // Load third destination pixel
.LReallySmallCalc:
ptest %xmm7, %xmm1 // Check if all alphas are opaque
jc .LReallySmallStore // If all alphas are opaque, just store
// Handle mixed alphas (calculate and scale)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
pand %xmm0, %xmm5 // Filter out red and blue components
pmullw %xmm4, %xmm5 // Scale red and blue
psrlw $8, %xmm3 // Filter out alpha and green components
pmullw %xmm4, %xmm3 // Scale alpha and green
psrlw $8, %xmm5 // Combine results
pblendvb %xmm5, %xmm3 // Mask in %xmm0, implicitly
paddb %xmm3, %xmm1 // Add source and destination pixels together
.LReallySmallStore:
cmpl $2, %ecx // Check how many pixels should be written
pextrd $0x0, %xmm1, (%rdx) // Store one destination pixel
jb .LReallySmallExit
pextrd $0x1, %xmm1, 4(%rdx) // Store second destination pixel
je .LReallySmallExit
pextrd $0x2, %xmm1, 8(%rdx) // Store third destination pixel
.LReallySmallExit:
ret
// Handle bigger blit operations (16+ pixels)
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LBigBlit:
// Align destination?
testl $0xF, %edx
lddqu (%rax), %xmm1 // Pre-load four source pixels
jz .LAligned
movq %rdx, %rdi // Calculate alignment of destination pointer
negq %rdi
andl $0xF, %edi
// Handle 1-3 pixels to align destination
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
jz .LAlignDone // If all alphas are zero, just skip
lddqu (%rdx), %xmm5 // Load four destination pixels
jc .LAlignStore // If all alphas are opaque, just store
// Handle mixed alphas (calculate and scale)
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
psllw $8, %xmm3 // Filter out red and blue components
pmulhuw %xmm4, %xmm3 // Scale red and blue
movdqa %xmm5, %xmm2
psrlw $8, %xmm2 // Filter out alpha and green components
pmullw %xmm4, %xmm2 // Scale alpha and green
pblendvb %xmm3, %xmm2 // Combine results (mask in %xmm0, implicitly)
paddb %xmm2, %xmm1 // Add source and destination pixels together
.LAlignStore:
cmpl $8, %edi // Check how many pixels should be written
jb .LAlignPixelsLeft1
ja .LAlignPixelsLeft3
pblendw $0x0F, %xmm1, %xmm5 // Blend two pixels
jmp .LAlignStorePixels
.LAlignPixelsLeft1:
pblendw $0x03, %xmm1, %xmm5 // Blend one pixel
jmp .LAlignStorePixels
.LAlignPixelsLeft3:
pblendw $0x3F, %xmm1, %xmm5 // Blend three pixels
.LAlignStorePixels:
movdqu %xmm5, (%rdx) // Store destination pixels
.LAlignDone:
addq %rdi, %rax // Adjust pointers and pixel count
addq %rdi, %rdx
shrq $2, %rdi
lddqu (%rax), %xmm1 // Pre-load new source pixels (after alignment)
subl %edi, %ecx
.LAligned: // Destination is guaranteed to be 16 byte aligned
xorq %rdi, %rdi // Reset offset to zero
subl $8, %ecx // Decrease counter (Reserve four pixels for the cleanup)
testl $0xF, %eax // Check alignment of source pointer
jz .LAlignedLoop
// Source not aligned to destination
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LUnalignedLoop: // Main loop for unaligned, handles eight pixels per iteration
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero00
lddqu 16(%rax, %rdi), %xmm2 // Pre-load four source pixels
jz .LAlphaZero00
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero00:
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero01
lddqu 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero01
movdqa %xmm2, 16(%rdx, %rdi) // Store four destination pixels
.LAlphaZero01:
addq $32, %rdi // Adjust offset and pixel count
subl $8, %ecx
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup0
.p2align 4
.LAlphaNotOpaqueOrZero00:
movdqa (%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
lddqu 16(%rax, %rdi), %xmm2 // Pre-load four source pixels
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
// Handle next four pixels
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero01
lddqu 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero02
movdqa %xmm2, 16(%rdx, %rdi) // Store four destination pixels
.LAlphaZero02:
addq $32, %rdi // Adjust offset and pixel count
subl $8, %ecx
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup0
.p2align 4
.LAlphaNotOpaqueOrZero01:
movdqa 16(%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm2, xmm1) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
lddqu 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
addq $32, %rdi
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm2 // Add source and destination pixels together
subl $8, %ecx
movdqa %xmm2, -16(%rdx, %rdi) // Store four destination pixels
jae .LUnalignedLoop
addl $8, %ecx // Adjust pixel count
// Cleanup - handle pending pixels from loop
.LLoopCleanup0:
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero02
jz .LAlphaZero03
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero03:
addq $16, %rdi
subl $4, %ecx
js .LSmallRemaining // Reuse code from small loop
.LRemain0:
lddqu (%rax, %rdi), %xmm1 // Load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero02
jz .LAlphaZero04
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero04:
addq $16, %rdi
subl $4, %ecx
jmp .LSmallRemaining // Reuse code from small loop
.LAlphaNotOpaqueOrZero02:
movdqa (%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addq $16, %rdi
subl $4, %ecx
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, -16(%rdx, %rdi) // Store four destination pixels
js .LSmallRemaining // Reuse code from small loop
jmp .LRemain0
// Source aligned to destination
////////////////////////////////////////////////////////////////////////////////
.p2align 4
.LAlignedLoop: // Main loop for aligned, handles eight pixels per iteration
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero10
movdqa 16(%rax, %rdi), %xmm2 // Pre-load four source pixels
jz .LAlphaZero10
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero10:
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero11
movdqa 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero11
movdqa %xmm2, 16(%rdx, %rdi) // Store four destination pixels
.LAlphaZero11:
addq $32, %rdi // Adjust offset and pixel count
subl $8, %ecx
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup1
.p2align 4
.LAlphaNotOpaqueOrZero10:
movdqa (%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
movdqa 16(%rax, %rdi), %xmm2 // Pre-load four source pixels
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
// Handle next four pixels
ptest %xmm7, %xmm2 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero11
movdqa 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
jz .LAlphaZero12
movdqa %xmm2, 16(%rdx, %rdi) // Store four destination pixels
.LAlphaZero12:
addq $32, %rdi // Adjust offset and pixel count
subl $8, %ecx
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
jmp .LLoopCleanup1
.p2align 4
.LAlphaNotOpaqueOrZero11:
movdqa 16(%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm2, xmm1) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
movdqa 32(%rax, %rdi), %xmm1 // Pre-load four source pixels
addq $32, %rdi
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm2 // Add source and destination pixels together
subl $8, %ecx
movdqa %xmm2, -16(%rdx, %rdi) // Store four destination pixels
jae .LAlignedLoop
addl $8, %ecx // Adjust pixel count
// Cleanup - handle four pending pixels from loop
.LLoopCleanup1:
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero12
jz .LAlphaZero13
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero13:
addq $16, %rdi
subl $4, %ecx
js .LSmallRemaining // Reuse code from small loop
.LRemain1:
movdqa (%rax, %rdi), %xmm1 // Pre-load four source pixels
ptest %xmm7, %xmm1 // Check if all alphas are zero or opaque
ja .LAlphaNotOpaqueOrZero12
jz .LAlphaZero14
movdqa %xmm1, (%rdx, %rdi) // Store four destination pixels
.LAlphaZero14:
addq $16, %rdi
subl $4, %ecx
jmp .LSmallRemaining // Reuse code from small loop
.LAlphaNotOpaqueOrZero12:
movdqa (%rdx, %rdi), %xmm5 // Load four destination pixels
EXTRACT_ALPHA(xmm1, xmm2) // Extract and clone alpha value
SCALE_PIXELS // Scale pixels using alpha
addq $16, %rdi
subl $4, %ecx
pblendvb %xmm5, %xmm3 // Combine results (mask in %xmm0, implicitly)
paddb %xmm3, %xmm1 // Add source and destination pixels together
movdqa %xmm1, -16(%rdx, %rdi) // Store four destination pixels
js .LSmallRemaining // Reuse code from small loop
jmp .LRemain1
.cfi_endproc
#ifndef __clang__
.size S32A_Opaque_BlitRow32_SSE4_asm, .-S32A_Opaque_BlitRow32_SSE4_asm
#endif
// Constants for SSE code
#ifndef __clang__
.section .rodata
#endif
.p2align 4
.LAlphaCheckMask:
.long 0xFF000000, 0xFF000000, 0xFF000000, 0xFF000000
.LInverseAlphaCalc:
.word 256, 256, 256, 256, 256, 256, 256, 256
.LResultMergeMask:
.long 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF
#endif
#endif // CRBUG_399842_FIXED

View File

@ -206,14 +206,7 @@ static inline __m128i SkPixel32ToPixel16_ToU16_SSE2(const __m128i& src_pixel1,
return d_pixel;
}
// Portable version is SkPMSrcOver in SkColorPriv.h.
static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
return _mm_add_epi32(src,
SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
SkGetPackedA32_SSE2(src))));
}
// Portable version is SkBlendARGB32 in SkColorPriv.h.
// Portable version SkBlendARGB32 is in SkColorPriv.h.
static inline __m128i SkBlendARGB32_SSE2(const __m128i& src, const __m128i& dst,
const __m128i& aa) {
__m128i src_scale = SkAlpha255To256_SSE2(aa);

View File

@ -227,17 +227,21 @@ static SkBlitRow::Proc32 platform_32_procs_SSE2[] = {
S32A_Blend_BlitRow32_SSE2, // S32A_Blend,
};
#if defined(SK_ATT_ASM_SUPPORTED)
static SkBlitRow::Proc32 platform_32_procs_SSE4[] = {
NULL, // S32_Opaque,
S32_Blend_BlitRow32_SSE2, // S32_Blend,
S32A_Opaque_BlitRow32_SSE4, // S32A_Opaque
S32A_Opaque_BlitRow32_SSE4_asm, // S32A_Opaque
S32A_Blend_BlitRow32_SSE2, // S32A_Blend,
};
#endif
SkBlitRow::Proc32 SkBlitRow::PlatformProcs32(unsigned flags) {
#if defined(SK_ATT_ASM_SUPPORTED)
if (supports_simd(SK_CPU_SSE_LEVEL_SSE41)) {
return platform_32_procs_SSE4[flags];
} else
#endif
if (supports_simd(SK_CPU_SSE_LEVEL_SSE2)) {
return platform_32_procs_SSE2[flags];
} else {