Refactor SkCurveMeasure to use existing eval code
- Use quad, cubic, conic eval code from SkGeometry.h - Implement evaluateDerivativeLength, evaluateDerivative and evaluate switch cases for lines along with the refactor BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2226973004 Review-Url: https://codereview.chromium.org/2226973004
This commit is contained in:
parent
cb0f4c3404
commit
4ab47e087e
@ -6,10 +6,66 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include "SkCurveMeasure.h"
|
#include "SkCurveMeasure.h"
|
||||||
|
#include "SkGeometry.h"
|
||||||
|
|
||||||
// for abs
|
// for abs
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
|
#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__))
|
||||||
|
|
||||||
|
/// Used inside SkCurveMeasure::getTime's Newton's iteration
|
||||||
|
static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType,
|
||||||
|
SkScalar t) {
|
||||||
|
SkPoint pos;
|
||||||
|
switch (segType) {
|
||||||
|
case kQuad_SegType:
|
||||||
|
pos = SkEvalQuadAt(pts, t);
|
||||||
|
break;
|
||||||
|
case kLine_SegType:
|
||||||
|
pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t),
|
||||||
|
SkScalarInterp(pts[0].y(), pts[1].y(), t));
|
||||||
|
break;
|
||||||
|
case kCubic_SegType:
|
||||||
|
SkEvalCubicAt(pts, t, &pos, nullptr, nullptr);
|
||||||
|
break;
|
||||||
|
case kConic_SegType: {
|
||||||
|
SkConic conic(pts, pts[3].x());
|
||||||
|
conic.evalAt(t, &pos);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
UNIMPLEMENTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
return pos;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Used inside SkCurveMeasure::getTime's Newton's iteration
|
||||||
|
static inline SkVector evaluateDerivative(const SkPoint pts[4],
|
||||||
|
SkSegType segType, SkScalar t) {
|
||||||
|
SkVector tan;
|
||||||
|
switch (segType) {
|
||||||
|
case kQuad_SegType:
|
||||||
|
tan = SkEvalQuadTangentAt(pts, t);
|
||||||
|
break;
|
||||||
|
case kLine_SegType:
|
||||||
|
tan = pts[1] - pts[0];
|
||||||
|
break;
|
||||||
|
case kCubic_SegType:
|
||||||
|
SkEvalCubicAt(pts, t, nullptr, &tan, nullptr);
|
||||||
|
break;
|
||||||
|
case kConic_SegType: {
|
||||||
|
SkConic conic(pts, pts[3].x());
|
||||||
|
conic.evalAt(t, nullptr, &tan);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
UNIMPLEMENTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
return tan;
|
||||||
|
}
|
||||||
|
/// Used in ArcLengthIntegrator::computeLength
|
||||||
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
|
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
|
||||||
const Sk8f (&xCoeff)[3],
|
const Sk8f (&xCoeff)[3],
|
||||||
const Sk8f (&yCoeff)[3],
|
const Sk8f (&yCoeff)[3],
|
||||||
@ -22,17 +78,18 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
|
|||||||
y = yCoeff[0]*ts + yCoeff[1];
|
y = yCoeff[0]*ts + yCoeff[1];
|
||||||
break;
|
break;
|
||||||
case kLine_SegType:
|
case kLine_SegType:
|
||||||
SkDebugf("Unimplemented");
|
// length of line derivative is constant
|
||||||
break;
|
// and we precompute it in the constructor
|
||||||
|
return xCoeff[0];
|
||||||
case kCubic_SegType:
|
case kCubic_SegType:
|
||||||
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2];
|
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2];
|
||||||
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2];
|
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2];
|
||||||
break;
|
break;
|
||||||
case kConic_SegType:
|
case kConic_SegType:
|
||||||
SkDebugf("Unimplemented");
|
UNIMPLEMENTED;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
SkDebugf("Unimplemented");
|
UNIMPLEMENTED;
|
||||||
}
|
}
|
||||||
|
|
||||||
x = x * x;
|
x = x * x;
|
||||||
@ -40,6 +97,7 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
|
|||||||
|
|
||||||
return (x + y).sqrt();
|
return (x + y).sqrt();
|
||||||
}
|
}
|
||||||
|
|
||||||
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
||||||
: fSegType(segType) {
|
: fSegType(segType) {
|
||||||
switch (fSegType) {
|
switch (fSegType) {
|
||||||
@ -59,8 +117,13 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
|||||||
yCoeff[1] = Sk8f(2.0f*(By - Ay));
|
yCoeff[1] = Sk8f(2.0f*(By - Ay));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kLine_SegType:
|
case kLine_SegType: {
|
||||||
SkDEBUGF(("Unimplemented"));
|
// the length of the derivative of a line is constant
|
||||||
|
// we put in in both coeff arrays for consistency's sake
|
||||||
|
SkScalar length = (pts[1] - pts[0]).length();
|
||||||
|
xCoeff[0] = Sk8f(length);
|
||||||
|
yCoeff[0] = Sk8f(length);
|
||||||
|
}
|
||||||
break;
|
break;
|
||||||
case kCubic_SegType:
|
case kCubic_SegType:
|
||||||
{
|
{
|
||||||
@ -73,6 +136,7 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
|||||||
float Cy = pts[2].y();
|
float Cy = pts[2].y();
|
||||||
float Dy = pts[3].y();
|
float Dy = pts[3].y();
|
||||||
|
|
||||||
|
// precompute coefficients for derivative
|
||||||
xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx));
|
xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx));
|
||||||
xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx)));
|
xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx)));
|
||||||
xCoeff[2] = Sk8f(3.0f*(-Ax + Bx));
|
xCoeff[2] = Sk8f(3.0f*(-Ax + Bx));
|
||||||
@ -83,10 +147,10 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
|
|||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case kConic_SegType:
|
case kConic_SegType:
|
||||||
SkDEBUGF(("Unimplemented"));
|
UNIMPLEMENTED;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
SkDEBUGF(("Unimplemented"));
|
UNIMPLEMENTED;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -117,7 +181,8 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType)
|
|||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case SkSegType::kLine_SegType:
|
case SkSegType::kLine_SegType:
|
||||||
SkDebugf("Unimplemented");
|
fPts[0] = pts[0];
|
||||||
|
fPts[1] = pts[1];
|
||||||
break;
|
break;
|
||||||
case SkSegType::kCubic_SegType:
|
case SkSegType::kCubic_SegType:
|
||||||
for (size_t i = 0; i < 4; i++) {
|
for (size_t i = 0; i < 4; i++) {
|
||||||
@ -125,10 +190,12 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType)
|
|||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case SkSegType::kConic_SegType:
|
case SkSegType::kConic_SegType:
|
||||||
SkDebugf("Unimplemented");
|
for (size_t i = 0; i < 4; i++) {
|
||||||
|
fPts[i] = pts[i];
|
||||||
|
}
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
SkDEBUGF(("Unimplemented"));
|
UNIMPLEMENTED;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
fIntegrator = ArcLengthIntegrator(fPts, fSegType);
|
fIntegrator = ArcLengthIntegrator(fPts, fSegType);
|
||||||
@ -199,9 +266,8 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) {
|
|||||||
|
|
||||||
prevT = currentT;
|
prevT = currentT;
|
||||||
if (iterations < kNewtonIters) {
|
if (iterations < kNewtonIters) {
|
||||||
// TODO(hstern) switch here on curve type.
|
|
||||||
// This is just newton's formula.
|
// This is just newton's formula.
|
||||||
SkScalar dt = evaluateQuadDerivative(currentT).length();
|
SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length();
|
||||||
newT = currentT - (lengthDiff / dt);
|
newT = currentT - (lengthDiff / dt);
|
||||||
|
|
||||||
// If newT is out of bounds, bisect inside newton.
|
// If newT is out of bounds, bisect inside newton.
|
||||||
@ -218,7 +284,7 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) {
|
|||||||
newT = (minT + maxT) * 0.5f;
|
newT = (minT + maxT) * 0.5f;
|
||||||
} else {
|
} else {
|
||||||
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n",
|
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n",
|
||||||
currentT, currentLength));
|
currentT, currentLength));
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
currentT = newT;
|
currentT = newT;
|
||||||
@ -235,52 +301,16 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos,
|
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos,
|
||||||
SkVector* tan, SkScalar* time) {
|
SkVector* tan, SkScalar* time) {
|
||||||
SkScalar t = getTime(targetLength);
|
SkScalar t = getTime(targetLength);
|
||||||
|
|
||||||
if (time) {
|
if (time) {
|
||||||
*time = t;
|
*time = t;
|
||||||
}
|
}
|
||||||
if (pos) {
|
if (pos) {
|
||||||
// TODO(hstern) switch here on curve type.
|
*pos = evaluate(fPts, fSegType, t);
|
||||||
*pos = evaluateQuad(t);
|
|
||||||
}
|
}
|
||||||
if (tan) {
|
if (tan) {
|
||||||
// TODO(hstern) switch here on curve type.
|
*tan = evaluateDerivative(fPts, fSegType, t);
|
||||||
*tan = evaluateQuadDerivative(t);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// this is why I feel that the ArcLengthIntegrator should be combined
|
|
||||||
// with some sort of evaluator that caches the constants computed from the
|
|
||||||
// control points. this is basically the same code in ArcLengthIntegrator
|
|
||||||
SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) {
|
|
||||||
SkScalar ti = 1.0f - t;
|
|
||||||
|
|
||||||
SkScalar Ax = fPts[0].x();
|
|
||||||
SkScalar Bx = fPts[1].x();
|
|
||||||
SkScalar Cx = fPts[2].x();
|
|
||||||
SkScalar Ay = fPts[0].y();
|
|
||||||
SkScalar By = fPts[1].y();
|
|
||||||
SkScalar Cy = fPts[2].y();
|
|
||||||
|
|
||||||
SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t;
|
|
||||||
SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t;
|
|
||||||
return SkPoint::Make(x, y);
|
|
||||||
}
|
|
||||||
|
|
||||||
SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) {
|
|
||||||
SkScalar Ax = fPts[0].x();
|
|
||||||
SkScalar Bx = fPts[1].x();
|
|
||||||
SkScalar Cx = fPts[2].x();
|
|
||||||
SkScalar Ay = fPts[0].y();
|
|
||||||
SkScalar By = fPts[1].y();
|
|
||||||
SkScalar Cy = fPts[2].y();
|
|
||||||
|
|
||||||
SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx);
|
|
||||||
SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy);
|
|
||||||
SkScalar ABx = 2.0f*(Bx - Ax);
|
|
||||||
SkScalar ABy = 2.0f*(By - Ay);
|
|
||||||
|
|
||||||
return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy);
|
|
||||||
}
|
|
||||||
|
@ -44,6 +44,15 @@ private:
|
|||||||
class SkCurveMeasure {
|
class SkCurveMeasure {
|
||||||
public:
|
public:
|
||||||
SkCurveMeasure() {}
|
SkCurveMeasure() {}
|
||||||
|
|
||||||
|
// Almost exactly the same as in SkPath::Iter:
|
||||||
|
// kLine_SegType -> 2 points: start end
|
||||||
|
// kQuad_SegType -> 3 points: start control end
|
||||||
|
// kCubic_SegType -> 4 points: start control1 control2 end
|
||||||
|
// kConic_SegType -> 4 points: start control end (w, w)
|
||||||
|
//
|
||||||
|
// i.e. the only difference is that the conic's last point is a point
|
||||||
|
// consisting of the w value twice
|
||||||
SkCurveMeasure(const SkPoint* pts, SkSegType segType);
|
SkCurveMeasure(const SkPoint* pts, SkSegType segType);
|
||||||
|
|
||||||
SkScalar getTime(SkScalar targetLength);
|
SkScalar getTime(SkScalar targetLength);
|
||||||
@ -51,13 +60,6 @@ public:
|
|||||||
SkScalar getLength();
|
SkScalar getLength();
|
||||||
|
|
||||||
private:
|
private:
|
||||||
SkPoint evaluateQuad(SkScalar t);
|
|
||||||
SkVector evaluateQuadDerivative(SkScalar t);
|
|
||||||
//SkPoint evaluate_cubic(SkScalar t);
|
|
||||||
//SkVector evaluate_cubic_derivative(SkScalar t);
|
|
||||||
//SkPoint evaluate_conic(SkScalar t);
|
|
||||||
//SkVector evaluate_conic_derivative(SkScalar t);
|
|
||||||
|
|
||||||
const SkScalar kTolerance = 0.0001f;
|
const SkScalar kTolerance = 0.0001f;
|
||||||
const int kNewtonIters = 5;
|
const int kNewtonIters = 5;
|
||||||
const int kBisectIters = 5;
|
const int kBisectIters = 5;
|
||||||
|
Loading…
Reference in New Issue
Block a user