Add ShaderBuilders to EmitArgs and remove gettings from ProgBuilder.

BUG=skia:

Review URL: https://codereview.chromium.org/1457543003
This commit is contained in:
egdaniel 2015-11-18 08:01:26 -08:00 committed by Commit bot
parent accaf480c3
commit 4ca2e60343
59 changed files with 1498 additions and 1279 deletions

View File

@ -757,7 +757,7 @@ GrGLPerlinNoise2::GrGLPerlinNoise2(const GrProcessor& processor)
}
void GrGLPerlinNoise2::emitCode(EmitArgs& args) {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fsBuilder = args.fFragBuilder;
SkString vCoords = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fBaseFrequencyUni = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
@ -1170,7 +1170,7 @@ GrGLImprovedPerlinNoise::GrGLImprovedPerlinNoise(const GrProcessor& processor)
}
void GrGLImprovedPerlinNoise::emitCode(EmitArgs& args) {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fsBuilder = args.fFragBuilder;
SkString vCoords = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fBaseFrequencyUni = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,

View File

@ -67,16 +67,17 @@ public:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class DCGLFP : public GrGLSLFragmentProcessor {
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder();
fpb->codeAppendf("vec2 c = %s;", fpb->ensureFSCoords2D(args.fCoords, 0).c_str());
fpb->codeAppend("vec2 r = mod(c, vec2(20.0));");
fpb->codeAppend("vec4 color = vec4(0.5*sin(c.x / 15.0) + 0.5,"
"0.5*cos((c.x + c.y) / 15.0) + 0.5,"
"(r.x + r.y) / 20.0,"
"distance(r, vec2(15.0)) / 20.0 + 0.2);");
fpb->codeAppendf("color.rgb *= color.a;"
"%s = color * %s;",
args.fOutputColor, GrGLSLExpr4(args.fInputColor).c_str());
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("vec2 c = %s;",
fragBuilder->ensureFSCoords2D(args.fCoords, 0).c_str());
fragBuilder->codeAppend("vec2 r = mod(c, vec2(20.0));");
fragBuilder->codeAppend("vec4 color = vec4(0.5*sin(c.x / 15.0) + 0.5,"
"0.5*cos((c.x + c.y) / 15.0) + 0.5,"
"(r.x + r.y) / 20.0,"
"distance(r, vec2(15.0)) / 20.0 + 0.2);");
fragBuilder->codeAppendf("color.rgb *= color.a;"
"%s = color * %s;",
args.fOutputColor, GrGLSLExpr4(args.fInputColor).c_str());
}
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override {}
};

View File

@ -179,7 +179,7 @@ public:
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// add uniforms
const char* lightDirUniName = nullptr;
@ -202,33 +202,35 @@ public:
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Xform", &xformUniName);
fpb->codeAppend("vec4 diffuseColor = ");
fpb->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0],
fragBuilder->codeAppend("vec4 diffuseColor = ");
fragBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0],
args.fCoords[0].c_str(),
args.fCoords[0].getType());
fpb->codeAppend(";");
fragBuilder->codeAppend(";");
fpb->codeAppend("vec4 normalColor = ");
fpb->appendTextureLookup(args.fSamplers[1],
fragBuilder->codeAppend("vec4 normalColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[1],
args.fCoords[1].c_str(),
args.fCoords[1].getType());
fpb->codeAppend(";");
fragBuilder->codeAppend(";");
fpb->codeAppend("vec3 normal = normalColor.rgb - vec3(0.5);");
fragBuilder->codeAppend("vec3 normal = normalColor.rgb - vec3(0.5);");
fpb->codeAppendf("mat3 m = mat3(%s.x, -%s.y, 0.0, %s.y, %s.x, 0.0, 0.0, 0.0, 1.0);",
xformUniName, xformUniName, xformUniName, xformUniName);
fragBuilder->codeAppendf(
"mat3 m = mat3(%s.x, -%s.y, 0.0, %s.y, %s.x, 0.0, 0.0, 0.0, 1.0);",
xformUniName, xformUniName, xformUniName, xformUniName);
// TODO: inverse map the light direction vectors in the vertex shader rather than
// transforming all the normals here!
fpb->codeAppend("normal = normalize(m*normal);");
fragBuilder->codeAppend("normal = normalize(m*normal);");
fpb->codeAppendf("float NdotL = clamp(dot(normal, %s), 0.0, 1.0);", lightDirUniName);
fragBuilder->codeAppendf("float NdotL = clamp(dot(normal, %s), 0.0, 1.0);",
lightDirUniName);
// diffuse light
fpb->codeAppendf("vec3 result = %s*diffuseColor.rgb*NdotL;", lightColorUniName);
fragBuilder->codeAppendf("vec3 result = %s*diffuseColor.rgb*NdotL;", lightColorUniName);
// ambient light
fpb->codeAppendf("result += %s;", ambientColorUniName);
fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
fragBuilder->codeAppendf("result += %s;", ambientColorUniName);
fragBuilder->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,

View File

@ -46,23 +46,23 @@ void GrGLCircleBlurFragmentProcessor::emitCode(EmitArgs& args) {
"data",
&dataName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char *fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char *fragmentPos = fragBuilder->fragmentPosition();
if (args.fInputColor) {
fsBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fsBuilder->codeAppendf("vec4 src=vec4(1);");
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
fsBuilder->codeAppendf("vec2 vec = %s.xy - %s.xy;", fragmentPos, dataName);
fsBuilder->codeAppendf("float dist = (length(vec) - %s.z + 0.5) / %s.w;", dataName, dataName);
fragBuilder->codeAppendf("vec2 vec = %s.xy - %s.xy;", fragmentPos, dataName);
fragBuilder->codeAppendf("float dist = (length(vec) - %s.z + 0.5) / %s.w;", dataName, dataName);
fsBuilder->codeAppendf("float intensity = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "vec2(dist, 0.5)");
fsBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("float intensity = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "vec2(dist, 0.5)");
fragBuilder->codeAppend(".a;");
fsBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
}
void GrGLCircleBlurFragmentProcessor::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -146,40 +146,40 @@ void GrGLAlphaThresholdEffect::emitCode(EmitArgs& args) {
kFloat_GrSLType, kDefault_GrSLPrecision,
"outer_threshold");
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
SkString maskCoords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 1);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
SkString maskCoords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1);
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fsBuilder->codeAppendf("\t\tvec2 mask_coord = %s;\n", maskCoords2D.c_str());
fsBuilder->codeAppend("\t\tvec4 input_color = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\t\tvec4 mask_color = ");
fsBuilder->appendTextureLookup(args.fSamplers[1], "mask_coord");
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppendf("\t\tvec2 mask_coord = %s;\n", maskCoords2D.c_str());
fragBuilder->codeAppend("\t\tvec4 input_color = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppend("\t\tvec4 mask_color = ");
fragBuilder->appendTextureLookup(args.fSamplers[1], "mask_coord");
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\tfloat inner_thresh = %s;\n",
args.fBuilder->getUniformCStr(fInnerThresholdVar));
fsBuilder->codeAppendf("\t\tfloat outer_thresh = %s;\n",
args.fBuilder->getUniformCStr(fOuterThresholdVar));
fsBuilder->codeAppend("\t\tfloat mask = mask_color.a;\n");
fragBuilder->codeAppendf("\t\tfloat inner_thresh = %s;\n",
args.fBuilder->getUniformCStr(fInnerThresholdVar));
fragBuilder->codeAppendf("\t\tfloat outer_thresh = %s;\n",
args.fBuilder->getUniformCStr(fOuterThresholdVar));
fragBuilder->codeAppend("\t\tfloat mask = mask_color.a;\n");
fsBuilder->codeAppend("vec4 color = input_color;\n");
fsBuilder->codeAppend("\t\tif (mask < 0.5) {\n"
"\t\t\tif (color.a > outer_thresh) {\n"
"\t\t\t\tfloat scale = outer_thresh / color.a;\n"
"\t\t\t\tcolor.rgb *= scale;\n"
"\t\t\t\tcolor.a = outer_thresh;\n"
"\t\t\t}\n"
"\t\t} else if (color.a < inner_thresh) {\n"
"\t\t\tfloat scale = inner_thresh / max(0.001, color.a);\n"
"\t\t\tcolor.rgb *= scale;\n"
"\t\t\tcolor.a = inner_thresh;\n"
"\t\t}\n");
fragBuilder->codeAppend("vec4 color = input_color;\n");
fragBuilder->codeAppend("\t\tif (mask < 0.5) {\n"
"\t\t\tif (color.a > outer_thresh) {\n"
"\t\t\t\tfloat scale = outer_thresh / color.a;\n"
"\t\t\t\tcolor.rgb *= scale;\n"
"\t\t\t\tcolor.a = outer_thresh;\n"
"\t\t\t}\n"
"\t\t} else if (color.a < inner_thresh) {\n"
"\t\t\tfloat scale = inner_thresh / max(0.001, color.a);\n"
"\t\t\tcolor.rgb *= scale;\n"
"\t\t\tcolor.a = inner_thresh;\n"
"\t\t}\n");
fsBuilder->codeAppendf("%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr4("color")).c_str());
fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr4("color")).c_str());
}
void GrGLAlphaThresholdEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -21,7 +21,7 @@
static const bool gUseUnpremul = false;
static void add_arithmetic_code(GrGLSLFragmentBuilder* fsBuilder,
static void add_arithmetic_code(GrGLSLFragmentBuilder* fragBuilder,
const char* srcColor,
const char* dstColor,
const char* outputColor,
@ -29,27 +29,27 @@ static void add_arithmetic_code(GrGLSLFragmentBuilder* fsBuilder,
bool enforcePMColor) {
// We don't try to optimize for this case at all
if (nullptr == srcColor) {
fsBuilder->codeAppend("const vec4 src = vec4(1);");
fragBuilder->codeAppend("const vec4 src = vec4(1);");
} else {
fsBuilder->codeAppendf("vec4 src = %s;", srcColor);
fragBuilder->codeAppendf("vec4 src = %s;", srcColor);
if (gUseUnpremul) {
fsBuilder->codeAppend("src.rgb = clamp(src.rgb / src.a, 0.0, 1.0);");
fragBuilder->codeAppend("src.rgb = clamp(src.rgb / src.a, 0.0, 1.0);");
}
}
fsBuilder->codeAppendf("vec4 dst = %s;", dstColor);
fragBuilder->codeAppendf("vec4 dst = %s;", dstColor);
if (gUseUnpremul) {
fsBuilder->codeAppend("dst.rgb = clamp(dst.rgb / dst.a, 0.0, 1.0);");
fragBuilder->codeAppend("dst.rgb = clamp(dst.rgb / dst.a, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = %s.x * src * dst + %s.y * src + %s.z * dst + %s.w;",
outputColor, kUni, kUni, kUni, kUni);
fsBuilder->codeAppendf("%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
fragBuilder->codeAppendf("%s = %s.x * src * dst + %s.y * src + %s.z * dst + %s.w;",
outputColor, kUni, kUni, kUni, kUni);
fragBuilder->codeAppendf("%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
if (gUseUnpremul) {
fsBuilder->codeAppendf("%s.rgb *= %s.a;", outputColor, outputColor);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", outputColor, outputColor);
} else if (enforcePMColor) {
fsBuilder->codeAppendf("%s.rgb = min(%s.rgb, %s.a);",
outputColor, outputColor, outputColor);
fragBuilder->codeAppendf("%s.rgb = min(%s.rgb, %s.a);",
outputColor, outputColor, outputColor);
}
}
@ -61,7 +61,7 @@ public:
~GLArithmeticFP() override {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString dstColor("dstColor");
this->emitChild(0, nullptr, &dstColor, args);
@ -70,7 +70,11 @@ public:
"k");
const char* kUni = args.fBuilder->getUniformCStr(fKUni);
add_arithmetic_code(fsBuilder, args.fInputColor, dstColor.c_str(), args.fOutputColor, kUni,
add_arithmetic_code(fragBuilder,
args.fInputColor,
dstColor.c_str(),
args.fOutputColor,
kUni,
fEnforcePMColor);
}
@ -207,16 +211,18 @@ public:
}
private:
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb, const char* srcColor, const char* dstColor,
const char* outColor, const GrXferProcessor& proc) override {
GrGLSLXPFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb,
GrGLSLXPFragmentBuilder* fragBuilder,
const char* srcColor,
const char* dstColor,
const char* outColor,
const GrXferProcessor& proc) override {
fKUni = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"k");
const char* kUni = pb->getUniformCStr(fKUni);
add_arithmetic_code(fsBuilder, srcColor, dstColor, outColor, kUni, fEnforcePMColor);
add_arithmetic_code(fragBuilder, srcColor, dstColor, outColor, kUni, fEnforcePMColor);
}
void onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -697,20 +697,20 @@ private:
typedef GrGLSLFragmentProcessor INHERITED;
};
void OutputRectBlurProfileLookup(GrGLSLFragmentBuilder* fsBuilder,
void OutputRectBlurProfileLookup(GrGLSLFragmentBuilder* fragBuilder,
const GrGLSLTextureSampler& sampler,
const char *output,
const char *profileSize, const char *loc,
const char *blurred_width,
const char *sharp_width) {
fsBuilder->codeAppendf("float %s;", output);
fsBuilder->codeAppendf("{");
fsBuilder->codeAppendf("float coord = ((abs(%s - 0.5 * %s) - 0.5 * %s)) / %s;",
fragBuilder->codeAppendf("float %s;", output);
fragBuilder->codeAppendf("{");
fragBuilder->codeAppendf("float coord = ((abs(%s - 0.5 * %s) - 0.5 * %s)) / %s;",
loc, blurred_width, sharp_width, profileSize);
fsBuilder->codeAppendf("%s = ", output);
fsBuilder->appendTextureLookup(sampler, "vec2(coord,0.5)");
fsBuilder->codeAppend(".a;");
fsBuilder->codeAppendf("}");
fragBuilder->codeAppendf("%s = ", output);
fragBuilder->appendTextureLookup(sampler, "vec2(coord,0.5)");
fragBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("}");
}
@ -737,33 +737,33 @@ void GrGLRectBlurEffect::emitCode(EmitArgs& args) {
"profileSize",
&profileSizeName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char *fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char *fragmentPos = fragBuilder->fragmentPosition();
if (args.fInputColor) {
fsBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fsBuilder->codeAppendf("vec4 src=vec4(1);");
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
fsBuilder->codeAppendf("%s vec2 translatedPos = %s.xy - %s.xy;", precisionString, fragmentPos,
rectName);
fsBuilder->codeAppendf("%s float width = %s.z - %s.x;", precisionString, rectName, rectName);
fsBuilder->codeAppendf("%s float height = %s.w - %s.y;", precisionString, rectName, rectName);
fragBuilder->codeAppendf("%s vec2 translatedPos = %s.xy - %s.xy;", precisionString, fragmentPos,
rectName);
fragBuilder->codeAppendf("%s float width = %s.z - %s.x;", precisionString, rectName, rectName);
fragBuilder->codeAppendf("%s float height = %s.w - %s.y;", precisionString, rectName, rectName);
fsBuilder->codeAppendf("%s vec2 smallDims = vec2(width - %s, height - %s);", precisionString,
profileSizeName, profileSizeName);
fsBuilder->codeAppendf("%s float center = 2.0 * floor(%s/2.0 + .25) - 1.0;", precisionString,
profileSizeName);
fsBuilder->codeAppendf("%s vec2 wh = smallDims - vec2(center,center);", precisionString);
fragBuilder->codeAppendf("%s vec2 smallDims = vec2(width - %s, height - %s);", precisionString,
profileSizeName, profileSizeName);
fragBuilder->codeAppendf("%s float center = 2.0 * floor(%s/2.0 + .25) - 1.0;", precisionString,
profileSizeName);
fragBuilder->codeAppendf("%s vec2 wh = smallDims - vec2(center,center);", precisionString);
OutputRectBlurProfileLookup(fsBuilder, args.fSamplers[0], "horiz_lookup", profileSizeName,
OutputRectBlurProfileLookup(fragBuilder, args.fSamplers[0], "horiz_lookup", profileSizeName,
"translatedPos.x", "width", "wh.x");
OutputRectBlurProfileLookup(fsBuilder, args.fSamplers[0], "vert_lookup", profileSizeName,
OutputRectBlurProfileLookup(fragBuilder, args.fSamplers[0], "vert_lookup", profileSizeName,
"translatedPos.y", "height", "wh.y");
fsBuilder->codeAppendf("float final = horiz_lookup * vert_lookup;");
fsBuilder->codeAppendf("%s = src * final;", args.fOutputColor);
fragBuilder->codeAppendf("float final = horiz_lookup * vert_lookup;");
fragBuilder->codeAppendf("%s = src * final;", args.fOutputColor);
}
void GrGLRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -1083,34 +1083,36 @@ void GrGLRRectBlurEffect::emitCode(EmitArgs& args) {
"blurRadius",
&blurRadiusName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// warp the fragment position to the appropriate part of the 9patch blur texture
fsBuilder->codeAppendf("vec2 rectCenter = (%s.xy + %s.zw)/2.0;", rectName, rectName);
fsBuilder->codeAppendf("vec2 translatedFragPos = %s.xy - %s.xy;", fragmentPos, rectName);
fsBuilder->codeAppendf("float threshold = %s + 2.0*%s;", cornerRadiusName, blurRadiusName);
fsBuilder->codeAppendf("vec2 middle = %s.zw - %s.xy - 2.0*threshold;", rectName, rectName);
fragBuilder->codeAppendf("vec2 rectCenter = (%s.xy + %s.zw)/2.0;", rectName, rectName);
fragBuilder->codeAppendf("vec2 translatedFragPos = %s.xy - %s.xy;", fragmentPos, rectName);
fragBuilder->codeAppendf("float threshold = %s + 2.0*%s;", cornerRadiusName, blurRadiusName);
fragBuilder->codeAppendf("vec2 middle = %s.zw - %s.xy - 2.0*threshold;", rectName, rectName);
fsBuilder->codeAppendf("if (translatedFragPos.x >= threshold && translatedFragPos.x < (middle.x+threshold)) {");
fsBuilder->codeAppendf("translatedFragPos.x = threshold;\n");
fsBuilder->codeAppendf("} else if (translatedFragPos.x >= (middle.x + threshold)) {");
fsBuilder->codeAppendf("translatedFragPos.x -= middle.x - 1.0;");
fsBuilder->codeAppendf("}");
fragBuilder->codeAppendf(
"if (translatedFragPos.x >= threshold && translatedFragPos.x < (middle.x+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x = threshold;\n");
fragBuilder->codeAppendf("} else if (translatedFragPos.x >= (middle.x + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x -= middle.x - 1.0;");
fragBuilder->codeAppendf("}");
fsBuilder->codeAppendf("if (translatedFragPos.y > threshold && translatedFragPos.y < (middle.y+threshold)) {");
fsBuilder->codeAppendf("translatedFragPos.y = threshold;");
fsBuilder->codeAppendf("} else if (translatedFragPos.y >= (middle.y + threshold)) {");
fsBuilder->codeAppendf("translatedFragPos.y -= middle.y - 1.0;");
fsBuilder->codeAppendf("}");
fragBuilder->codeAppendf(
"if (translatedFragPos.y > threshold && translatedFragPos.y < (middle.y+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y = threshold;");
fragBuilder->codeAppendf("} else if (translatedFragPos.y >= (middle.y + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y -= middle.y - 1.0;");
fragBuilder->codeAppendf("}");
fsBuilder->codeAppendf("vec2 proxyDims = vec2(2.0*threshold+1.0);");
fsBuilder->codeAppendf("vec2 texCoord = translatedFragPos / proxyDims;");
fragBuilder->codeAppendf("vec2 proxyDims = vec2(2.0*threshold+1.0);");
fragBuilder->codeAppendf("vec2 texCoord = translatedFragPos / proxyDims;");
fsBuilder->codeAppendf("%s = ", args.fOutputColor);
fsBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0], "texCoord");
fsBuilder->codeAppend(";");
fragBuilder->codeAppendf("%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0], "texCoord");
fragBuilder->codeAppend(";");
}
void GrGLRRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -264,34 +264,34 @@ void GrColorCubeEffect::GLSLProcessor::emitCode(EmitArgs& args) {
// Note: if implemented using texture3D in OpenGL ES older than OpenGL ES 3.0,
// the shader might need "#extension GL_OES_texture_3D : enable".
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Unpremultiply color
fsBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, args.fInputColor);
fsBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n",
unPMColor, args.fInputColor, nonZeroAlpha, nonZeroAlpha);
fragBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, args.fInputColor);
fragBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n",
unPMColor, args.fInputColor, nonZeroAlpha, nonZeroAlpha);
// Fit input color into the cube.
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"vec3 %s = vec3(%s.rg * vec2((%s - 1.0) * %s) + vec2(0.5 * %s), %s.b * (%s - 1.0));\n",
cubeIdx, unPMColor, colorCubeSizeUni, colorCubeInvSizeUni, colorCubeInvSizeUni,
unPMColor, colorCubeSizeUni);
// Compute y coord for for texture fetches.
fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n",
cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n",
cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n",
cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n",
cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
// Apply the cube.
fsBuilder->codeAppendf("%s = vec4(mix(", args.fOutputColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], cCoords1);
fsBuilder->codeAppend(".rgb, ");
fsBuilder->appendTextureLookup(args.fSamplers[0], cCoords2);
fragBuilder->codeAppendf("%s = vec4(mix(", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords1);
fragBuilder->codeAppend(".rgb, ");
fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords2);
// Premultiply color by alpha. Note that the input alpha is not modified by this shader.
fsBuilder->codeAppendf(".rgb, fract(%s.b)) * vec3(%s), %s.a);\n",
cubeIdx, nonZeroAlpha, args.fInputColor);
fragBuilder->codeAppendf(".rgb, fract(%s.b)) * vec3(%s), %s.a);\n",
cubeIdx, nonZeroAlpha, args.fInputColor);
}
void GrColorCubeEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -419,19 +419,19 @@ public:
// could optimize this case, but we aren't for now.
args.fInputColor = "vec4(1)";
}
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// The max() is to guard against 0 / 0 during unpremul when the incoming color is
// transparent black.
fsBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n",
args.fInputColor);
fsBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
args.fOutputColor,
args.fBuilder->getUniformCStr(fMatrixHandle),
args.fInputColor,
args.fBuilder->getUniformCStr(fVectorHandle));
fsBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n",
args.fOutputColor, args.fOutputColor);
fsBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n",
args.fInputColor);
fragBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
args.fOutputColor,
args.fBuilder->getUniformCStr(fMatrixHandle),
args.fInputColor,
args.fBuilder->getUniformCStr(fVectorHandle));
fragBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n",
args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
}
protected:

View File

@ -557,31 +557,32 @@ void GrGLDisplacementMapEffect::emitCode(EmitArgs& args) {
// a number smaller than that to approximate 0, but
// leave room for 32-bit float GPU rounding errors.
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t\tvec4 %s = ", dColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("\t\tvec4 %s = ", dColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppend(";\n");
// Unpremultiply the displacement
fsBuilder->codeAppendf("\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);",
dColor, dColor, nearZero, dColor, dColor);
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 1);
fsBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.",
cCoords, coords2D.c_str(), scaleUni, dColor);
fragBuilder->codeAppendf(
"\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);",
dColor, dColor, nearZero, dColor, dColor);
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1);
fragBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.",
cCoords, coords2D.c_str(), scaleUni, dColor);
switch (fXChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
fragBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
fragBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
fragBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
fragBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
@ -590,26 +591,26 @@ void GrGLDisplacementMapEffect::emitCode(EmitArgs& args) {
switch (fYChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
fragBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
fragBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
fragBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
fragBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
fsBuilder->codeAppend("-vec2(0.5));\t\t");
fragBuilder->codeAppend("-vec2(0.5));\t\t");
fGLDomain.sampleTexture(fsBuilder, domain, args.fOutputColor, SkString(cCoords),
fGLDomain.sampleTexture(fragBuilder, domain, args.fOutputColor, SkString(cCoords),
args.fSamplers[1]);
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppend(";\n");
}
void GrGLDisplacementMapEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -608,8 +608,10 @@ public:
* the FS. The default of emitLightColor appends the name of the constant light color uniform
* and so this function only needs to be overridden if the light color varies spatially.
*/
virtual void emitSurfaceToLight(GrGLSLFPBuilder*, const char* z) = 0;
virtual void emitLightColor(GrGLSLFPBuilder*, const char *surfaceToLight);
virtual void emitSurfaceToLight(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, const char* z) = 0;
virtual void emitLightColor(GrGLSLFPBuilder*,
GrGLSLFragmentBuilder*,
const char *surfaceToLight);
// This is called from GrGLLightingEffect's setData(). Subclasses of GrGLLight must call
// INHERITED::setData().
@ -634,7 +636,7 @@ class GrGLDistantLight : public GrGLLight {
public:
virtual ~GrGLDistantLight() {}
void setData(const GrGLSLProgramDataManager&, const SkImageFilterLight* light) const override;
void emitSurfaceToLight(GrGLSLFPBuilder*, const char* z) override;
void emitSurfaceToLight(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, const char* z) override;
private:
typedef GrGLLight INHERITED;
@ -647,7 +649,7 @@ class GrGLPointLight : public GrGLLight {
public:
virtual ~GrGLPointLight() {}
void setData(const GrGLSLProgramDataManager&, const SkImageFilterLight* light) const override;
void emitSurfaceToLight(GrGLSLFPBuilder*, const char* z) override;
void emitSurfaceToLight(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, const char* z) override;
private:
typedef GrGLLight INHERITED;
@ -660,8 +662,10 @@ class GrGLSpotLight : public GrGLLight {
public:
virtual ~GrGLSpotLight() {}
void setData(const GrGLSLProgramDataManager&, const SkImageFilterLight* light) const override;
void emitSurfaceToLight(GrGLSLFPBuilder*, const char* z) override;
void emitLightColor(GrGLSLFPBuilder*, const char *surfaceToLight) override;
void emitSurfaceToLight(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, const char* z) override;
void emitLightColor(GrGLSLFPBuilder*,
GrGLSLFragmentBuilder*,
const char *surfaceToLight) override;
private:
typedef GrGLLight INHERITED;
@ -1523,7 +1527,7 @@ protected:
*/
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
virtual void emitLightFunc(GrGLSLFPBuilder*, SkString* funcName) = 0;
virtual void emitLightFunc(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, SkString* funcName) = 0;
private:
typedef GrGLSLFragmentProcessor INHERITED;
@ -1539,7 +1543,7 @@ private:
class GrGLDiffuseLightingEffect : public GrGLLightingEffect {
public:
GrGLDiffuseLightingEffect(const GrProcessor&);
void emitLightFunc(GrGLSLFPBuilder*, SkString* funcName) override;
void emitLightFunc(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, SkString* funcName) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
@ -1555,7 +1559,7 @@ private:
class GrGLSpecularLightingEffect : public GrGLLightingEffect {
public:
GrGLSpecularLightingEffect(const GrProcessor&);
void emitLightFunc(GrGLSLFPBuilder*, SkString* funcName) override;
void emitLightFunc(GrGLSLFPBuilder*, GrGLSLFragmentBuilder*, SkString* funcName) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
@ -1659,8 +1663,9 @@ void GrGLLightingEffect::emitCode(EmitArgs& args) {
kFloat_GrSLType, kDefault_GrSLPrecision,
"SurfaceScale");
fLight->emitLightColorUniform(args.fBuilder);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString lightFunc;
this->emitLightFunc(args.fBuilder, &lightFunc);
this->emitLightFunc(args.fBuilder, fragBuilder, &lightFunc);
static const GrGLSLShaderVar gSobelArgs[] = {
GrGLSLShaderVar("a", kFloat_GrSLType),
GrGLSLShaderVar("b", kFloat_GrSLType),
@ -1671,27 +1676,26 @@ void GrGLLightingEffect::emitCode(EmitArgs& args) {
GrGLSLShaderVar("scale", kFloat_GrSLType),
};
SkString sobelFuncName;
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fsBuilder->emitFunction(kFloat_GrSLType,
"sobel",
SK_ARRAY_COUNT(gSobelArgs),
gSobelArgs,
"\treturn (-a + b - 2.0 * c + 2.0 * d -e + f) * scale;\n",
&sobelFuncName);
fragBuilder->emitFunction(kFloat_GrSLType,
"sobel",
SK_ARRAY_COUNT(gSobelArgs),
gSobelArgs,
"\treturn (-a + b - 2.0 * c + 2.0 * d -e + f) * scale;\n",
&sobelFuncName);
static const GrGLSLShaderVar gPointToNormalArgs[] = {
GrGLSLShaderVar("x", kFloat_GrSLType),
GrGLSLShaderVar("y", kFloat_GrSLType),
GrGLSLShaderVar("scale", kFloat_GrSLType),
};
SkString pointToNormalName;
fsBuilder->emitFunction(kVec3f_GrSLType,
"pointToNormal",
SK_ARRAY_COUNT(gPointToNormalArgs),
gPointToNormalArgs,
"\treturn normalize(vec3(-x * scale, -y * scale, 1));\n",
&pointToNormalName);
fragBuilder->emitFunction(kVec3f_GrSLType,
"pointToNormal",
SK_ARRAY_COUNT(gPointToNormalArgs),
gPointToNormalArgs,
"\treturn normalize(vec3(-x * scale, -y * scale, 1));\n",
&pointToNormalName);
static const GrGLSLShaderVar gInteriorNormalArgs[] = {
GrGLSLShaderVar("m", kFloat_GrSLType, 9),
@ -1701,15 +1705,15 @@ void GrGLLightingEffect::emitCode(EmitArgs& args) {
pointToNormalName.c_str(),
sobelFuncName.c_str());
SkString normalName;
fsBuilder->emitFunction(kVec3f_GrSLType,
"normal",
SK_ARRAY_COUNT(gInteriorNormalArgs),
gInteriorNormalArgs,
normalBody.c_str(),
&normalName);
fragBuilder->emitFunction(kVec3f_GrSLType,
"normal",
SK_ARRAY_COUNT(gInteriorNormalArgs),
gInteriorNormalArgs,
normalBody.c_str(),
&normalName);
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fsBuilder->codeAppend("\t\tfloat m[9];\n");
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppend("\t\tfloat m[9];\n");
const char* imgInc = args.fBuilder->getUniformCStr(fImageIncrementUni);
const char* surfScale = args.fBuilder->getUniformCStr(fSurfaceScaleUni);
@ -1719,23 +1723,23 @@ void GrGLLightingEffect::emitCode(EmitArgs& args) {
for (int dx = -1; dx <= 1; dx++) {
SkString texCoords;
texCoords.appendf("coord + vec2(%d, %d) * %s", dx, dy, imgInc);
fsBuilder->codeAppendf("\t\tm[%d] = ", index++);
fsBuilder->appendTextureLookup(args.fSamplers[0], texCoords.c_str());
fsBuilder->codeAppend(".a;\n");
fragBuilder->codeAppendf("\t\tm[%d] = ", index++);
fragBuilder->appendTextureLookup(args.fSamplers[0], texCoords.c_str());
fragBuilder->codeAppend(".a;\n");
}
}
fsBuilder->codeAppend("\t\tvec3 surfaceToLight = ");
fragBuilder->codeAppend("\t\tvec3 surfaceToLight = ");
SkString arg;
arg.appendf("%s * m[4]", surfScale);
fLight->emitSurfaceToLight(args.fBuilder, arg.c_str());
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s = %s(%s(m, %s), surfaceToLight, ",
args.fOutputColor, lightFunc.c_str(), normalName.c_str(), surfScale);
fLight->emitLightColor(args.fBuilder, "surfaceToLight");
fsBuilder->codeAppend(");\n");
fLight->emitSurfaceToLight(args.fBuilder, fragBuilder, arg.c_str());
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppendf("\t\t%s = %s(%s(m, %s), surfaceToLight, ",
args.fOutputColor, lightFunc.c_str(), normalName.c_str(), surfScale);
fLight->emitLightColor(args.fBuilder, fragBuilder, "surfaceToLight");
fragBuilder->codeAppend(");\n");
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLLightingEffect::GenKey(const GrProcessor& proc,
@ -1764,7 +1768,9 @@ GrGLDiffuseLightingEffect::GrGLDiffuseLightingEffect(const GrProcessor& proc)
: INHERITED(proc) {
}
void GrGLDiffuseLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder, SkString* funcName) {
void GrGLDiffuseLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
SkString* funcName) {
const char* kd;
fKDUni = builder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
@ -1778,12 +1784,12 @@ void GrGLDiffuseLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder, SkString
SkString lightBody;
lightBody.appendf("\tfloat colorScale = %s * dot(normal, surfaceToLight);\n", kd);
lightBody.appendf("\treturn vec4(lightColor * clamp(colorScale, 0.0, 1.0), 1.0);\n");
builder->getFragmentShaderBuilder()->emitFunction(kVec4f_GrSLType,
"light",
SK_ARRAY_COUNT(gLightArgs),
gLightArgs,
lightBody.c_str(),
funcName);
fragBuilder->emitFunction(kVec4f_GrSLType,
"light",
SK_ARRAY_COUNT(gLightArgs),
gLightArgs,
lightBody.c_str(),
funcName);
}
void GrGLDiffuseLightingEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -1846,7 +1852,9 @@ GrGLSpecularLightingEffect::GrGLSpecularLightingEffect(const GrProcessor& proc)
: INHERITED(proc) {
}
void GrGLSpecularLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder, SkString* funcName) {
void GrGLSpecularLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
SkString* funcName) {
const char* ks;
const char* shininess;
@ -1868,12 +1876,12 @@ void GrGLSpecularLightingEffect::emitLightFunc(GrGLSLFPBuilder* builder, SkStrin
lightBody.appendf("\tfloat colorScale = %s * pow(dot(normal, halfDir), %s);\n", ks, shininess);
lightBody.appendf("\tvec3 color = lightColor * clamp(colorScale, 0.0, 1.0);\n");
lightBody.appendf("\treturn vec4(color, max(max(color.r, color.g), color.b));\n");
builder->getFragmentShaderBuilder()->emitFunction(kVec4f_GrSLType,
"light",
SK_ARRAY_COUNT(gLightArgs),
gLightArgs,
lightBody.c_str(),
funcName);
fragBuilder->emitFunction(kVec4f_GrSLType,
"light",
SK_ARRAY_COUNT(gLightArgs),
gLightArgs,
lightBody.c_str(),
funcName);
}
void GrGLSpecularLightingEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -1891,8 +1899,10 @@ void GrGLLight::emitLightColorUniform(GrGLSLFPBuilder* builder) {
"LightColor");
}
void GrGLLight::emitLightColor(GrGLSLFPBuilder* builder, const char *surfaceToLight) {
builder->getFragmentShaderBuilder()->codeAppend(builder->getUniformCStr(this->lightColorUni()));
void GrGLLight::emitLightColor(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const char *surfaceToLight) {
fragBuilder->codeAppend(builder->getUniformCStr(this->lightColorUni()));
}
void GrGLLight::setData(const GrGLSLProgramDataManager& pdman,
@ -1911,12 +1921,14 @@ void GrGLDistantLight::setData(const GrGLSLProgramDataManager& pdman,
setUniformNormal3(pdman, fDirectionUni, distantLight->direction());
}
void GrGLDistantLight::emitSurfaceToLight(GrGLSLFPBuilder* builder, const char* z) {
void GrGLDistantLight::emitSurfaceToLight(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const char* z) {
const char* dir;
fDirectionUni = builder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightDirection", &dir);
builder->getFragmentShaderBuilder()->codeAppend(dir);
fragBuilder->codeAppend(dir);
}
///////////////////////////////////////////////////////////////////////////////
@ -1929,14 +1941,15 @@ void GrGLPointLight::setData(const GrGLSLProgramDataManager& pdman,
setUniformPoint3(pdman, fLocationUni, pointLight->location());
}
void GrGLPointLight::emitSurfaceToLight(GrGLSLFPBuilder* builder, const char* z) {
void GrGLPointLight::emitSurfaceToLight(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const char* z) {
const char* loc;
fLocationUni = builder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightLocation", &loc);
GrGLSLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("normalize(%s - vec3(%s.xy, %s))",
loc, fsBuilder->fragmentPosition(), z);
fragBuilder->codeAppendf("normalize(%s - vec3(%s.xy, %s))",
loc, fragBuilder->fragmentPosition(), z);
}
///////////////////////////////////////////////////////////////////////////////
@ -1954,18 +1967,20 @@ void GrGLSpotLight::setData(const GrGLSLProgramDataManager& pdman,
setUniformNormal3(pdman, fSUni, spotLight->s());
}
void GrGLSpotLight::emitSurfaceToLight(GrGLSLFPBuilder* builder, const char* z) {
void GrGLSpotLight::emitSurfaceToLight(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const char* z) {
const char* location;
fLocationUni = builder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightLocation", &location);
GrGLSLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("normalize(%s - vec3(%s.xy, %s))",
location, fsBuilder->fragmentPosition(), z);
fragBuilder->codeAppendf("normalize(%s - vec3(%s.xy, %s))",
location, fragBuilder->fragmentPosition(), z);
}
void GrGLSpotLight::emitLightColor(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const char *surfaceToLight) {
const char* color = builder->getUniformCStr(this->lightColorUni()); // created by parent class.
@ -2004,15 +2019,14 @@ void GrGLSpotLight::emitLightColor(GrGLSLFPBuilder* builder,
color, cosOuter, coneScale);
lightColorBody.appendf("\t}\n");
lightColorBody.appendf("\treturn %s;\n", color);
GrGLSLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->emitFunction(kVec3f_GrSLType,
"lightColor",
SK_ARRAY_COUNT(gLightColorArgs),
gLightColorArgs,
lightColorBody.c_str(),
&fLightColorFunc);
fragBuilder->emitFunction(kVec3f_GrSLType,
"lightColor",
SK_ARRAY_COUNT(gLightColorArgs),
gLightColorArgs,
lightColorBody.c_str(),
&fLightColorFunc);
fsBuilder->codeAppendf("%s(%s)", fLightColorFunc.c_str(), surfaceToLight);
fragBuilder->codeAppendf("%s(%s)", fLightColorFunc.c_str(), surfaceToLight);
}
#endif

View File

@ -72,14 +72,14 @@ public:
args.fInputColor = "vec4(1)";
}
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\tfloat luma = dot(vec3(%f, %f, %f), %s.rgb);\n",
SK_ITU_BT709_LUM_COEFF_R,
SK_ITU_BT709_LUM_COEFF_G,
SK_ITU_BT709_LUM_COEFF_B,
args.fInputColor);
fsBuilder->codeAppendf("\t%s = vec4(0, 0, 0, luma);\n",
args.fOutputColor);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("\tfloat luma = dot(vec3(%f, %f, %f), %s.rgb);\n",
SK_ITU_BT709_LUM_COEFF_R,
SK_ITU_BT709_LUM_COEFF_G,
SK_ITU_BT709_LUM_COEFF_B,
args.fInputColor);
fragBuilder->codeAppendf("\t%s = vec4(0, 0, 0, luma);\n",
args.fOutputColor);
}

View File

@ -133,39 +133,39 @@ void GrGLMagnifierEffect::emitCode(EmitArgs& args) {
GrGLSLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision, "Bounds");
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fsBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n",
args.fBuilder->getUniformCStr(fOffsetVar),
coords2D.c_str(),
args.fBuilder->getUniformCStr(fInvZoomVar));
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n",
args.fBuilder->getUniformCStr(fOffsetVar),
coords2D.c_str(),
args.fBuilder->getUniformCStr(fInvZoomVar));
const char* bounds = args.fBuilder->getUniformCStr(fBoundsVar);
fsBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds);
fsBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n");
fsBuilder->codeAppendf("\t\tdelta = delta * %s;\n",
args.fBuilder->getUniformCStr(fInvInsetVar));
fragBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds);
fragBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n");
fragBuilder->codeAppendf("\t\tdelta = delta * %s;\n",
args.fBuilder->getUniformCStr(fInvInsetVar));
fsBuilder->codeAppend("\t\tfloat weight = 0.0;\n");
fsBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n");
fsBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n");
fsBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n");
fsBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n");
fsBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n");
fsBuilder->codeAppend("\t\t} else {\n");
fsBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n");
fsBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n");
fsBuilder->codeAppend("\t\t}\n");
fragBuilder->codeAppend("\t\tfloat weight = 0.0;\n");
fragBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n");
fragBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n");
fragBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n");
fragBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n");
fragBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n");
fragBuilder->codeAppend("\t\t} else {\n");
fragBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n");
fragBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n");
fragBuilder->codeAppend("\t\t}\n");
fsBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n");
fsBuilder->codeAppend("\t\tvec4 output_color = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "mix_coord");
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n");
fragBuilder->codeAppend("\t\tvec4 output_color = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "mix_coord");
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s = output_color;", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s = output_color;", args.fOutputColor);
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLMagnifierEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -297,16 +297,16 @@ void GrGLMorphologyEffect::emitCode(EmitArgs& args) {
"Range");
const char* range = args.fBuilder->getUniformCStr(fRangeUni);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* func;
switch (fType) {
case GrMorphologyEffect::kErode_MorphologyType:
fsBuilder->codeAppendf("\t\t%s = vec4(1, 1, 1, 1);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s = vec4(1, 1, 1, 1);\n", args.fOutputColor);
func = "min";
break;
case GrMorphologyEffect::kDilate_MorphologyType:
fsBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
func = "max";
break;
default:
@ -329,30 +329,30 @@ void GrGLMorphologyEffect::emitCode(EmitArgs& args) {
}
// vec2 coord = coord2D;
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
// coord.x -= radius * pixelSize;
fsBuilder->codeAppendf("\t\tcoord.%s -= %d.0 * %s; \n", dir, fRadius, pixelSizeInc);
fragBuilder->codeAppendf("\t\tcoord.%s -= %d.0 * %s; \n", dir, fRadius, pixelSizeInc);
if (fUseRange) {
// highBound = min(highBound, coord.x + (width-1) * pixelSize);
fsBuilder->codeAppendf("\t\tfloat highBound = min(%s.y, coord.%s + %f * %s);",
range, dir, float(width() - 1), pixelSizeInc);
fragBuilder->codeAppendf("\t\tfloat highBound = min(%s.y, coord.%s + %f * %s);",
range, dir, float(width() - 1), pixelSizeInc);
// coord.x = max(lowBound, coord.x);
fsBuilder->codeAppendf("\t\tcoord.%s = max(%s.x, coord.%s);", dir, range, dir);
fragBuilder->codeAppendf("\t\tcoord.%s = max(%s.x, coord.%s);", dir, range, dir);
}
fsBuilder->codeAppendf("\t\tfor (int i = 0; i < %d; i++) {\n", width());
fsBuilder->codeAppendf("\t\t\t%s = %s(%s, ", args.fOutputColor, func, args.fOutputColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fsBuilder->codeAppend(");\n");
fragBuilder->codeAppendf("\t\tfor (int i = 0; i < %d; i++) {\n", width());
fragBuilder->codeAppendf("\t\t\t%s = %s(%s, ", args.fOutputColor, func, args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fragBuilder->codeAppend(");\n");
// coord.x += pixelSize;
fsBuilder->codeAppendf("\t\t\tcoord.%s += %s;\n", dir, pixelSizeInc);
fragBuilder->codeAppendf("\t\t\tcoord.%s += %s;\n", dir, pixelSizeInc);
if (fUseRange) {
// coord.x = min(highBound, coord.x);
fsBuilder->codeAppendf("\t\t\tcoord.%s = min(highBound, coord.%s);", dir, dir);
fragBuilder->codeAppendf("\t\t\tcoord.%s = min(highBound, coord.%s);", dir, dir);
}
fsBuilder->codeAppend("\t\t}\n");
fragBuilder->codeAppend("\t\t}\n");
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLMorphologyEffect::GenKey(const GrProcessor& proc,

View File

@ -621,19 +621,19 @@ GrGLPerlinNoise::GrGLPerlinNoise(const GrProcessor& processor)
}
void GrGLPerlinNoise::emitCode(EmitArgs& args) {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString vCoords = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString vCoords = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fBaseFrequencyUni = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"baseFrequency");
kVec2f_GrSLType, kDefault_GrSLPrecision,
"baseFrequency");
const char* baseFrequencyUni = args.fBuilder->getUniformCStr(fBaseFrequencyUni);
const char* stitchDataUni = nullptr;
if (fStitchTiles) {
fStitchDataUni = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"stitchData");
kVec2f_GrSLType, kDefault_GrSLPrecision,
"stitchData");
stitchDataUni = args.fBuilder->getUniformCStr(fStitchDataUni);
}
@ -685,18 +685,18 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
// Adjust frequencies if we're stitching tiles
if (fStitchTiles) {
noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
floorVal, stitchData, floorVal, stitchData);
}
// Get texture coordinates and normalize
noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
floorVal, floorVal);
floorVal, floorVal);
// Get permutation for x
{
@ -704,8 +704,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
xCoords.appendf("vec2(%s.x, 0.5)", floorVal);
noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
noiseCode.append(".r;");
}
@ -715,8 +715,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
xCoords.appendf("vec2(%s.z, 0.5)", floorVal);
noiseCode.appendf("\n\t%s.y = ", latticeIdx);
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(),
kVec2f_GrSLType);
noiseCode.append(".r;");
}
@ -740,8 +740,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord);
noiseCode.appendf("\n\tvec4 %s = ", lattice);
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
@ -752,8 +752,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord);
noiseCode.append("\n\tlattice = ");
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
@ -768,8 +768,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord);
noiseCode.append("\n\tlattice = ");
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
@ -780,8 +780,8 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
SkString latticeCoords("");
latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord);
noiseCode.append("\n\tlattice = ");
fsBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(),
kVec2f_GrSLType);
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
}
@ -793,38 +793,38 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
SkString noiseFuncName;
if (fStitchTiles) {
fsBuilder->emitFunction(kFloat_GrSLType,
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
fragBuilder->emitFunction(kFloat_GrSLType,
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
} else {
fsBuilder->emitFunction(kFloat_GrSLType,
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
fragBuilder->emitFunction(kFloat_GrSLType,
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
}
// There are rounding errors if the floor operation is not performed here
fsBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
noiseVec, vCoords.c_str(), baseFrequencyUni);
fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
noiseVec, vCoords.c_str(), baseFrequencyUni);
// Clear the color accumulator
fsBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor);
fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor);
if (fStitchTiles) {
// Set up TurbulenceInitial stitch values.
fsBuilder->codeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni);
fragBuilder->codeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni);
}
fsBuilder->codeAppendf("\n\t\tfloat %s = 1.0;", ratio);
fragBuilder->codeAppendf("\n\t\tfloat %s = 1.0;", ratio);
// Loop over all octaves
fsBuilder->codeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves);
fragBuilder->codeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves);
fsBuilder->codeAppendf("\n\t\t\t%s += ", args.fOutputColor);
fragBuilder->codeAppendf("\n\t\t\t%s += ", args.fOutputColor);
if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
fsBuilder->codeAppend("abs(");
fragBuilder->codeAppend("abs(");
}
if (fStitchTiles) {
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
"\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
@ -832,7 +832,7 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
} else {
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
"\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
noiseFuncName.c_str(), chanCoordR, noiseVec,
@ -841,32 +841,32 @@ void GrGLPerlinNoise::emitCode(EmitArgs& args) {
noiseFuncName.c_str(), chanCoordA, noiseVec);
}
if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
fsBuilder->codeAppendf(")"); // end of "abs("
fragBuilder->codeAppendf(")"); // end of "abs("
}
fsBuilder->codeAppendf(" * %s;", ratio);
fragBuilder->codeAppendf(" * %s;", ratio);
fsBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
fsBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);
fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);
if (fStitchTiles) {
fsBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
}
fsBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves
fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves
if (fType == SkPerlinNoiseShader::kFractalNoise_Type) {
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
fsBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);",
args.fOutputColor,args.fOutputColor);
fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);",
args.fOutputColor,args.fOutputColor);
}
// Clamp values
fsBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor);
// Pre-multiply the result
fsBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
args.fOutputColor, args.fOutputColor,
args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
args.fOutputColor, args.fOutputColor,
args.fOutputColor, args.fOutputColor);
}
void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&,

View File

@ -420,46 +420,46 @@ void GLColorTableEffect::emitCode(EmitArgs& args) {
"yoffsets", &yoffsets);
static const float kColorScaleFactor = 255.0f / 256.0f;
static const float kColorOffsetFactor = 1.0f / 512.0f;
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
if (nullptr == args.fInputColor) {
// the input color is solid white (all ones).
static const float kMaxValue = kColorScaleFactor + kColorOffsetFactor;
fsBuilder->codeAppendf("\t\tvec4 coord = vec4(%f, %f, %f, %f);\n",
kMaxValue, kMaxValue, kMaxValue, kMaxValue);
fragBuilder->codeAppendf("\t\tvec4 coord = vec4(%f, %f, %f, %f);\n",
kMaxValue, kMaxValue, kMaxValue, kMaxValue);
} else {
fsBuilder->codeAppendf("\t\tfloat nonZeroAlpha = max(%s.a, .0001);\n", args.fInputColor);
fsBuilder->codeAppendf("\t\tvec4 coord = vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha);\n",
args.fInputColor);
fsBuilder->codeAppendf("\t\tcoord = coord * %f + vec4(%f, %f, %f, %f);\n",
kColorScaleFactor,
kColorOffsetFactor, kColorOffsetFactor,
kColorOffsetFactor, kColorOffsetFactor);
fragBuilder->codeAppendf("\t\tfloat nonZeroAlpha = max(%s.a, .0001);\n", args.fInputColor);
fragBuilder->codeAppendf("\t\tvec4 coord = vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha);\n",
args.fInputColor);
fragBuilder->codeAppendf("\t\tcoord = coord * %f + vec4(%f, %f, %f, %f);\n",
kColorScaleFactor,
kColorOffsetFactor, kColorOffsetFactor,
kColorOffsetFactor, kColorOffsetFactor);
}
SkString coord;
fsBuilder->codeAppendf("\t\t%s.a = ", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s.a = ", args.fOutputColor);
coord.printf("vec2(coord.a, %s.a)", yoffsets);
fsBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fsBuilder->codeAppend(";\n");
fragBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s.r = ", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s.r = ", args.fOutputColor);
coord.printf("vec2(coord.r, %s.r)", yoffsets);
fsBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fsBuilder->codeAppend(";\n");
fragBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s.g = ", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s.g = ", args.fOutputColor);
coord.printf("vec2(coord.g, %s.g)", yoffsets);
fsBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fsBuilder->codeAppend(";\n");
fragBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s.b = ", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s.b = ", args.fOutputColor);
coord.printf("vec2(coord.b, %s.b)", yoffsets);
fsBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fsBuilder->codeAppend(";\n");
fragBuilder->appendTextureLookup(args.fSamplers[0], coord.c_str());
fragBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
}
///////////////////////////////////////////////////////////////////////////////

View File

@ -1027,61 +1027,61 @@ uint32_t GrGLGradientEffect::GenBaseGradientKey(const GrProcessor& processor) {
}
void GrGLGradientEffect::emitColor(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const GrGradientEffect& ge,
const char* gradientTValue,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
GrGLSLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
if (SkGradientShaderBase::kTwo_GpuColorType == ge.getColorType()){
fsBuilder->codeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
builder->getUniformVariable(fColorStartUni).c_str(),
builder->getUniformVariable(fColorEndUni).c_str(),
gradientTValue);
fragBuilder->codeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
builder->getUniformVariable(fColorStartUni).c_str(),
builder->getUniformVariable(fColorEndUni).c_str(),
gradientTValue);
// Note that we could skip this step if both colors are known to be opaque. Two
// considerations:
// The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
// case. Make sure the key reflects this optimization (and note that it can use the same
// shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
fsBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
fragBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
}
fsBuilder->codeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
fragBuilder->codeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
} else if (SkGradientShaderBase::kThree_GpuColorType == ge.getColorType()) {
fsBuilder->codeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
gradientTValue);
fsBuilder->codeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorStartUni).c_str());
fragBuilder->codeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
gradientTValue);
fragBuilder->codeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorStartUni).c_str());
if (!builder->glslCaps()->canUseMinAndAbsTogether()) {
// The Tegra3 compiler will sometimes never return if we have
// min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
fsBuilder->codeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
fsBuilder->codeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
fsBuilder->codeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
fragBuilder->codeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
fragBuilder->codeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
fragBuilder->codeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
} else {
fsBuilder->codeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
fragBuilder->codeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
}
fsBuilder->codeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorEndUni).c_str());
fragBuilder->codeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorEndUni).c_str());
if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
fsBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
fragBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
}
fsBuilder->codeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
fragBuilder->codeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
} else {
fsBuilder->codeAppendf("\tvec2 coord = vec2(%s, %s);\n",
gradientTValue,
builder->getUniformVariable(fFSYUni).c_str());
fsBuilder->codeAppendf("\t%s = ", outputColor);
fsBuilder->appendTextureLookupAndModulate(inputColor,
samplers[0],
"coord");
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppendf("\tvec2 coord = vec2(%s, %s);\n",
gradientTValue,
builder->getUniformVariable(fFSYUni).c_str());
fragBuilder->codeAppendf("\t%s = ", outputColor);
fragBuilder->appendTextureLookupAndModulate(inputColor,
samplers[0],
"coord");
fragBuilder->codeAppend(";\n");
}
}

View File

@ -426,6 +426,7 @@ protected:
// control flows inside -- 2 color gradients, 3 color symmetric gradients (both using
// native GLSL mix), and 4+ color gradients that use the traditional texture lookup.
void emitColor(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const GrGradientEffect&,
const char* gradientTValue,
const char* outputColor,

View File

@ -604,9 +604,13 @@ const GrFragmentProcessor* GrLinearGradient::TestCreate(GrProcessorTestData* d)
void GrGLLinearGradient::emitCode(EmitArgs& args) {
const GrLinearGradient& ge = args.fFp.cast<GrLinearGradient>();
this->emitUniforms(args.fBuilder, ge);
SkString t = args.fBuilder->getFragmentShaderBuilder()->ensureFSCoords2D(args.fCoords, 0);
SkString t = args.fFragBuilder->ensureFSCoords2D(args.fCoords, 0);
t.append(".x");
this->emitColor(args.fBuilder, ge, t.c_str(), args.fOutputColor, args.fInputColor,
this->emitColor(args.fBuilder,
args.fFragBuilder,
ge, t.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
}

View File

@ -501,9 +501,13 @@ void GrGLRadialGradient::emitCode(EmitArgs& args) {
const GrRadialGradient& ge = args.fFp.cast<GrRadialGradient>();
this->emitUniforms(args.fBuilder, ge);
SkString t("length(");
t.append(args.fBuilder->getFragmentShaderBuilder()->ensureFSCoords2D(args.fCoords, 0));
t.append(args.fFragBuilder->ensureFSCoords2D(args.fCoords, 0));
t.append(")");
this->emitColor(args.fBuilder, ge, t.c_str(), args.fOutputColor, args.fInputColor,
this->emitColor(args.fBuilder,
args.fFragBuilder,
ge, t.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
}

View File

@ -248,8 +248,7 @@ const GrFragmentProcessor* GrSweepGradient::TestCreate(GrProcessorTestData* d) {
void GrGLSweepGradient::emitCode(EmitArgs& args) {
const GrSweepGradient& ge = args.fFp.cast<GrSweepGradient>();
this->emitUniforms(args.fBuilder, ge);
SkString coords2D = args.fBuilder->getFragmentShaderBuilder()
->ensureFSCoords2D(args.fCoords, 0);
SkString coords2D = args.fFragBuilder->ensureFSCoords2D(args.fCoords, 0);
SkString t;
// 0.1591549430918 is 1/(2*pi), used since atan returns values [-pi, pi]
// On Intel GPU there is an issue where it reads the second arguement to atan "- %s.x" as an int
@ -261,7 +260,11 @@ void GrGLSweepGradient::emitCode(EmitArgs& args) {
t.printf("atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5",
coords2D.c_str(), coords2D.c_str());
}
this->emitColor(args.fBuilder, ge, t.c_str(), args.fOutputColor, args.fInputColor,
this->emitColor(args.fBuilder,
args.fFragBuilder,
ge, t.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
}

View File

@ -242,9 +242,9 @@ void GLEdge2PtConicalEffect::emitCode(EmitArgs& args) {
SkASSERT(args.fCoords[0].getType() == args.fCoords[1].getType());
const char* coords2D;
SkString bVar;
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
if (kVec3f_GrSLType == args.fCoords[0].getType()) {
fsBuilder->codeAppendf("\tvec3 interpolants = vec3(%s.xy / %s.z, %s.x / %s.z);\n",
fragBuilder->codeAppendf("\tvec3 interpolants = vec3(%s.xy / %s.z, %s.x / %s.z);\n",
args.fCoords[0].c_str(), args.fCoords[0].c_str(),
args.fCoords[1].c_str(), args.fCoords[1].c_str());
coords2D = "interpolants.xy";
@ -256,23 +256,28 @@ void GLEdge2PtConicalEffect::emitCode(EmitArgs& args) {
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fsBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
// c = (x^2)+(y^2) - params[1]
fsBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
fragBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), coords2D, coords2D, p1.c_str());
// linear case: t = -c/b
fsBuilder->codeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
fragBuilder->codeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
fsBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
fragBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p2.c_str(), p0.c_str());
fsBuilder->codeAppend("\t");
this->emitColor(args.fBuilder, ge, tName.c_str(), args.fOutputColor, args.fInputColor,
fragBuilder->codeAppend("\t");
this->emitColor(args.fBuilder,
fragBuilder,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
fsBuilder->codeAppend("\t}\n");
fragBuilder->codeAppend("\t}\n");
}
void GLEdge2PtConicalEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -511,35 +516,40 @@ void GLFocalOutside2PtConicalEffect::emitCode(EmitArgs& args) {
args.fBuilder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
// if we have a vec3 from being in perspective, convert it to a vec2 first
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2DString = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* coords2D = coords2DString.c_str();
// t = p.x * focal.x +/- sqrt(p.x^2 + (1 - focal.x^2) * p.y^2)
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fsBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
fsBuilder->codeAppendf("\tfloat xs = %s.x * %s.x;\n", coords2D, coords2D);
fsBuilder->codeAppendf("\tfloat ys = %s.y * %s.y;\n", coords2D, coords2D);
fsBuilder->codeAppendf("\tfloat d = xs + %s * ys;\n", p1.c_str());
fragBuilder->codeAppendf("\tfloat xs = %s.x * %s.x;\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat ys = %s.y * %s.y;\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = xs + %s * ys;\n", p1.c_str());
// Must check to see if we flipped the circle order (to make sure start radius < end radius)
// If so we must also flip sign on sqrt
if (!fIsFlipped) {
fsBuilder->codeAppendf("\tfloat %s = %s.x * %s + sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
} else {
fsBuilder->codeAppendf("\tfloat %s = %s.x * %s - sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s - sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
}
fsBuilder->codeAppendf("\tif (%s >= 0.0 && d >= 0.0) {\n", tName.c_str());
fsBuilder->codeAppend("\t\t");
this->emitColor(args.fBuilder, ge, tName.c_str(), args.fOutputColor, args.fInputColor,
fragBuilder->codeAppendf("\tif (%s >= 0.0 && d >= 0.0) {\n", tName.c_str());
fragBuilder->codeAppend("\t\t");
this->emitColor(args.fBuilder,
fragBuilder,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
fsBuilder->codeAppend("\t}\n");
fragBuilder->codeAppend("\t}\n");
}
void GLFocalOutside2PtConicalEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -713,15 +723,20 @@ void GLFocalInside2PtConicalEffect::emitCode(EmitArgs& args) {
GrGLSLShaderVar focal = args.fBuilder->getUniformVariable(fFocalUni);
// if we have a vec3 from being in perspective, convert it to a vec2 first
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2DString = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* coords2D = coords2DString.c_str();
// t = p.x * focalX + length(p)
fsBuilder->codeAppendf("\tfloat %s = %s.x * %s + length(%s);\n", tName.c_str(),
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + length(%s);\n", tName.c_str(),
coords2D, focal.c_str(), coords2D);
this->emitColor(args.fBuilder, ge, tName.c_str(), args.fOutputColor, args.fInputColor,
this->emitColor(args.fBuilder,
fragBuilder,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
}
@ -963,8 +978,8 @@ void GLCircleInside2PtConicalEffect::emitCode(EmitArgs& args) {
GrGLSLShaderVar params = args.fBuilder->getUniformVariable(fParamUni);
// if we have a vec3 from being in perspective, convert it to a vec2 first
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2DString = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* coords2D = coords2DString.c_str();
// p = coords2D
@ -975,13 +990,18 @@ void GLCircleInside2PtConicalEffect::emitCode(EmitArgs& args) {
// C = 1 / A
// d = dot(e, p) + B
// t = d +/- sqrt(d^2 - A * dot(p, p) + C)
fsBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fsBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fsBuilder->codeAppendf("\tfloat %s = d + sqrt(d * d - %s.x * pDotp + %s.z);\n",
tName.c_str(), params.c_str(), params.c_str());
fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fragBuilder->codeAppendf("\tfloat %s = d + sqrt(d * d - %s.x * pDotp + %s.z);\n",
tName.c_str(), params.c_str(), params.c_str());
this->emitColor(args.fBuilder, ge, tName.c_str(), args.fOutputColor, args.fInputColor,
this->emitColor(args.fBuilder,
fragBuilder,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
}
@ -1193,13 +1213,13 @@ void GLCircleOutside2PtConicalEffect::emitCode(EmitArgs& args) {
GrGLSLShaderVar params = args.fBuilder->getUniformVariable(fParamUni);
// if we have a vec3 from being in perspective, convert it to a vec2 first
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2DString = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* coords2D = coords2DString.c_str();
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fsBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
// p = coords2D
// e = center end
@ -1210,25 +1230,30 @@ void GLCircleOutside2PtConicalEffect::emitCode(EmitArgs& args) {
// d = dot(e, p) + B
// t = d +/- sqrt(d^2 - A * dot(p, p) + C)
fsBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fsBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fsBuilder->codeAppendf("\tfloat deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(),
params.c_str());
fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fragBuilder->codeAppendf("\tfloat deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(),
params.c_str());
// Must check to see if we flipped the circle order (to make sure start radius < end radius)
// If so we must also flip sign on sqrt
if (!fIsFlipped) {
fsBuilder->codeAppendf("\tfloat %s = d + sqrt(deter);\n", tName.c_str());
fragBuilder->codeAppendf("\tfloat %s = d + sqrt(deter);\n", tName.c_str());
} else {
fsBuilder->codeAppendf("\tfloat %s = d - sqrt(deter);\n", tName.c_str());
fragBuilder->codeAppendf("\tfloat %s = d - sqrt(deter);\n", tName.c_str());
}
fsBuilder->codeAppendf("\tif (%s >= %s.w && deter >= 0.0) {\n", tName.c_str(), params.c_str());
fsBuilder->codeAppend("\t\t");
this->emitColor(args.fBuilder, ge, tName.c_str(), args.fOutputColor, args.fInputColor,
fragBuilder->codeAppendf("\tif (%s >= %s.w && deter >= 0.0) {\n", tName.c_str(), params.c_str());
fragBuilder->codeAppend("\t\t");
this->emitColor(args.fBuilder,
fragBuilder,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fSamplers);
fsBuilder->codeAppend("\t}\n");
fragBuilder->codeAppend("\t}\n");
}
void GLCircleOutside2PtConicalEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -64,47 +64,64 @@ public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLFragmentBuilder* fs = args.fPB->getFragmentShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// emit attributes
vsBuilder->emitAttributes(gp);
vertBuilder->emitAttributes(gp);
// Setup pass through color
if (!gp.colorIgnored()) {
if (gp.hasVertexColor()) {
pb->addPassThroughAttribute(gp.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix(),
this->setupPosition(pb,
vertBuilder,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
if (gp.hasExplicitLocalCoords()) {
// emit transforms with explicit local coords
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inLocalCoords()->fName,
gp.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
gp.inLocalCoords()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
} else if(gp.hasTransformedLocalCoords()) {
// transforms have already been applied to vertex attributes on the cpu
this->emitTransforms(pb, gp.inLocalCoords()->fName,
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gp.inLocalCoords()->fName,
args.fTransformsIn,
args.fTransformsOut);
} else {
// emit transforms with position
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName,
gp.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
gp.inPosition()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
}
// Setup coverage as pass through
if (!gp.coverageWillBeIgnored()) {
if (gp.hasVertexCoverage()) {
fs->codeAppendf("float alpha = 1.0;");
fragBuilder->codeAppendf("float alpha = 1.0;");
args.fPB->addPassThroughAttribute(gp.inCoverage(), "alpha");
fs->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
} else if (gp.coverage() == 0xff) {
fs->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
const char* fragCoverage;
fCoverageUniform = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
@ -112,7 +129,7 @@ public:
kDefault_GrSLPrecision,
"Coverage",
&fragCoverage);
fs->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage);
fragBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage);
}
}
}

View File

@ -153,11 +153,11 @@ const GrFragmentProcessor* GrFragmentProcessor::MulOutputByInputUnpremulColor(
GLFP() {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
this->emitChild(0, nullptr, args);
fsBuilder->codeAppendf("%s.rgb *= %s.rgb;", args.fOutputColor,
fragBuilder->codeAppendf("%s.rgb *= %s.rgb;", args.fOutputColor,
args.fInputColor);
fsBuilder->codeAppendf("%s *= %s.a;", args.fOutputColor, args.fInputColor);
fragBuilder->codeAppendf("%s *= %s.a;", args.fOutputColor, args.fInputColor);
}
};
return new GLFP;

View File

@ -98,37 +98,43 @@ public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const CircleEdgeEffect& ce = args.fGP.cast<CircleEdgeEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(ce);
vertBuilder->emitAttributes(ce);
GrGLSLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("CircleEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
if (!ce.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ce.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, ce.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ce.inPosition()->fName,
ce.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
ce.inPosition()->fName,
ce.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn());
fragBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);",
v.fsIn());
if (ce.isStroked()) {
fsBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha *= innerAlpha;");
fragBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha *= innerAlpha;");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
@ -246,58 +252,63 @@ public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const EllipseEdgeEffect& ee = args.fGP.cast<EllipseEdgeEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(ee);
vertBuilder->emitAttributes(ee);
GrGLSLVertToFrag ellipseOffsets(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets", &ellipseOffsets);
vsBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(),
vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(),
ee.inEllipseOffset()->fName);
GrGLSLVertToFrag ellipseRadii(kVec4f_GrSLType);
args.fPB->addVarying("EllipseRadii", &ellipseRadii);
vsBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(),
vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(),
ee.inEllipseRadii()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
if (!ee.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ee.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, ee.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
ee.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
ee.inPosition()->fName,
ee.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
// for outer curve
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(),
ellipseRadii.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
fragBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(),
ellipseRadii.fsIn());
fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn());
fragBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
// for inner curve
if (ee.isStroked()) {
fsBuilder->codeAppendf("scaledOffset = %s*%s.zw;",
ellipseOffsets.fsIn(), ellipseRadii.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;",
ellipseRadii.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;",
ellipseOffsets.fsIn(), ellipseRadii.fsIn());
fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;",
ellipseRadii.fsIn());
fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
@ -421,73 +432,81 @@ public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DIEllipseEdgeEffect& ee = args.fGP.cast<DIEllipseEdgeEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(ee);
vertBuilder->emitAttributes(ee);
GrGLSLVertToFrag offsets0(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets0", &offsets0);
vsBuilder->codeAppendf("%s = %s;", offsets0.vsOut(),
vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(),
ee.inEllipseOffsets0()->fName);
GrGLSLVertToFrag offsets1(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets1", &offsets1);
vsBuilder->codeAppendf("%s = %s;", offsets1.vsOut(),
vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(),
ee.inEllipseOffsets1()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
if (!ee.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ee.inPosition()->fName, ee.viewMatrix(),
this->setupPosition(pb,
vertBuilder,
gpArgs,
ee.inPosition()->fName,
ee.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
ee.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// for outer curve
fsBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn());
fragBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn());
fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn());
fragBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
fragBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
if (kHairline == ee.getMode()) {
// can probably do this with one step
fsBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);");
fsBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);");
fragBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);");
fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);");
} else {
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
}
// for inner curve
if (kStroke == ee.getMode()) {
fsBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(),
offsets1.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn());
fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn());
fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn());
fragBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(),
offsets1.fsIn());
fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,

View File

@ -26,7 +26,7 @@ public:
void emitCode(EmitArgs& args) override {
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLFragmentBuilder* fs = args.fPB->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const GrPathProcessor& pathProc = args.fGP.cast<GrPathProcessor>();
// emit transforms
@ -40,12 +40,12 @@ public:
kDefault_GrSLPrecision,
"Color",
&stagedLocalVarName);
fs->codeAppendf("%s = %s;", args.fOutputColor, stagedLocalVarName);
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, stagedLocalVarName);
}
// setup constant solid coverage
if (pathProc.opts().readsCoverage()) {
fs->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
}
}

View File

@ -549,50 +549,54 @@ public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(qe);
vertBuilder->emitAttributes(qe);
GrGLSLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("QuadEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!qe.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, qe.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, qe.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName,
qe.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
qe.inPosition()->fName,
qe.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("float edgeAlpha;");
fragBuilder->codeAppendf("float edgeAlpha;");
// keep the derivative instructions outside the conditional
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
// today we know z and w are in device space. We could use derivatives
fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
v.fsIn());
fsBuilder->codeAppendf ("} else {");
fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,"
" 2.0*%s.x*duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = "
"clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");
fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf ("} else {");
fragBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,"
" 2.0*%s.x*duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = "
"clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static inline void GenKey(const GrGeometryProcessor& gp,

View File

@ -73,79 +73,89 @@ GrGLConicEffect::GrGLConicEffect(const GrGeometryProcessor& processor)
void GrGLConicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
const GrConicEffect& gp = args.fGP.cast<GrConicEffect>();
// emit attributes
vsBuilder->emitAttributes(gp);
vertBuilder->emitAttributes(gp);
GrGLSLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("ConicCoeffs", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inConicCoeffs()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inConicCoeffs()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!gp.colorIgnored()) {
this->setupUniformColor(args.fPB, args.fOutputColor, &fColorUniform);
this->setupUniformColor(args.fPB, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix(), &fViewMatrixUniform);
this->setupPosition(pb,
vertBuilder,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
// emit transforms with position
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName, gp.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
gp.inPosition()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppend("float edgeAlpha;");
fragBuilder->codeAppend("float edgeAlpha;");
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x*%s.x - %s.y*%s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("func = abs(func);");
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
fragBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fragBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fragBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fragBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fragBuilder->codeAppendf("float func = %s.x*%s.x - %s.y*%s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fragBuilder->codeAppend("func = abs(func);");
fragBuilder->codeAppend("edgeAlpha = func / gFM;");
fragBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
// fragBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fsBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fsBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fsBuilder->codeAppendf("float func = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = func / gFM;");
fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
fragBuilder->codeAppendf("vec3 dklmdx = dFdx(%s.xyz);", v.fsIn());
fragBuilder->codeAppendf("vec3 dklmdy = dFdy(%s.xyz);", v.fsIn());
fragBuilder->codeAppendf("float dfdx ="
"2.0 * %s.x * dklmdx.x - %s.y * dklmdx.z - %s.z * dklmdx.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("float dfdy ="
"2.0 * %s.x * dklmdy.x - %s.y * dklmdy.z - %s.z * dklmdy.y;",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppend("vec2 gF = vec2(dfdx, dfdy);");
fragBuilder->codeAppend("float gFM = sqrt(dot(gF, gF));");
fragBuilder->codeAppendf("float func = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha = func / gFM;");
fragBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
// fragBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("edgeAlpha = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
fragBuilder->codeAppendf("edgeAlpha = %s.x * %s.x - %s.y * %s.z;", v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
break;
}
default:
@ -160,9 +170,9 @@ void GrGLConicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
kDefault_GrSLPrecision,
"Coverage",
&coverageScale);
fsBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale);
fragBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale);
} else {
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
}
@ -289,65 +299,78 @@ GrGLQuadEffect::GrGLQuadEffect(const GrGeometryProcessor& processor)
void GrGLQuadEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
const GrQuadEffect& gp = args.fGP.cast<GrQuadEffect>();
// emit attributes
vsBuilder->emitAttributes(gp);
vertBuilder->emitAttributes(gp);
GrGLSLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("HairQuadEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inHairQuadEdge()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inHairQuadEdge()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!gp.colorIgnored()) {
this->setupUniformColor(args.fPB, args.fOutputColor, &fColorUniform);
this->setupUniformColor(args.fPB, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, gp.inPosition()->fName, gp.viewMatrix(), &fViewMatrixUniform);
this->setupPosition(pb,
vertBuilder,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
// emit transforms with position
this->emitTransforms(pb, gpArgs->fPositionVar, gp.inPosition()->fName, gp.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
gp.inPosition()->fName,
gp.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float edgeAlpha;");
fragBuilder->codeAppendf("float edgeAlpha;");
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = sqrt(edgeAlpha * edgeAlpha / dot(gF, gF));");
fsBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha = sqrt(edgeAlpha * edgeAlpha / dot(gF, gF));");
fragBuilder->codeAppend("edgeAlpha = max(1.0 - edgeAlpha, 0.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
// fragBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = edgeAlpha / sqrt(dot(gF, gF));");
fsBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
fragBuilder->codeAppendf("vec2 gF = vec2(2.0 * %s.x * duvdx.x - duvdx.y,"
" 2.0 * %s.x * duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha = edgeAlpha / sqrt(dot(gF, gF));");
fragBuilder->codeAppend("edgeAlpha = clamp(1.0 - edgeAlpha, 0.0, 1.0);");
// Add line below for smooth cubic ramp
// fsBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
// fragBuilder->codeAppend("edgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);");
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
fragBuilder->codeAppendf("edgeAlpha = (%s.x * %s.x - %s.y);",
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppend("edgeAlpha = float(edgeAlpha < 0.0);");
break;
}
default:
@ -357,13 +380,13 @@ void GrGLQuadEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
if (0xff != gp.coverageScale()) {
const char* coverageScale;
fCoverageScaleUniform = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"Coverage",
&coverageScale);
fsBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale);
kFloat_GrSLType,
kDefault_GrSLPrecision,
"Coverage",
&coverageScale);
fragBuilder->codeAppendf("%s = vec4(%s * edgeAlpha);", args.fOutputCoverage, coverageScale);
} else {
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
}
@ -476,30 +499,38 @@ GrGLCubicEffect::GrGLCubicEffect(const GrGeometryProcessor& processor)
}
void GrGLCubicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
const GrCubicEffect& gp = args.fGP.cast<GrCubicEffect>();
// emit attributes
vsBuilder->emitAttributes(gp);
vertBuilder->emitAttributes(gp);
GrGLSLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("CubicCoeffs", &v, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inCubicCoeffs()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), gp.inCubicCoeffs()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!gp.colorIgnored()) {
this->setupUniformColor(args.fPB, args.fOutputColor, &fColorUniform);
this->setupUniformColor(args.fPB, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(args.fPB, gpArgs, gp.inPosition()->fName, gp.viewMatrix(),
this->setupPosition(args.fPB,
vertBuilder,
gpArgs,
gp.inPosition()->fName,
gp.viewMatrix(),
&fViewMatrixUniform);
// emit transforms with position
this->emitTransforms(args.fPB, gpArgs->fPositionVar, gp.inPosition()->fName, args.fTransformsIn,
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
gp.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
GrGLSLShaderVar edgeAlpha("edgeAlpha", kFloat_GrSLType, 0, kHigh_GrSLPrecision);
GrGLSLShaderVar dklmdx("dklmdx", kVec3f_GrSLType, 0, kHigh_GrSLPrecision);
@ -510,72 +541,77 @@ void GrGLCubicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
GrGLSLShaderVar gFM("gFM", kFloat_GrSLType, 0, kHigh_GrSLPrecision);
GrGLSLShaderVar func("func", kFloat_GrSLType, 0, kHigh_GrSLPrecision);
fsBuilder->declAppend(edgeAlpha);
fsBuilder->declAppend(dklmdx);
fsBuilder->declAppend(dklmdy);
fsBuilder->declAppend(dfdx);
fsBuilder->declAppend(dfdy);
fsBuilder->declAppend(gF);
fsBuilder->declAppend(gFM);
fsBuilder->declAppend(func);
fragBuilder->declAppend(edgeAlpha);
fragBuilder->declAppend(dklmdx);
fragBuilder->declAppend(dklmdy);
fragBuilder->declAppend(dfdx);
fragBuilder->declAppend(dfdy);
fragBuilder->declAppend(gF);
fragBuilder->declAppend(gFM);
fragBuilder->declAppend(func);
switch (fEdgeType) {
case kHairlineAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(),
dklmdx.c_str(), v.fsIn(), dklmdx.c_str());
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(),
dklmdy.c_str(), v.fsIn(), dklmdy.c_str());
fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str());
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str());
fsBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fsBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
fragBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(),
dklmdx.c_str(), v.fsIn(), dklmdx.c_str());
fragBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(),
dklmdy.c_str(), v.fsIn(), dklmdy.c_str());
fragBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fragBuilder->codeAppendf("%s = sqrt(dot(%s, %s));",
gFM.c_str(), gF.c_str(), gF.c_str());
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = abs(%s);", func.c_str(), func.c_str());
fragBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fragBuilder->codeAppendf("%s = max(1.0 - %s, 0.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// fragBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillAA_GrProcessorEdgeType: {
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
fsBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fsBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fsBuilder->codeAppendf("%s ="
"3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(),
dklmdx.c_str(), v.fsIn(), dklmdx.c_str());
fsBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(),
dklmdy.c_str(), v.fsIn(), dklmdy.c_str());
fsBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fsBuilder->codeAppendf("%s = sqrt(dot(%s, %s));", gFM.c_str(), gF.c_str(), gF.c_str());
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fsBuilder->codeAppendf("%s = clamp(1.0 - %s, 0.0, 1.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
fragBuilder->codeAppendf("%s = dFdx(%s.xyz);", dklmdx.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s = dFdy(%s.xyz);", dklmdy.c_str(), v.fsIn());
fragBuilder->codeAppendf("%s ="
"3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdx.c_str(), v.fsIn(), v.fsIn(), dklmdx.c_str(), v.fsIn(),
dklmdx.c_str(), v.fsIn(), dklmdx.c_str());
fragBuilder->codeAppendf("%s = 3.0 * %s.x * %s.x * %s.x - %s.y * %s.z - %s.z * %s.y;",
dfdy.c_str(), v.fsIn(), v.fsIn(), dklmdy.c_str(), v.fsIn(),
dklmdy.c_str(), v.fsIn(), dklmdy.c_str());
fragBuilder->codeAppendf("%s = vec2(%s, %s);", gF.c_str(), dfdx.c_str(), dfdy.c_str());
fragBuilder->codeAppendf("%s = sqrt(dot(%s, %s));",
gFM.c_str(), gF.c_str(), gF.c_str());
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
func.c_str(), v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = %s / %s;",
edgeAlpha.c_str(), func.c_str(), gFM.c_str());
fragBuilder->codeAppendf("%s = clamp(1.0 - %s, 0.0, 1.0);",
edgeAlpha.c_str(), edgeAlpha.c_str());
// Add line below for smooth cubic ramp
// fsBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// fragBuilder->codeAppendf("%s = %s * %s * (3.0 - 2.0 * %s);",
// edgeAlpha.c_str(), edgeAlpha.c_str(), edgeAlpha.c_str(),
// edgeAlpha.c_str());
break;
}
case kFillBW_GrProcessorEdgeType: {
fsBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
edgeAlpha.c_str(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn(), v.fsIn());
fsBuilder->codeAppendf("%s = float(%s < 0.0);", edgeAlpha.c_str(), edgeAlpha.c_str());
fragBuilder->codeAppendf("%s = %s.x * %s.x * %s.x - %s.y * %s.z;",
edgeAlpha.c_str(), v.fsIn(), v.fsIn(),
v.fsIn(), v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("%s = float(%s < 0.0);", edgeAlpha.c_str(), edgeAlpha.c_str());
break;
}
default:
@ -583,7 +619,7 @@ void GrGLCubicEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
}
fsBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, edgeAlpha.c_str());
fragBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, edgeAlpha.c_str());
}
void GrGLCubicEffect::GenKey(const GrGeometryProcessor& gp,

View File

@ -72,39 +72,42 @@ void GrGLBicubicEffect::emitCode(EmitArgs& args) {
GrGLSLShaderVar("c2", kVec4f_GrSLType),
GrGLSLShaderVar("c3", kVec4f_GrSLType),
};
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fsBuilder->emitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
fsBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->emitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
// We unnormalize the coord in order to determine our fractional offset (f) within the texel
// We then snap coord to a texel center and renormalize. The snap prevents cases where the
// starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
// double hit a texel.
fsBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
fsBuilder->codeAppend("\tvec2 f = fract(coord);\n");
fsBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
fsBuilder->codeAppend("\tvec4 rowColors[4];\n");
fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
SkString sampleVar;
sampleVar.printf("rowColors[%d]", x);
fDomain.sampleTexture(fsBuilder, domain, sampleVar.c_str(), coord, args.fSamplers[0]);
fDomain.sampleTexture(fragBuilder, domain, sampleVar.c_str(), coord, args.fSamplers[0]);
}
fsBuilder->codeAppendf("\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n", y, cubicBlendName.c_str(), coeff);
fragBuilder->codeAppendf(
"\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
y, cubicBlendName.c_str(), coeff);
}
SkString bicubicColor;
bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor,(GrGLSLExpr4(bicubicColor.c_str()) *
GrGLSLExpr4(args.fInputColor)).c_str());
fragBuilder->codeAppendf("\t%s = %s;\n",
args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
GrGLSLExpr4(args.fInputColor)).c_str());
}
void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -22,10 +22,10 @@ public:
const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(cte);
vertBuilder->emitAttributes(cte);
// compute numbers to be hardcoded to convert texture coordinates from int to float
SkASSERT(cte.numTextures() == 1);
@ -36,45 +36,50 @@ public:
GrGLSLVertToFrag v(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &v);
vsBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", v.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
cte.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", v.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
cte.inTextureCoords()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!cte.colorIgnored()) {
if (cte.hasVertexColor()) {
pb->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, cte.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, cte.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName,
cte.localMatrix(), args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
cte.inPosition()->fName,
cte.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
GrGLSLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
if (cte.maskFormat() == kARGB_GrMaskFormat) {
fsBuilder->codeAppendf("%s = ", args.fOutputColor);
fsBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fSamplers[0],
v.fsIn(),
kVec2f_GrSLType);
fsBuilder->codeAppend(";");
fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fSamplers[0],
v.fsIn(),
kVec2f_GrSLType);
fragBuilder->codeAppend(";");
fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
fsBuilder->codeAppendf("%s = ", args.fOutputCoverage);
fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType);
fsBuilder->codeAppend(";");
fragBuilder->codeAppendf("%s = ", args.fOutputCoverage);
fragBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType);
fragBuilder->codeAppend(";");
if (cte.maskFormat() == kA565_GrMaskFormat) {
// set alpha to be max of rgb coverage
fsBuilder->codeAppendf("%s.a = max(max(%s.r, %s.g), %s.b);",
args.fOutputCoverage, args.fOutputCoverage,
args.fOutputCoverage, args.fOutputCoverage);
fragBuilder->codeAppendf("%s.a = max(max(%s.r, %s.g), %s.b);",
args.fOutputCoverage, args.fOutputCoverage,
args.fOutputCoverage, args.fOutputCoverage);
}
}
}

View File

@ -30,23 +30,23 @@ public:
SkString tmpDecl;
tmpVar.appendDecl(args.fBuilder->glslCaps(), &tmpDecl);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fsBuilder->codeAppendf("%s;", tmpDecl.c_str());
fragBuilder->codeAppendf("%s;", tmpDecl.c_str());
fsBuilder->codeAppendf("%s = ", tmpVar.c_str());
fsBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
fragBuilder->codeAppendf("%s = ", tmpVar.c_str());
fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fsBuilder->codeAppend(";");
fragBuilder->codeAppend(";");
if (GrConfigConversionEffect::kNone_PMConversion == fPMConversion) {
SkASSERT(fSwapRedAndBlue);
fsBuilder->codeAppendf("%s = %s.bgra;", args.fOutputColor, tmpVar.c_str());
fragBuilder->codeAppendf("%s = %s.bgra;", args.fOutputColor, tmpVar.c_str());
} else {
const char* swiz = fSwapRedAndBlue ? "bgr" : "rgb";
switch (fPMConversion) {
case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion:
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"%s = vec4(ceil(%s.%s * %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
@ -55,17 +55,17 @@ public:
// In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0
// is less than the integer value converted from %s.r by 1 when the %s.r is
// converted from the integer value 2^n, such as 1, 2, 4, 8, etc.
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"%s = vec4(floor(%s.%s * %s.a * 255.0 + 0.001) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion:
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.%s / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion:
fsBuilder->codeAppendf(
fragBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.%s / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
@ -73,11 +73,11 @@ public:
SkFAIL("Unknown conversion op.");
break;
}
fsBuilder->codeAppendf("%s = %s;", args.fOutputColor, tmpVar.c_str());
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, tmpVar.c_str());
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
static inline void GenKey(const GrProcessor& processor, const GrGLSLCaps&,

View File

@ -16,7 +16,7 @@ public:
GLConstColorProcessor() : fPrevColor(GrColor_ILLEGAL) {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* colorUni;
fColorUniform = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kMedium_GrSLPrecision, "constantColor",
@ -27,14 +27,14 @@ public:
}
switch (mode) {
case GrConstColorProcessor::kIgnore_InputMode:
fsBuilder->codeAppendf("%s = %s;", args.fOutputColor, colorUni);
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, colorUni);
break;
case GrConstColorProcessor::kModulateRGBA_InputMode:
fsBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, args.fInputColor,
fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputColor, args.fInputColor,
colorUni);
break;
case GrConstColorProcessor::kModulateA_InputMode:
fsBuilder->codeAppendf("%s = %s.a * %s;", args.fOutputColor, args.fInputColor,
fragBuilder->codeAppendf("%s = %s.a * %s;", args.fOutputColor, args.fInputColor,
colorUni);
break;
}

View File

@ -111,32 +111,32 @@ void GLAARectEffect::emitCode(EmitArgs& args) {
"rect",
&rectName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
if (GrProcessorEdgeTypeIsAA(aare.getEdgeType())) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fsBuilder->codeAppend("\t\tfloat xSub, ySub;\n");
fsBuilder->codeAppendf("\t\txSub = min(%s.x - %s.x, 0.0);\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\txSub += min(%s.z - %s.x, 0.0);\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tySub = min(%s.y - %s.y, 0.0);\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tySub += min(%s.w - %s.y, 0.0);\n", rectName, fragmentPos);
fragBuilder->codeAppend("\t\tfloat xSub, ySub;\n");
fragBuilder->codeAppendf("\t\txSub = min(%s.x - %s.x, 0.0);\n", fragmentPos, rectName);
fragBuilder->codeAppendf("\t\txSub += min(%s.z - %s.x, 0.0);\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tySub = min(%s.y - %s.y, 0.0);\n", fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tySub += min(%s.w - %s.y, 0.0);\n", rectName, fragmentPos);
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fsBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n");
fragBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n");
} else {
fsBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
fsBuilder->codeAppendf("\t\talpha *= (%s.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\talpha *= (%s.z - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\talpha *= (%s.y - %s.y) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\talpha *= (%s.w - %s.y) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
fragBuilder->codeAppendf("\t\talpha *= (%s.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fragBuilder->codeAppendf("\t\talpha *= (%s.z - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\talpha *= (%s.y - %s.y) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fragBuilder->codeAppendf("\t\talpha *= (%s.w - %s.y) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
}
if (GrProcessorEdgeTypeIsInverseFill(aare.getEdgeType())) {
fsBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
fragBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GLAARectEffect::onSetData(const GrGLSLProgramDataManager& pdman,
@ -197,26 +197,26 @@ void GrGLConvexPolyEffect::emitCode(EmitArgs& args) {
"edges",
cpe.getEdgeCount(),
&edgeArrayName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
fsBuilder->codeAppend("\t\tfloat alpha = 1.0;\n");
fsBuilder->codeAppend("\t\tfloat edge;\n");
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppend("\t\tfloat alpha = 1.0;\n");
fragBuilder->codeAppend("\t\tfloat edge;\n");
const char* fragmentPos = fragBuilder->fragmentPosition();
for (int i = 0; i < cpe.getEdgeCount(); ++i) {
fsBuilder->codeAppendf("\t\tedge = dot(%s[%d], vec3(%s.x, %s.y, 1));\n",
edgeArrayName, i, fragmentPos, fragmentPos);
fragBuilder->codeAppendf("\t\tedge = dot(%s[%d], vec3(%s.x, %s.y, 1));\n",
edgeArrayName, i, fragmentPos, fragmentPos);
if (GrProcessorEdgeTypeIsAA(cpe.getEdgeType())) {
fsBuilder->codeAppend("\t\tedge = clamp(edge, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\tedge = clamp(edge, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppend("\t\tedge = edge >= 0.5 ? 1.0 : 0.0;\n");
fragBuilder->codeAppend("\t\tedge = edge >= 0.5 ? 1.0 : 0.0;\n");
}
fsBuilder->codeAppend("\t\talpha *= edge;\n");
fragBuilder->codeAppend("\t\talpha *= edge;\n");
}
if (GrProcessorEdgeTypeIsInverseFill(cpe.getEdgeType())) {
fsBuilder->codeAppend("\talpha = 1.0 - alpha;\n");
fragBuilder->codeAppend("\talpha = 1.0 - alpha;\n");
}
fsBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
fragBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GrGLConvexPolyEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -60,16 +60,16 @@ void GrGLConvolutionEffect::emitCode(EmitArgs& args) {
kFloat_GrSLType, kDefault_GrSLPrecision,
"Kernel", this->width());
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fsBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
int width = this->width();
const GrGLSLShaderVar& kernel = args.fBuilder->getUniformVariable(fKernelUni);
const char* imgInc = args.fBuilder->getUniformCStr(fImageIncrementUni);
fsBuilder->codeAppendf("\t\tvec2 coord = %s - %d.0 * %s;\n", coords2D.c_str(), fRadius, imgInc);
fragBuilder->codeAppendf("\t\tvec2 coord = %s - %d.0 * %s;\n", coords2D.c_str(), fRadius, imgInc);
// Manually unroll loop because some drivers don't; yields 20-30% speedup.
for (int i = 0; i < width; i++) {
@ -84,21 +84,21 @@ void GrGLConvolutionEffect::emitCode(EmitArgs& args) {
// to have a bug that caused corruption.
const char* bounds = args.fBuilder->getUniformCStr(fBoundsUni);
const char* component = this->direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x";
fsBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {",
component, bounds, component, bounds);
fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {",
component, bounds, component, bounds);
}
fsBuilder->codeAppendf("\t\t%s += ", args.fOutputColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fsBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
fragBuilder->codeAppendf("\t\t%s += ", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
if (this->useBounds()) {
fsBuilder->codeAppend("}");
fragBuilder->codeAppend("}");
}
fsBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
fragBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,

View File

@ -72,12 +72,12 @@ public:
private:
void emitOutputsForBlendState(const EmitArgs& args) override {
const CoverageSetOpXP& xp = args.fXP.cast<CoverageSetOpXP>();
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
if (xp.invertCoverage()) {
fsBuilder->codeAppendf("%s = 1.0 - %s;", args.fOutputPrimary, args.fInputCoverage);
fragBuilder->codeAppendf("%s = 1.0 - %s;", args.fOutputPrimary, args.fInputCoverage);
} else {
fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputCoverage);
fragBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputCoverage);
}
}

View File

@ -146,26 +146,29 @@ private:
const CustomXP& xp = args.fXP.cast<CustomXP>();
SkASSERT(xp.hasHWBlendEquation());
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->enableAdvancedBlendEquationIfNeeded(xp.hwBlendEquation());
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
fragBuilder->enableAdvancedBlendEquationIfNeeded(xp.hwBlendEquation());
// Apply coverage by multiplying it into the src color before blending. Mixed samples will
// "just work" automatically. (See onGetOptimizations())
if (xp.readsCoverage()) {
fsBuilder->codeAppendf("%s = %s * %s;",
args.fOutputPrimary, args.fInputCoverage, args.fInputColor);
fragBuilder->codeAppendf("%s = %s * %s;",
args.fOutputPrimary, args.fInputCoverage, args.fInputColor);
} else {
fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputColor);
fragBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args.fInputColor);
}
}
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb, const char* srcColor, const char* dstColor,
const char* outColor, const GrXferProcessor& proc) override {
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb,
GrGLSLXPFragmentBuilder* fragBuilder,
const char* srcColor,
const char* dstColor,
const char* outColor,
const GrXferProcessor& proc) override {
const CustomXP& xp = proc.cast<CustomXP>();
SkASSERT(!xp.hasHWBlendEquation());
GrGLSLXPFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
GrGLSLBlend::AppendMode(fsBuilder, srcColor, dstColor, outColor, xp.mode());
GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.mode());
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}

View File

@ -852,50 +852,55 @@ GLDashingCircleEffect::GLDashingCircleEffect() {
void GLDashingCircleEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingCircleEffect& dce = args.fGP.cast<DashingCircleEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(dce);
vertBuilder->emitAttributes(dce);
// XY are dashPos, Z is dashInterval
GrGLSLVertToFrag dashParams(kVec3f_GrSLType);
args.fPB->addVarying("DashParam", &dashParams);
vsBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.inDashParams()->fName);
vertBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.inDashParams()->fName);
// x refers to circle radius - 0.5, y refers to cicle's center x coord
GrGLSLVertToFrag circleParams(kVec2f_GrSLType);
args.fPB->addVarying("CircleParams", &circleParams);
vsBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.inCircleParams()->fName);
vertBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.inCircleParams()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!dce.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, dce.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, dce.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, dce.inPosition()->fName, dce.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
dce.inPosition()->fName,
dce.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
// transforms all points so that we can compare them to our test circle
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(),
dashParams.fsIn());
fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", dashParams.fsIn());
fsBuilder->codeAppendf("vec2 center = vec2(%s.y, 0.0);", circleParams.fsIn());
fsBuilder->codeAppend("float dist = length(center - fragPosShifted);");
fragBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(),
dashParams.fsIn());
fragBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", dashParams.fsIn());
fragBuilder->codeAppendf("vec2 center = vec2(%s.y, 0.0);", circleParams.fsIn());
fragBuilder->codeAppend("float dist = length(center - fragPosShifted);");
if (dce.aaMode() != kBW_DashAAMode) {
fsBuilder->codeAppendf("float diff = dist - %s.x;", circleParams.fsIn());
fsBuilder->codeAppend("diff = 1.0 - diff;");
fsBuilder->codeAppend("float alpha = clamp(diff, 0.0, 1.0);");
fragBuilder->codeAppendf("float diff = dist - %s.x;", circleParams.fsIn());
fragBuilder->codeAppend("diff = 1.0 - diff;");
fragBuilder->codeAppend("float alpha = clamp(diff, 0.0, 1.0);");
} else {
fsBuilder->codeAppendf("float alpha = 1.0;");
fsBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn());
fragBuilder->codeAppendf("float alpha = 1.0;");
fragBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn());
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingCircleEffect::setData(const GrGLSLProgramDataManager& pdman,
@ -1058,69 +1063,74 @@ void GLDashingLineEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingLineEffect& de = args.fGP.cast<DashingLineEffect>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(de);
vertBuilder->emitAttributes(de);
// XY refers to dashPos, Z is the dash interval length
GrGLSLVertToFrag inDashParams(kVec3f_GrSLType);
args.fPB->addVarying("DashParams", &inDashParams, GrSLPrecision::kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.inDashParams()->fName);
vertBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.inDashParams()->fName);
// The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
// respectively.
GrGLSLVertToFrag inRectParams(kVec4f_GrSLType);
args.fPB->addVarying("RectParams", &inRectParams, GrSLPrecision::kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.inRectParams()->fName);
vertBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.inRectParams()->fName);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup pass through color
if (!de.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, de.inPosition()->fName);
this->setupPosition(pb, vertBuilder, gpArgs, de.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, de.inPosition()->fName, de.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(args.fPB,
vertBuilder,
gpArgs->fPositionVar,
de.inPosition()->fName,
de.localMatrix(),
args.fTransformsIn,
args.fTransformsOut);
// transforms all points so that we can compare them to our test rect
GrGLSLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(),
inDashParams.fsIn());
fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", inDashParams.fsIn());
fragBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(),
inDashParams.fsIn());
fragBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", inDashParams.fsIn());
if (de.aaMode() == kEdgeAA_DashAAMode) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fsBuilder->codeAppend("float xSub, ySub;");
fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("ySub = min(fragPosShifted.y - %s.y, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("ySub += min(%s.w - fragPosShifted.y, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppend("float xSub, ySub;");
fragBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppendf("ySub = min(fragPosShifted.y - %s.y, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppendf("ySub += min(%s.w - fragPosShifted.y, 0.0);", inRectParams.fsIn());
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));");
fragBuilder->codeAppendf(
"float alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));");
} else if (de.aaMode() == kMSAA_DashAAMode) {
// For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle
// AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha.
fsBuilder->codeAppend("float xSub;");
fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppend("float xSub;");
fragBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fragBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
// Now compute coverage in x to get the fraction of the pixel covered.
fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0));");
fragBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0));");
} else {
// Assuming the bounding geometry is tight so no need to check y values
fsBuilder->codeAppendf("float alpha = 1.0;");
fsBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
fsBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
fragBuilder->codeAppendf("float alpha = 1.0;");
fragBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
fragBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingLineEffect::setData(const GrGLSLProgramDataManager& pdman,

View File

@ -63,8 +63,8 @@ private:
// This emit code should be empty. However, on the nexus 6 there is a driver bug where if
// you do not give gl_FragColor a value, the gl context is lost and we end up drawing
// nothing. So this fix just sets the gl_FragColor arbitrarily to 0.
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("%s = vec4(0);", args.fOutputPrimary);
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
fragBuilder->codeAppendf("%s = vec4(0);", args.fOutputPrimary);
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}

View File

@ -35,14 +35,14 @@ public:
const GrDistanceFieldA8TextGeoProc& dfTexEffect =
args.fGP.cast<GrDistanceFieldA8TextGeoProc>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(dfTexEffect);
vertBuilder->emitAttributes(dfTexEffect);
#ifdef SK_GAMMA_APPLY_TO_A8
// adjust based on gamma
@ -58,24 +58,32 @@ public:
if (dfTexEffect.hasVertexColor()) {
pb->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
this->setupPosition(pb,
vertBuilder,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(pb, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
// add varyings
GrGLSLVertToFrag recipScale(kFloat_GrSLType);
GrGLSLVertToFrag st(kVec2f_GrSLType);
bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag);
pb->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
// compute numbers to be hardcoded to convert texture coordinates from int to float
SkASSERT(dfTexEffect.numTextures() == 1);
@ -86,29 +94,29 @@ public:
GrGLSLVertToFrag uv(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", uv.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
dfTexEffect.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", uv.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
dfTexEffect.inTextureCoords()->fName);
// Use highp to work around aliasing issues
fsBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fsBuilder->codeAppend("\tfloat texColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fsBuilder->codeAppend(".r;\n");
fsBuilder->codeAppend("\tfloat distance = "
fragBuilder->codeAppend("\tfloat texColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fragBuilder->codeAppend(".r;\n");
fragBuilder->codeAppend("\tfloat distance = "
SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
#ifdef SK_GAMMA_APPLY_TO_A8
// adjust width based on gamma
fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
#endif
fsBuilder->codeAppend("float afwidth;");
fragBuilder->codeAppend("float afwidth;");
if (isSimilarity) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
@ -116,33 +124,33 @@ public:
// this gives us a smooth step across approximately one fragment
// we use y to work around a Mali400 bug in the x direction
fsBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));",
st.fsIn());
fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));",
st.fsIn());
} else {
// For general transforms, to determine the amount of correction we multiply a unit
// vector pointing along the SDF gradient direction by the Jacobian of the st coords
// (which is the inverse transform for this fragment) and take the length of the result.
fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
// the length of the gradient may be 0, so we need to check for this
// this also compensates for the Adreno, which likes to drop tiles on division by 0
fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fsBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fsBuilder->codeAppend("} else {");
fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fsBuilder->codeAppend("}");
fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fragBuilder->codeAppend("} else {");
fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fragBuilder->codeAppend("}");
fsBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn());
fsBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn());
fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
fragBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn());
fragBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn());
fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
// this gives us a smooth step across approximately one fragment
fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
}
fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");
fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");
fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc) override {
@ -286,14 +294,14 @@ public:
const GrDistanceFieldPathGeoProc& dfTexEffect = args.fGP.cast<GrDistanceFieldPathGeoProc>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(dfTexEffect);
vertBuilder->emitAttributes(dfTexEffect);
GrGLSLVertToFrag v(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &v, kHigh_GrSLPrecision);
@ -303,18 +311,26 @@ public:
if (dfTexEffect.hasVertexColor()) {
pb->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
}
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName);
// Setup position
this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
this->setupPosition(pb,
vertBuilder,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(pb, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
const char* textureSizeUniName = nullptr;
fTextureSizeUni = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
@ -322,54 +338,54 @@ public:
"TextureSize", &textureSizeUniName);
// Use highp to work around aliasing issues
fsBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fsBuilder->codeAppendf("vec2 uv = %s;", v.fsIn());
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 uv = %s;", v.fsIn());
fsBuilder->codeAppend("float texColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fsBuilder->codeAppend(".r;");
fsBuilder->codeAppend("float distance = "
fragBuilder->codeAppend("float texColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0],
"uv",
kVec2f_GrSLType);
fragBuilder->codeAppend(".r;");
fragBuilder->codeAppend("float distance = "
SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");");
fsBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fsBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName);
fsBuilder->codeAppend("float afwidth;");
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 st = uv*%s;", textureSizeUniName);
fragBuilder->codeAppend("float afwidth;");
if (dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// this gives us a smooth step across approximately one fragment
fsBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));");
fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));");
} else {
// For general transforms, to determine the amount of correction we multiply a unit
// vector pointing along the SDF gradient direction by the Jacobian of the st coords
// (which is the inverse transform for this fragment) and take the length of the result.
fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));");
// the length of the gradient may be 0, so we need to check for this
// this also compensates for the Adreno, which likes to drop tiles on division by 0
fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fsBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fsBuilder->codeAppend("} else {");
fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fsBuilder->codeAppend("}");
fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fragBuilder->codeAppend("} else {");
fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fragBuilder->codeAppend("}");
fsBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fsBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
fragBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fragBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
// this gives us a smooth step across approximately one fragment
fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
}
fsBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");
fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);");
fsBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc) override {
@ -502,30 +518,40 @@ public:
args.fGP.cast<GrDistanceFieldLCDTextGeoProc>();
GrGLSLGPBuilder* pb = args.fPB;
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
// emit attributes
vsBuilder->emitAttributes(dfTexEffect);
vertBuilder->emitAttributes(dfTexEffect);
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// setup pass through color
if (!dfTexEffect.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
this->setupUniformColor(pb, fragBuilder, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
this->setupPosition(pb,
vertBuilder,
gpArgs,
dfTexEffect.inPosition()->fName,
dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(pb, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
this->emitTransforms(pb,
vertBuilder,
gpArgs->fPositionVar,
dfTexEffect.inPosition()->fName,
args.fTransformsIn,
args.fTransformsOut);
// set up varyings
bool isUniformScale = SkToBool(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask);
GrGLSLVertToFrag recipScale(kFloat_GrSLType);
GrGLSLVertToFrag st(kVec2f_GrSLType);
pb->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
// compute numbers to be hardcoded to convert texture coordinates from int to float
SkASSERT(dfTexEffect.numTextures() == 1);
@ -536,62 +562,61 @@ public:
GrGLSLVertToFrag uv(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", uv.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
dfTexEffect.inTextureCoords()->fName);
vertBuilder->codeAppendf("%s = vec2(%.*f, %.*f) * %s;", uv.vsOut(),
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipWidth,
GR_SIGNIFICANT_POW2_DECIMAL_DIG, recipHeight,
dfTexEffect.inTextureCoords()->fName);
// add frag shader code
GrGLSLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
SkAssertResult(fragBuilder->enableFeature(
GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// create LCD offset adjusted by inverse of transform
// Use highp to work around aliasing issues
fsBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fsBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
fragBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fragBuilder->codeAppend(GrGLSLShaderVar::PrecisionString(pb->glslCaps(),
kHigh_GrSLPrecision));
SkScalar lcdDelta = 1.0f / (3.0f * atlas->width());
if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) {
fsBuilder->codeAppendf("float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
fragBuilder->codeAppendf("float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
} else {
fsBuilder->codeAppendf("float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
fragBuilder->codeAppendf("float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta);
}
if (isUniformScale) {
fsBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn());
fsBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);");
fragBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn());
fragBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);");
} else {
fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());
fragBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());
fsBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fsBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fsBuilder->codeAppend("vec2 offset = delta*Jdx;");
fragBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fragBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fragBuilder->codeAppend("vec2 offset = delta*Jdx;");
}
// green is distance to uv center
fsBuilder->codeAppend("\tvec4 texColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tvec3 distance;\n");
fsBuilder->codeAppend("\tdistance.y = texColor.r;\n");
fragBuilder->codeAppend("\tvec4 texColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppend("\tvec3 distance;\n");
fragBuilder->codeAppend("\tdistance.y = texColor.r;\n");
// red is distance to left offset
fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.x = texColor.r;\n");
fragBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
fragBuilder->codeAppend("\ttexColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppend("\tdistance.x = texColor.r;\n");
// blue is distance to right offset
fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.z = texColor.r;\n");
fragBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
fragBuilder->codeAppend("\ttexColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppend("\tdistance.z = texColor.r;\n");
fsBuilder->codeAppend("\tdistance = "
fragBuilder->codeAppend("\tdistance = "
"vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));");
// adjust width based on gamma
@ -599,46 +624,46 @@ public:
fDistanceAdjustUni = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"DistanceAdjust", &distanceAdjustUniName);
fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
// To be strictly correct, we should compute the anti-aliasing factor separately
// for each color component. However, this is only important when using perspective
// transformations, and even then using a single factor seems like a reasonable
// trade-off between quality and speed.
fsBuilder->codeAppend("float afwidth;");
fragBuilder->codeAppend("float afwidth;");
if (isUniformScale) {
// For uniform scale, we adjust for the effect of the transformation on the distance
// by using the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// this gives us a smooth step across approximately one fragment
fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*dy;");
fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*dy;");
} else {
// For general transforms, to determine the amount of correction we multiply a unit
// vector pointing along the SDF gradient direction by the Jacobian of the st coords
// (which is the inverse transform for this fragment) and take the length of the result.
fsBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));");
fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));");
// the length of the gradient may be 0, so we need to check for this
// this also compensates for the Adreno, which likes to drop tiles on division by 0
fsBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fsBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fsBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fsBuilder->codeAppend("} else {");
fsBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fsBuilder->codeAppend("}");
fsBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fsBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);");
fragBuilder->codeAppend("if (dg_len2 < 0.0001) {");
fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);");
fragBuilder->codeAppend("} else {");
fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);");
fragBuilder->codeAppend("}");
fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,");
fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);");
// this gives us a smooth step across approximately one fragment
fsBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);");
}
fsBuilder->codeAppend(
fragBuilder->codeAppend(
"vec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);");
// set alpha to be max of rgb coverage
fsBuilder->codeAppend("val.a = max(max(val.r, val.g), val.b);");
fragBuilder->codeAppend("val.a = max(max(val.r, val.g), val.b);");
fsBuilder->codeAppendf("%s = val;", args.fOutputCoverage);
fragBuilder->codeAppendf("%s = val;", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman,

View File

@ -73,7 +73,7 @@ GLDitherEffect::GLDitherEffect(const GrProcessor&) {
}
void GLDitherEffect::emitCode(EmitArgs& args) {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// Generate a random number based on the fragment position. For this
// random number generator, we use the "GLSL rand" function
// that seems to be floating around on the internet. It works under
@ -83,11 +83,11 @@ void GLDitherEffect::emitCode(EmitArgs& args) {
// For each channel c, add the random offset to the pixel to either bump
// it up or let it remain constant during quantization.
fsBuilder->codeAppendf("\t\tfloat r = "
"fract(sin(dot(%s.xy ,vec2(12.9898,78.233))) * 43758.5453);\n",
fsBuilder->fragmentPosition());
fsBuilder->codeAppendf("\t\t%s = (1.0/255.0) * vec4(r, r, r, r) + %s;\n",
args.fOutputColor, GrGLSLExpr4(args.fInputColor).c_str());
fragBuilder->codeAppendf("\t\tfloat r = "
"fract(sin(dot(%s.xy ,vec2(12.9898,78.233))) * 43758.5453);\n",
fragBuilder->fragmentPosition());
fragBuilder->codeAppendf("\t\t%s = (1.0/255.0) * vec4(r, r, r, r) + %s;\n",
args.fOutputColor, GrGLSLExpr4(args.fInputColor).c_str());
}
//////////////////////////////////////////////////////////////////////////////

View File

@ -64,41 +64,40 @@ void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
int kWidth = fKernelSize.width();
int kHeight = fKernelSize.height();
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fsBuilder->codeAppend("vec4 sum = vec4(0, 0, 0, 0);");
fsBuilder->codeAppendf("vec2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset,
imgInc);
fsBuilder->codeAppend("vec4 c;");
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppend("vec4 sum = vec4(0, 0, 0, 0);");
fragBuilder->codeAppendf("vec2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
fragBuilder->codeAppend("vec4 c;");
for (int y = 0; y < kHeight; y++) {
for (int x = 0; x < kWidth; x++) {
GrGLSLShaderBuilder::ShaderBlock block(fsBuilder);
fsBuilder->codeAppendf("float k = %s[%d * %d + %d];", kernel, y, kWidth, x);
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
fragBuilder->codeAppendf("float k = %s[%d * %d + %d];", kernel, y, kWidth, x);
SkString coord;
coord.printf("coord + vec2(%d, %d) * %s", x, y, imgInc);
fDomain.sampleTexture(fsBuilder, domain, "c", coord, args.fSamplers[0]);
fDomain.sampleTexture(fragBuilder, domain, "c", coord, args.fSamplers[0]);
if (!fConvolveAlpha) {
fsBuilder->codeAppend("c.rgb /= c.a;");
fsBuilder->codeAppend("c.rgb = clamp(c.rgb, 0.0, 1.0);");
fragBuilder->codeAppend("c.rgb /= c.a;");
fragBuilder->codeAppend("c.rgb = clamp(c.rgb, 0.0, 1.0);");
}
fsBuilder->codeAppend("sum += c * k;");
fragBuilder->codeAppend("sum += c * k;");
}
}
if (fConvolveAlpha) {
fsBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fsBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
args.fOutputColor, args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
args.fOutputColor, args.fOutputColor, args.fOutputColor);
} else {
fDomain.sampleTexture(fsBuilder, domain, "c", coords2D, args.fSamplers[0]);
fsBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fsBuilder->codeAppendf("%s.rgb = sum.rgb * %s + %s;", args.fOutputColor, gain, bias);
fsBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
fDomain.sampleTexture(fragBuilder, domain, "c", coords2D, args.fSamplers[0]);
fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = sum.rgb * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor,

View File

@ -124,8 +124,8 @@ void GLCircleEffect::emitCode(EmitArgs& args) {
"circle",
&circleName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
SkASSERT(kHairlineAA_GrProcessorEdgeType != ce.getEdgeType());
// TODO: Right now the distance to circle caclulation is performed in a space normalized to the
@ -133,20 +133,20 @@ void GLCircleEffect::emitCode(EmitArgs& args) {
// mediump. It'd be nice to only to this on mediump devices but we currently don't have the
// caps here.
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
fsBuilder->codeAppendf("\t\tfloat d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
fragBuilder->codeAppendf("\t\tfloat d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
} else {
fsBuilder->codeAppendf("\t\tfloat d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
fragBuilder->codeAppendf("\t\tfloat d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
}
if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) {
fsBuilder->codeAppend("\t\td = clamp(d, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\td = clamp(d, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppend("\t\td = d > 0.5 ? 1.0 : 0.0;\n");
fragBuilder->codeAppend("\t\td = d > 0.5 ? 1.0 : 0.0;\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
}
void GLCircleEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
@ -296,39 +296,39 @@ void GLEllipseEffect::emitCode(EmitArgs& args) {
"ellipse",
&ellipseName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// d is the offset to the ellipse center
fsBuilder->codeAppendf("\t\tvec2 d = %s.xy - %s.xy;\n", fragmentPos, ellipseName);
fsBuilder->codeAppendf("\t\tvec2 Z = d * %s.zw;\n", ellipseName);
fragBuilder->codeAppendf("\t\tvec2 d = %s.xy - %s.xy;\n", fragmentPos, ellipseName);
fragBuilder->codeAppendf("\t\tvec2 Z = d * %s.zw;\n", ellipseName);
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
fsBuilder->codeAppend("\t\tfloat implicit = dot(Z, d) - 1.0;\n");
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, d) - 1.0;\n");
// grad_dot is the squared length of the gradient of the implicit.
fsBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fsBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
switch (ee.getEdgeType()) {
case kFillAA_GrProcessorEdgeType:
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
break;
case kInverseFillAA_GrProcessorEdgeType:
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
break;
case kFillBW_GrProcessorEdgeType:
fsBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 0.0 : 1.0;\n");
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 0.0 : 1.0;\n");
break;
case kInverseFillBW_GrProcessorEdgeType:
fsBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 1.0 : 0.0;\n");
fragBuilder->codeAppend("\t\tfloat alpha = approx_dist > 0.0 ? 1.0 : 0.0;\n");
break;
case kHairlineAA_GrProcessorEdgeType:
SkFAIL("Hairline not expected here.");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GLEllipseEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&,

View File

@ -382,44 +382,44 @@ private:
///////////////////////////////////////////////////////////////////////////////
static void append_color_output(const PorterDuffXferProcessor& xp,
GrGLSLXPFragmentBuilder* fsBuilder,
GrGLSLXPFragmentBuilder* fragBuilder,
BlendFormula::OutputType outputType, const char* output,
const char* inColor, const char* inCoverage) {
switch (outputType) {
case BlendFormula::kNone_OutputType:
fsBuilder->codeAppendf("%s = vec4(0.0);", output);
fragBuilder->codeAppendf("%s = vec4(0.0);", output);
break;
case BlendFormula::kCoverage_OutputType:
// We can have a coverage formula while not reading coverage if there are mixed samples.
fsBuilder->codeAppendf("%s = %s;",
fragBuilder->codeAppendf("%s = %s;",
output, xp.readsCoverage() ? inCoverage : "vec4(1.0)");
break;
case BlendFormula::kModulate_OutputType:
if (xp.readsCoverage()) {
fsBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCoverage);
fragBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCoverage);
} else {
fsBuilder->codeAppendf("%s = %s;", output, inColor);
fragBuilder->codeAppendf("%s = %s;", output, inColor);
}
break;
case BlendFormula::kSAModulate_OutputType:
if (xp.readsCoverage()) {
fsBuilder->codeAppendf("%s = %s.a * %s;", output, inColor, inCoverage);
fragBuilder->codeAppendf("%s = %s.a * %s;", output, inColor, inCoverage);
} else {
fsBuilder->codeAppendf("%s = %s;", output, inColor);
fragBuilder->codeAppendf("%s = %s;", output, inColor);
}
break;
case BlendFormula::kISAModulate_OutputType:
if (xp.readsCoverage()) {
fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColor, inCoverage);
fragBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColor, inCoverage);
} else {
fsBuilder->codeAppendf("%s = vec4(1.0 - %s.a);", output, inColor);
fragBuilder->codeAppendf("%s = vec4(1.0 - %s.a);", output, inColor);
}
break;
case BlendFormula::kISCModulate_OutputType:
if (xp.readsCoverage()) {
fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, inColor, inCoverage);
fragBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, inColor, inCoverage);
} else {
fsBuilder->codeAppendf("%s = vec4(1.0) - %s;", output, inColor);
fragBuilder->codeAppendf("%s = vec4(1.0) - %s;", output, inColor);
}
break;
default:
@ -441,14 +441,14 @@ public:
private:
void emitOutputsForBlendState(const EmitArgs& args) override {
const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcessor>();
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
BlendFormula blendFormula = xp.getBlendFormula();
if (blendFormula.hasSecondaryOutput()) {
append_color_output(xp, fsBuilder, blendFormula.fSecondaryOutputType,
append_color_output(xp, fragBuilder, blendFormula.fSecondaryOutputType,
args.fOutputSecondary, args.fInputColor, args.fInputCoverage);
}
append_color_output(xp, fsBuilder, blendFormula.fPrimaryOutputType,
append_color_output(xp, fragBuilder, blendFormula.fPrimaryOutputType,
args.fOutputPrimary, args.fInputColor, args.fInputCoverage);
}
@ -544,12 +544,15 @@ public:
}
private:
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb, const char* srcColor, const char* dstColor,
const char* outColor, const GrXferProcessor& proc) override {
void emitBlendCodeForDstRead(GrGLSLXPBuilder* pb,
GrGLSLXPFragmentBuilder* fragBuilder,
const char* srcColor,
const char* dstColor,
const char* outColor,
const GrXferProcessor& proc) override {
const ShaderPDXferProcessor& xp = proc.cast<ShaderPDXferProcessor>();
GrGLSLXPFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
GrGLSLBlend::AppendMode(fsBuilder, srcColor, dstColor, outColor, xp.getXfermode());
GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.getXfermode());
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}
@ -625,9 +628,9 @@ public:
private:
void emitOutputsForBlendState(const EmitArgs& args) override {
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, args.fInputColor,
args.fInputCoverage);
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, args.fInputColor,
args.fInputCoverage);
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {};

View File

@ -165,8 +165,8 @@ void GLCircularRRectEffect::emitCode(EmitArgs& args) {
"radiusPlusHalf",
&radiusPlusHalfName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// At each quarter-circle corner we compute a vector that is the offset of the fragment position
// from the circle center. The vector is pinned in x and y to be in the quarter-plane relevant
// to that corner. This means that points near the interior near the rrect top edge will have
@ -184,96 +184,104 @@ void GLCircularRRectEffect::emitCode(EmitArgs& args) {
// alphas together.
switch (crre.getCircularCornerFlags()) {
case CircularRRectEffect::kAll_CornerFlags:
fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
fsBuilder->codeAppendf("\t\tfloat alpha = clamp(%s - length(dxy), 0.0, 1.0);\n",
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
fragBuilder->codeAppendf("\t\tfloat alpha = clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kTopLeft_CornerFlag:
fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.xy, 0.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.xy, 0.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf(
"\t\tfloat alpha = bottomAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kTopRight_CornerFlag:
fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.z, %s.y - %s.y), 0.0);\n",
fragmentPos, rectName, rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.z, %s.y - %s.y), 0.0);\n",
fragmentPos, rectName, rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf(
"\t\tfloat alpha = bottomAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kBottomRight_CornerFlag:
fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.zw, 0.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.zw, 0.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf(
"\t\tfloat alpha = topAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kBottomLeft_CornerFlag:
fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.x, %s.y - %s.w), 0.0);\n",
rectName, fragmentPos, fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.x, %s.y - %s.w), 0.0);\n",
rectName, fragmentPos, fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf(
"\t\tfloat alpha = topAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kLeft_CornerFlags:
fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat dy1 = %s.y - %s.w;\n", fragmentPos, rectName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy0.x, max(dxy0.y, dy1)), 0.0);\n");
fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat alpha = rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat dy1 = %s.y - %s.w;\n", fragmentPos, rectName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy0.x, max(dxy0.y, dy1)), 0.0);\n");
fragBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf(
"\t\tfloat alpha = rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kTop_CornerFlags:
fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat dx1 = %s.x - %s.z;\n", fragmentPos, rectName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dxy0.x, dx1), dxy0.y), 0.0);\n");
fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tfloat dx1 = %s.x - %s.z;\n", fragmentPos, rectName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dxy0.x, dx1), dxy0.y), 0.0);\n");
fragBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n",
rectName, fragmentPos);
fragBuilder->codeAppendf(
"\t\tfloat alpha = bottomAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kRight_CornerFlags:
fsBuilder->codeAppendf("\t\tfloat dy0 = %s.y - %s.y;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy1.x, max(dy0, dxy1.y)), 0.0);\n");
fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat alpha = leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tfloat dy0 = %s.y - %s.y;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy1.x, max(dy0, dxy1.y)), 0.0);\n");
fragBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf(
"\t\tfloat alpha = leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
case CircularRRectEffect::kBottom_CornerFlags:
fsBuilder->codeAppendf("\t\tfloat dx0 = %s.x - %s.x;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dx0, dxy1.x), dxy1.y), 0.0);\n");
fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
fragBuilder->codeAppendf("\t\tfloat dx0 = %s.x - %s.x;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fragBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dx0, dxy1.x), dxy1.y), 0.0);\n");
fragBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n",
fragmentPos, rectName);
fragBuilder->codeAppendf(
"\t\tfloat alpha = topAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n",
radiusPlusHalfName);
break;
}
if (kInverseFillAA_GrProcessorEdgeType == crre.getEdgeType()) {
fsBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
fragBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GLCircularRRectEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
@ -503,8 +511,8 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
"innerRect",
&rectName);
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos
// to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant
// to that corner. This means that points near the interior near the rrect top edge will have
@ -517,8 +525,8 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
// The code below is a simplified version of the above that performs maxs on the vector
// components before computing distances and alpha values so that only one distance computation
// need be computed to determine the min alpha.
fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
fragBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fragBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
// The uniforms with the inv squared radii are highp to prevent underflow.
switch (erre.getRRect().getType()) {
case SkRRect::kSimple_Type: {
@ -528,9 +536,9 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
kVec2f_GrSLType, kHigh_GrSLPrecision,
"invRadiiXY",
&invRadiiXYSqdName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
// Z is the x/y offsets divided by squared radii.
fsBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName);
fragBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName);
break;
}
case SkRRect::kNinePatch_Type: {
@ -540,33 +548,33 @@ void GLEllipticalRRectEffect::emitCode(EmitArgs& args) {
kVec4f_GrSLType, kHigh_GrSLPrecision,
"invRadiiLTRB",
&invRadiiLTRBSqdName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
fragBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
// Z is the x/y offsets divided by squared radii. We only care about the (at most) one
// corner where both the x and y offsets are positive, hence the maxes. (The inverse
// squared radii will always be positive.)
fsBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n",
invRadiiLTRBSqdName, invRadiiLTRBSqdName);
fragBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n",
invRadiiLTRBSqdName, invRadiiLTRBSqdName);
break;
}
default:
SkFAIL("RRect should always be simple or nine-patch.");
}
// implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1.
fsBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n");
fragBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n");
// grad_dot is the squared length of the gradient of the implicit.
fsBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
fragBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fsBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
fragBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fragBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
fragBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GLEllipticalRRectEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&,

View File

@ -17,13 +17,13 @@ public:
GrGLSimpleTextureEffect(const GrProcessor&) {}
virtual void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t%s = ", args.fOutputColor);
fsBuilder->appendTextureLookupAndModulate(args.fInputColor,
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("\t%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fInputColor,
args.fSamplers[0],
args.fCoords[0].c_str(),
args.fCoords[0].getType());
fsBuilder->codeAppend(";\n");
fragBuilder->codeAppend(";\n");
}
private:

View File

@ -195,9 +195,9 @@ void GrGLTextureDomainEffect::emitCode(EmitArgs& args) {
const GrTextureDomainEffect& textureDomainEffect = args.fFp.cast<GrTextureDomainEffect>();
const GrTextureDomain& domain = textureDomainEffect.textureDomain();
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
fGLDomain.sampleTexture(fsBuilder, domain, args.fOutputColor, coords2D, args.fSamplers[0],
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fGLDomain.sampleTexture(fragBuilder, domain, args.fOutputColor, coords2D, args.fSamplers[0],
args.fInputColor);
}

View File

@ -89,13 +89,13 @@ GrGLSLFragmentProcessor* ComposeTwoFragmentProcessor::onCreateGLSLInstance() con
void GLComposeTwoFragmentProcessor::emitCode(EmitArgs& args) {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const ComposeTwoFragmentProcessor& cs = args.fFp.cast<ComposeTwoFragmentProcessor>();
const char* inputColor = nullptr;
if (args.fInputColor) {
inputColor = "inputColor";
fsBuilder->codeAppendf("vec4 inputColor = vec4(%s.rgb, 1.0);", args.fInputColor);
fragBuilder->codeAppendf("vec4 inputColor = vec4(%s.rgb, 1.0);", args.fInputColor);
}
// declare outputColor and emit the code for each of the two children
@ -107,12 +107,16 @@ void GLComposeTwoFragmentProcessor::emitCode(EmitArgs& args) {
// emit blend code
SkXfermode::Mode mode = cs.getMode();
fsBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mode));
GrGLSLBlend::AppendMode(fsBuilder, srcColor.c_str(), dstColor.c_str(), args.fOutputColor, mode);
fragBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mode));
GrGLSLBlend::AppendMode(fragBuilder,
srcColor.c_str(),
dstColor.c_str(),
args.fOutputColor,
mode);
// re-multiply the output color by the input color's alpha
if (args.fInputColor) {
fsBuilder->codeAppendf("%s *= %s.a;", args.fOutputColor, args.fInputColor);
fragBuilder->codeAppendf("%s *= %s.a;", args.fOutputColor, args.fInputColor);
}
}
@ -219,7 +223,7 @@ public:
GLComposeOneFragmentProcessor(const GrProcessor& processor) {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
SkXfermode::Mode mode = args.fFp.cast<ComposeOneFragmentProcessor>().mode();
ComposeOneFragmentProcessor::Child child =
args.fFp.cast<ComposeOneFragmentProcessor>().child();
@ -229,17 +233,17 @@ public:
const char* inputColor = args.fInputColor;
// We don't try to optimize for this case at all
if (!inputColor) {
fsBuilder->codeAppendf("const vec4 ones = vec4(1);");
fragBuilder->codeAppendf("const vec4 ones = vec4(1);");
inputColor = "ones";
}
// emit blend code
fsBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mode));
fragBuilder->codeAppendf("// Compose Xfer Mode: %s\n", SkXfermode::ModeName(mode));
const char* childStr = childColor.c_str();
if (ComposeOneFragmentProcessor::kDst_Child == child) {
GrGLSLBlend::AppendMode(fsBuilder, inputColor, childStr, args.fOutputColor, mode);
GrGLSLBlend::AppendMode(fragBuilder, inputColor, childStr, args.fOutputColor, mode);
} else {
GrGLSLBlend::AppendMode(fsBuilder, childStr, inputColor, args.fOutputColor, mode);
GrGLSLBlend::AppendMode(fragBuilder, childStr, inputColor, args.fOutputColor, mode);
}
}

View File

@ -64,22 +64,22 @@ public:
GLSLProcessor(const GrProcessor&) {}
virtual void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* yuvMatrix = nullptr;
fMatrixUni = args.fBuilder->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"YUVMatrix", &yuvMatrix);
fsBuilder->codeAppendf("\t%s = vec4(\n\t\t", args.fOutputColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fsBuilder->codeAppend(".r,\n\t\t");
fsBuilder->appendTextureLookup(args.fSamplers[1], args.fCoords[1].c_str(),
args.fCoords[1].getType());
fsBuilder->codeAppend(".r,\n\t\t");
fsBuilder->appendTextureLookup(args.fSamplers[2], args.fCoords[2].c_str(),
args.fCoords[2].getType());
fsBuilder->codeAppendf(".r,\n\t\t1.0) * %s;\n", yuvMatrix);
fragBuilder->codeAppendf("\t%s = vec4(\n\t\t", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fragBuilder->codeAppend(".r,\n\t\t");
fragBuilder->appendTextureLookup(args.fSamplers[1], args.fCoords[1].c_str(),
args.fCoords[1].getType());
fragBuilder->codeAppend(".r,\n\t\t");
fragBuilder->appendTextureLookup(args.fSamplers[2], args.fCoords[2].c_str(),
args.fCoords[2].getType());
fragBuilder->codeAppendf(".r,\n\t\t1.0) * %s;\n", yuvMatrix);
}
protected:

View File

@ -95,7 +95,7 @@ GrGLProgramBuilder::SeparableVaryingHandle GrGLProgramBuilder::addSeparableVaryi
fArgs.fPrimitiveProcessor->numAttribs() == 0);
this->addVarying(name, v, fsPrecision);
SeparableVaryingInfo& varyingInfo = fSeparableVaryingInfos.push_back();
varyingInfo.fVariable = this->getFragmentShaderBuilder()->fInputs.back();
varyingInfo.fVariable = fFS.fInputs.back();
varyingInfo.fLocation = fSeparableVaryingInfos.count() - 1;
return SeparableVaryingHandle(varyingInfo.fLocation);
}
@ -260,6 +260,7 @@ void GrGLProgramBuilder::emitAndInstallProc(const GrFragmentProcessor& fp,
this->emitSamplers(fp, &samplers, ifp);
GrGLSLFragmentProcessor::EmitArgs args(this,
&fFS,
fp,
outColor,
inColor,
@ -284,7 +285,7 @@ void GrGLProgramBuilder::emitAndInstallProc(const GrPrimitiveProcessor& gp,
SkSTArray<4, GrGLSLTextureSampler> samplers(gp.numTextures());
this->emitSamplers(gp, &samplers, fGeometryProcessor);
GrGLSLGeometryProcessor::EmitArgs args(this, gp, outColor, outCoverage, samplers,
GrGLSLGeometryProcessor::EmitArgs args(this, &fVS, &fFS, gp, outColor, outCoverage, samplers,
fCoordTransforms, &fOutCoords);
fGeometryProcessor->fGLProc->emitCode(args);
@ -320,9 +321,9 @@ void GrGLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp,
SkSTArray<4, GrGLSLTextureSampler> samplers(xp.numTextures());
this->emitSamplers(xp, &samplers, fXferProcessor);
GrGLSLXferProcessor::EmitArgs args(this, xp, colorIn.c_str(), coverageIn.c_str(),
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(), samplers);
GrGLSLXferProcessor::EmitArgs args(this, &fFS, xp, colorIn.c_str(), coverageIn.c_str(),
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(), samplers);
fXferProcessor->fGLProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect

View File

@ -25,20 +25,20 @@ void GrGLSLFragmentProcessor::emitChild(int childIndex, const char* inputColor,
}
void GrGLSLFragmentProcessor::emitChild(int childIndex, const char* inputColor,
SkString* outputColor, EmitArgs& args) {
SkString* outputColor, EmitArgs& args) {
SkASSERT(outputColor);
GrGLSLFragmentBuilder* fb = args.fBuilder->getFragmentShaderBuilder();
outputColor->append(fb->getMangleString());
fb->codeAppendf("vec4 %s;", outputColor->c_str());
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
outputColor->append(fragBuilder->getMangleString());
fragBuilder->codeAppendf("vec4 %s;", outputColor->c_str());
this->internalEmitChild(childIndex, inputColor, outputColor->c_str(), args);
}
void GrGLSLFragmentProcessor::internalEmitChild(int childIndex, const char* inputColor,
const char* outputColor, EmitArgs& args) {
GrGLSLFragmentBuilder* fb = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fb->onBeforeChildProcEmitCode(); // call first so mangleString is updated
fragBuilder->onBeforeChildProcEmitCode(); // call first so mangleString is updated
const GrFragmentProcessor& childProc = args.fFp.childProcessor(childIndex);
@ -90,17 +90,18 @@ void GrGLSLFragmentProcessor::internalEmitChild(int childIndex, const char* inpu
}
// emit the code for the child in its own scope
fb->codeAppend("{\n");
fb->codeAppendf("// Child Index %d (mangle: %s): %s\n", childIndex,
fb->getMangleString().c_str(), childProc.name());
fragBuilder->codeAppend("{\n");
fragBuilder->codeAppendf("// Child Index %d (mangle: %s): %s\n", childIndex,
fragBuilder->getMangleString().c_str(), childProc.name());
EmitArgs childArgs(args.fBuilder,
fragBuilder,
childProc,
outputColor,
inputColor,
childCoords,
childSamplers);
this->childProcessor(childIndex)->emitCode(childArgs);
fb->codeAppend("}\n");
fragBuilder->codeAppend("}\n");
fb->onAfterChildProcEmitCode();
fragBuilder->onAfterChildProcEmitCode();
}

View File

@ -15,6 +15,7 @@
class GrProcessor;
class GrProcessorKeyBuilder;
class GrGLSLFPBuilder;
class GrGLSLFragmentBuilder;
class GrGLSLCaps;
class GrGLSLFragmentProcessor {
@ -51,18 +52,21 @@ public:
struct EmitArgs {
EmitArgs(GrGLSLFPBuilder* builder,
GrGLSLFragmentBuilder* fragBuilder,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const GrGLSLTransformedCoordsArray& coords,
const TextureSamplerArray& samplers)
: fBuilder(builder)
, fFragBuilder(fragBuilder)
, fFp(fp)
, fOutputColor(outputColor)
, fInputColor(inputColor)
, fCoords(coords)
, fSamplers(samplers) {}
GrGLSLFPBuilder* fBuilder;
GrGLSLFragmentBuilder* fFragBuilder;
const GrFragmentProcessor& fFp;
const char* fOutputColor;
const char* fInputColor;

View File

@ -13,19 +13,19 @@
#include "glsl/GrGLSLVertexShaderBuilder.h"
void GrGLSLGeometryProcessor::emitCode(EmitArgs& args) {
GrGLSLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
GrGLSLVertexBuilder* vBuilder = args.fVertBuilder;
GrGPArgs gpArgs;
this->onEmitCode(args, &gpArgs);
vsBuilder->transformToNormalizedDeviceSpace(gpArgs.fPositionVar);
vBuilder->transformToNormalizedDeviceSpace(gpArgs.fPositionVar);
}
void GrGLSLGeometryProcessor::emitTransforms(GrGLSLGPBuilder* pb,
GrGLSLVertexBuilder* vb,
const GrShaderVar& posVar,
const char* localCoords,
const SkMatrix& localMatrix,
const TransformsIn& tin,
TransformsOut* tout) {
GrGLSLVertexBuilder* vb = pb->getVertexShaderBuilder();
tout->push_back_n(tin.count());
fInstalledTransforms.push_back_n(tin.count());
for (int i = 0; i < tin.count(); i++) {
@ -93,10 +93,10 @@ void GrGLSLGeometryProcessor::emitTransforms(GrGLSLGPBuilder* pb,
}
void GrGLSLGeometryProcessor::emitTransforms(GrGLSLGPBuilder* pb,
GrGLSLVertexBuilder* vb,
const char* localCoords,
const TransformsIn& tin,
TransformsOut* tout) {
GrGLSLVertexBuilder* vb = pb->getVertexShaderBuilder();
tout->push_back_n(tin.count());
for (int i = 0; i < tin.count(); i++) {
const ProcCoords& coordTransforms = tin[i];
@ -122,22 +122,22 @@ void GrGLSLGeometryProcessor::emitTransforms(GrGLSLGPBuilder* pb,
}
void GrGLSLGeometryProcessor::setupPosition(GrGLSLGPBuilder* pb,
GrGLSLVertexBuilder* vertBuilder,
GrGPArgs* gpArgs,
const char* posName) {
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2");
vsBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName);
vertBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName);
}
void GrGLSLGeometryProcessor::setupPosition(GrGLSLGPBuilder* pb,
GrGLSLVertexBuilder* vertBuilder,
GrGPArgs* gpArgs,
const char* posName,
const SkMatrix& mat,
UniformHandle* viewMatrixUniform) {
GrGLSLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
if (mat.isIdentity()) {
gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2");
vsBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName);
vertBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName);
} else {
const char* viewMatrixName;
*viewMatrixUniform = pb->addUniform(GrGLSLProgramBuilder::kVertex_Visibility,
@ -146,12 +146,12 @@ void GrGLSLGeometryProcessor::setupPosition(GrGLSLGPBuilder* pb,
&viewMatrixName);
if (!mat.hasPerspective()) {
gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2");
vsBuilder->codeAppendf("vec2 %s = vec2(%s * vec3(%s, 1));",
gpArgs->fPositionVar.c_str(), viewMatrixName, posName);
vertBuilder->codeAppendf("vec2 %s = vec2(%s * vec3(%s, 1));",
gpArgs->fPositionVar.c_str(), viewMatrixName, posName);
} else {
gpArgs->fPositionVar.set(kVec3f_GrSLType, "pos3");
vsBuilder->codeAppendf("vec3 %s = %s * vec3(%s, 1);",
gpArgs->fPositionVar.c_str(), viewMatrixName, posName);
vertBuilder->codeAppendf("vec3 %s = %s * vec3(%s, 1);",
gpArgs->fPositionVar.c_str(), viewMatrixName, posName);
}
}
}

View File

@ -43,15 +43,17 @@ public:
protected:
// Emit a uniform matrix for each coord transform.
void emitTransforms(GrGLSLGPBuilder* gp,
GrGLSLVertexBuilder* vb,
const GrShaderVar& posVar,
const char* localCoords,
const TransformsIn& tin,
TransformsOut* tout) {
this->emitTransforms(gp, posVar, localCoords, SkMatrix::I(), tin, tout);
this->emitTransforms(gp, vb, posVar, localCoords, SkMatrix::I(), tin, tout);
}
// Emit pre-transformed coords as a vertex attribute per coord-transform.
void emitTransforms(GrGLSLGPBuilder*,
GrGLSLVertexBuilder*,
const GrShaderVar& posVar,
const char* localCoords,
const SkMatrix& localMatrix,
@ -60,6 +62,7 @@ protected:
// caller has emitted transforms via attributes
void emitTransforms(GrGLSLGPBuilder*,
GrGLSLVertexBuilder*,
const char* localCoords,
const TransformsIn& tin,
TransformsOut* tout);
@ -71,8 +74,12 @@ protected:
};
// Create the correct type of position variable given the CTM
void setupPosition(GrGLSLGPBuilder*, GrGPArgs*, const char* posName);
void setupPosition(GrGLSLGPBuilder*, GrGPArgs*, const char* posName, const SkMatrix& mat,
void setupPosition(GrGLSLGPBuilder*, GrGLSLVertexBuilder*, GrGPArgs*, const char* posName);
void setupPosition(GrGLSLGPBuilder*,
GrGLSLVertexBuilder*,
GrGPArgs*,
const char* posName,
const SkMatrix& mat,
UniformHandle* viewMatrixUniform);
static uint32_t ComputePosKey(const SkMatrix& mat) {

View File

@ -33,9 +33,9 @@ SkMatrix GrGLSLPrimitiveProcessor::GetTransformMatrix(const SkMatrix& localMatri
}
void GrGLSLPrimitiveProcessor::setupUniformColor(GrGLSLGPBuilder* pb,
GrGLSLFragmentBuilder* fragBuilder,
const char* outputName,
UniformHandle* colorUniform) {
GrGLSLFragmentBuilder* fs = pb->getFragmentShaderBuilder();
SkASSERT(colorUniform);
const char* stagedLocalVarName;
*colorUniform = pb->addUniform(GrGLSLProgramBuilder::kFragment_Visibility,
@ -43,5 +43,5 @@ void GrGLSLPrimitiveProcessor::setupUniformColor(GrGLSLGPBuilder* pb,
kDefault_GrSLPrecision,
"Color",
&stagedLocalVarName);
fs->codeAppendf("%s = %s;", outputName, stagedLocalVarName);
fragBuilder->codeAppendf("%s = %s;", outputName, stagedLocalVarName);
}

View File

@ -15,6 +15,8 @@
class GrBatchTracker;
class GrPrimitiveProcessor;
class GrGLSLVertexBuilder;
class GrGLSLFragmentBuilder;
class GrGLSLGPBuilder;
class GrGLSLPrimitiveProcessor {
@ -30,6 +32,8 @@ public:
struct EmitArgs {
EmitArgs(GrGLSLGPBuilder* pb,
GrGLSLVertexBuilder* vertBuilder,
GrGLSLFragmentBuilder* fragBuilder,
const GrPrimitiveProcessor& gp,
const char* outputColor,
const char* outputCoverage,
@ -37,6 +41,8 @@ public:
const TransformsIn& transformsIn,
TransformsOut* transformsOut)
: fPB(pb)
, fVertBuilder(vertBuilder)
, fFragBuilder(fragBuilder)
, fGP(gp)
, fOutputColor(outputColor)
, fOutputCoverage(outputCoverage)
@ -44,6 +50,8 @@ public:
, fTransformsIn(transformsIn)
, fTransformsOut(transformsOut) {}
GrGLSLGPBuilder* fPB;
GrGLSLVertexBuilder* fVertBuilder;
GrGLSLFragmentBuilder* fFragBuilder;
const GrPrimitiveProcessor& fGP;
const char* fOutputColor;
const char* fOutputCoverage;
@ -76,6 +84,7 @@ public:
protected:
void setupUniformColor(GrGLSLGPBuilder* pb,
GrGLSLFragmentBuilder* fragBuilder,
const char* outputName,
UniformHandle* colorUniform);

View File

@ -165,10 +165,6 @@ public:
const char* name, GrGLSLVertToFrag*,
GrSLPrecision fsPrecision = kDefault_GrSLPrecision) = 0;
// TODO rename getFragmentBuilder
virtual GrGLSLFragmentBuilder* getFragmentShaderBuilder() = 0;
virtual GrGLSLVertexBuilder* getVertexShaderBuilder() = 0;
/*
* *NOTE* NO MEMBERS ALLOWED, MULTIPLE INHERITANCE
*/
@ -178,8 +174,6 @@ public:
/* a specializations for FPs. Lets the user add uniforms and FS code */
class GrGLSLFPBuilder : public virtual GrGLSLUniformBuilder {
public:
virtual GrGLSLFragmentBuilder* getFragmentShaderBuilder() = 0;
/*
* *NOTE* NO MEMBERS ALLOWED, MULTIPLE INHERITANCE
*/
@ -188,8 +182,6 @@ public:
/* a specializations for XPs. Lets the user add uniforms and FS code */
class GrGLSLXPBuilder : public virtual GrGLSLUniformBuilder {
public:
virtual GrGLSLXPFragmentBuilder* getFragmentShaderBuilder() = 0;
/*
* *NOTE* NO MEMBERS ALLOWED, MULTIPLE INHERITANCE
*/
@ -201,9 +193,6 @@ class GrGLSLProgramBuilder : public GrGLSLGPBuilder,
public:
typedef GrGpu::DrawArgs DrawArgs;
GrGLSLXPFragmentBuilder* getFragmentShaderBuilder() override { return &fFS; }
GrGLSLVertexBuilder* getVertexShaderBuilder() override { return &fVS; }
// Handles for program uniforms (other than per-effect uniforms)
struct BuiltinUniformHandles {
UniformHandle fRTAdjustmentUni;

View File

@ -18,8 +18,8 @@ void GrGLSLXferProcessor::emitCode(const EmitArgs& args) {
return;
}
GrGLSLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
const char* dstColor = fsBuilder->dstColor();
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
const char* dstColor = fragBuilder->dstColor();
if (args.fXP.getDstTexture()) {
bool topDown = kTopLeft_GrSurfaceOrigin == args.fXP.getDstTexture()->origin();
@ -27,9 +27,9 @@ void GrGLSLXferProcessor::emitCode(const EmitArgs& args) {
if (args.fXP.readsCoverage()) {
// We don't think any shaders actually output negative coverage, but just as a safety
// check for floating point precision errors we compare with <= here
fsBuilder->codeAppendf("if (all(lessThanEqual(%s, vec4(0)))) {"
" discard;"
"}", args.fInputCoverage);
fragBuilder->codeAppendf("if (all(lessThanEqual(%s, vec4(0)))) {"
" discard;"
"}", args.fInputCoverage);
}
const char* dstTopLeftName;
@ -45,36 +45,40 @@ void GrGLSLXferProcessor::emitCode(const EmitArgs& args) {
kDefault_GrSLPrecision,
"DstTextureCoordScale",
&dstCoordScaleName);
const char* fragPos = fsBuilder->fragmentPosition();
const char* fragPos = fragBuilder->fragmentPosition();
fsBuilder->codeAppend("// Read color from copy of the destination.\n");
fsBuilder->codeAppendf("vec2 _dstTexCoord = (%s.xy - %s) * %s;",
fragPos, dstTopLeftName, dstCoordScaleName);
fragBuilder->codeAppend("// Read color from copy of the destination.\n");
fragBuilder->codeAppendf("vec2 _dstTexCoord = (%s.xy - %s) * %s;",
fragPos, dstTopLeftName, dstCoordScaleName);
if (!topDown) {
fsBuilder->codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;");
fragBuilder->codeAppend("_dstTexCoord.y = 1.0 - _dstTexCoord.y;");
}
fsBuilder->codeAppendf("vec4 %s = ", dstColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], "_dstTexCoord", kVec2f_GrSLType);
fsBuilder->codeAppend(";");
fragBuilder->codeAppendf("vec4 %s = ", dstColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], "_dstTexCoord", kVec2f_GrSLType);
fragBuilder->codeAppend(";");
}
this->emitBlendCodeForDstRead(args.fPB, args.fInputColor, dstColor, args.fOutputPrimary,
this->emitBlendCodeForDstRead(args.fPB,
fragBuilder,
args.fInputColor,
dstColor,
args.fOutputPrimary,
args.fXP);
// Apply coverage.
if (args.fXP.dstReadUsesMixedSamples()) {
if (args.fXP.readsCoverage()) {
fsBuilder->codeAppendf("%s *= %s;", args.fOutputPrimary, args.fInputCoverage);
fsBuilder->codeAppendf("%s = %s;", args.fOutputSecondary, args.fInputCoverage);
fragBuilder->codeAppendf("%s *= %s;", args.fOutputPrimary, args.fInputCoverage);
fragBuilder->codeAppendf("%s = %s;", args.fOutputSecondary, args.fInputCoverage);
} else {
fsBuilder->codeAppendf("%s = vec4(1.0);", args.fOutputSecondary);
fragBuilder->codeAppendf("%s = vec4(1.0);", args.fOutputSecondary);
}
} else if (args.fXP.readsCoverage()) {
fsBuilder->codeAppendf("%s = %s * %s + (vec4(1.0) - %s) * %s;",
args.fOutputPrimary, args.fInputCoverage,
args.fOutputPrimary, args.fInputCoverage, dstColor);
fragBuilder->codeAppendf("%s = %s * %s + (vec4(1.0) - %s) * %s;",
args.fOutputPrimary, args.fInputCoverage,
args.fOutputPrimary, args.fInputCoverage, dstColor);
}
}

View File

@ -11,6 +11,7 @@
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLTextureSampler.h"
class GrGLSLXPFragmentBuilder;
class GrGLSLXPBuilder;
class GrXferProcessor;
@ -22,6 +23,7 @@ public:
typedef GrGLSLTextureSampler::TextureSamplerArray TextureSamplerArray;
struct EmitArgs {
EmitArgs(GrGLSLXPBuilder* pb,
GrGLSLXPFragmentBuilder* fragBuilder,
const GrXferProcessor& xp,
const char* inputColor,
const char* inputCoverage,
@ -29,6 +31,7 @@ public:
const char* outputSecondary,
const TextureSamplerArray& samplers)
: fPB(pb)
, fXPFragBuilder(fragBuilder)
, fXP(xp)
, fInputColor(inputColor)
, fInputCoverage(inputCoverage)
@ -37,6 +40,7 @@ public:
, fSamplers(samplers) {}
GrGLSLXPBuilder* fPB;
GrGLSLXPFragmentBuilder* fXPFragBuilder;
const GrXferProcessor& fXP;
const char* fInputColor;
const char* fInputCoverage;
@ -75,6 +79,7 @@ private:
* method if it can construct a GrXferProcessor that reads the dst color.
*/
virtual void emitBlendCodeForDstRead(GrGLSLXPBuilder*,
GrGLSLXPFragmentBuilder*,
const char* srcColor,
const char* dstColor,
const char* outColor,

View File

@ -48,11 +48,11 @@ public:
virtual void emitCode(EmitArgs& args) override {
// pass through
GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
if (args.fInputColor) {
fsBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor);
fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor);
} else {
fsBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor);
fragBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor);
}
}