archive skpx... currently dead code

BUG=skia:
CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot

Review URL: https://codereview.chromium.org/1521623003
This commit is contained in:
mtklein 2015-12-11 12:04:47 -08:00 committed by Commit bot
parent 0ff46c06b7
commit 52e2581700
4 changed files with 0 additions and 543 deletions

View File

@ -1,89 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPx_DEFINED
#define SkPx_DEFINED
#include "SkTypes.h"
#include "SkColorPriv.h"
// We'll include one of src/opts/SkPx_{sse,neon,none}.h to define a type SkPx.
//
// SkPx represents up to SkPx::N 8888 pixels. It's agnostic to whether these
// are SkColors or SkPMColors; it only assumes that alpha is the high byte.
static_assert(SK_A32_SHIFT == 24, "For both SkColor and SkPMColor, alpha is always the high byte.");
//
// SkPx::Alpha represents up to SkPx::N 8-bit values, usually coverage or alpha.
// SkPx::Wide represents up to SkPx::N pixels with 16 bits per component.
//
// SkPx supports the following methods:
// static SkPx Dup(uint32_t);
// static SkPx Load(const uint32_t*);
// static SkPx Load(const uint32_t*, int n); // where 0<n<SkPx::N
// void store(uint32_t*) const;
// void store(uint32_t*, int n) const; // where 0<n<SkPx::N
//
// Alpha alpha() const; // argb -> a
// Wide widenLo() const; // argb -> 0a0r0g0b
// Wide widenHi() const; // argb -> a0r0g0b0
// Wide widenLoHi() const; // argb -> aarrggbb
//
// SkPx operator+(const SkPx&) const;
// SkPx operator-(const SkPx&) const;
// SkPx saturatedAdd(const SkPx&) const;
//
// Wide operator*(const Alpha&) const; // argb * A -> (a*A)(r*A)(g*A)(b*A)
//
// // Fast approximate (px*a+127)/255.
// // Never off by more than 1, and always correct when px or a is 0 or 255.
// // We use the approximation (px*a+px)/256.
// SkPx approxMulDiv255(const Alpha&) const;
//
// SkPx addAlpha(const Alpha&) const; // argb + A -> (a+A)rgb
//
// SkPx::Alpha supports the following methods:
// static Alpha Dup(uint8_t);
// static Alpha Load(const uint8_t*);
// static Alpha Load(const uint8_t*, int n); // where 0<n<SkPx::N
//
// Alpha inv() const; // a -> 255-a
//
// SkPx::Wide supports the following methods:
// Wide operator+(const Wide&);
// Wide operator-(const Wide&);
// Wide shl<int bits>();
// Wide shr<int bits>();
//
// // Return the high byte of each component of (*this + o.widenLo()).
// SkPx addNarrowHi(const SkPx& o);
//
// Methods left unwritten, but certainly to come:
// SkPx SkPx::operator<(const SkPx&) const;
// SkPx SkPx::thenElse(const SkPx& then, const SkPx& else) const;
// Wide Wide::operator<(const Wide&) const;
// Wide Wide::thenElse(const Wide& then, const Wide& else) const;
//
// SkPx Wide::div255() const; // Rounds, think (*this + 127) / 255.
//
// The different implementations of SkPx have complete freedom to choose
// SkPx::N and how they represent SkPx, SkPx::Alpha, and SkPx::Wide.
//
// All observable math must remain identical.
#if defined(SKNX_NO_SIMD)
#include "../opts/SkPx_none.h"
#else
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "../opts/SkPx_sse.h"
#elif defined(SK_ARM_HAS_NEON)
#include "../opts/SkPx_neon.h"
#else
#include "../opts/SkPx_none.h"
#endif
#endif
#endif//SkPx_DEFINED

View File

@ -1,188 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPx_neon_DEFINED
#define SkPx_neon_DEFINED
// When we have NEON, we like to work 8 pixels at a time.
// This lets us exploit vld4/vst4 and represent SkPx as planar uint8x8x4_t,
// Wide as planar uint16x8x4_t, and Alpha as a single uint8x8_t plane.
namespace neon {
struct SkPx {
static const int N = 8;
uint8x8x4_t fVec;
SkPx(uint8x8x4_t vec) : fVec(vec) {}
static SkPx Dup(uint32_t px) { return vld4_dup_u8((const uint8_t*)&px); }
static SkPx Load(const uint32_t* px) { return vld4_u8((const uint8_t*)px); }
static SkPx Load(const uint32_t* px, int n) {
SkASSERT(0 < n && n < 8);
uint8x8x4_t v = vld4_dup_u8((const uint8_t*)px); // n>=1, so start all lanes with pixel 0.
switch (n) {
case 7: v = vld4_lane_u8((const uint8_t*)(px+6), v, 6); // fall through
case 6: v = vld4_lane_u8((const uint8_t*)(px+5), v, 5); // fall through
case 5: v = vld4_lane_u8((const uint8_t*)(px+4), v, 4); // fall through
case 4: v = vld4_lane_u8((const uint8_t*)(px+3), v, 3); // fall through
case 3: v = vld4_lane_u8((const uint8_t*)(px+2), v, 2); // fall through
case 2: v = vld4_lane_u8((const uint8_t*)(px+1), v, 1);
}
return v;
}
void store(uint32_t* px) const { vst4_u8((uint8_t*)px, fVec); }
void store(uint32_t* px, int n) const {
SkASSERT(0 < n && n < 8);
switch (n) {
case 7: vst4_lane_u8((uint8_t*)(px+6), fVec, 6);
case 6: vst4_lane_u8((uint8_t*)(px+5), fVec, 5);
case 5: vst4_lane_u8((uint8_t*)(px+4), fVec, 4);
case 4: vst4_lane_u8((uint8_t*)(px+3), fVec, 3);
case 3: vst4_lane_u8((uint8_t*)(px+2), fVec, 2);
case 2: vst4_lane_u8((uint8_t*)(px+1), fVec, 1);
case 1: vst4_lane_u8((uint8_t*)(px+0), fVec, 0);
}
}
struct Alpha {
uint8x8_t fA;
Alpha(uint8x8_t a) : fA(a) {}
static Alpha Dup(uint8_t a) { return vdup_n_u8(a); }
static Alpha Load(const uint8_t* a) { return vld1_u8(a); }
static Alpha Load(const uint8_t* a, int n) {
SkASSERT(0 < n && n < 8);
uint8x8_t v = vld1_dup_u8(a); // n>=1, so start all lanes with alpha 0.
switch (n) {
case 7: v = vld1_lane_u8(a+6, v, 6); // fall through
case 6: v = vld1_lane_u8(a+5, v, 5); // fall through
case 5: v = vld1_lane_u8(a+4, v, 4); // fall through
case 4: v = vld1_lane_u8(a+3, v, 3); // fall through
case 3: v = vld1_lane_u8(a+2, v, 2); // fall through
case 2: v = vld1_lane_u8(a+1, v, 1);
}
return v;
}
Alpha inv() const { return vsub_u8(vdup_n_u8(255), fA); }
};
struct Wide {
uint16x8x4_t fVec;
Wide(uint16x8x4_t vec) : fVec(vec) {}
Wide operator+(const Wide& o) const {
return (uint16x8x4_t) {{
vaddq_u16(fVec.val[0], o.fVec.val[0]),
vaddq_u16(fVec.val[1], o.fVec.val[1]),
vaddq_u16(fVec.val[2], o.fVec.val[2]),
vaddq_u16(fVec.val[3], o.fVec.val[3]),
}};
}
Wide operator-(const Wide& o) const {
return (uint16x8x4_t) {{
vsubq_u16(fVec.val[0], o.fVec.val[0]),
vsubq_u16(fVec.val[1], o.fVec.val[1]),
vsubq_u16(fVec.val[2], o.fVec.val[2]),
vsubq_u16(fVec.val[3], o.fVec.val[3]),
}};
}
template <int bits> Wide shl() const {
return (uint16x8x4_t) {{
vshlq_n_u16(fVec.val[0], bits),
vshlq_n_u16(fVec.val[1], bits),
vshlq_n_u16(fVec.val[2], bits),
vshlq_n_u16(fVec.val[3], bits),
}};
}
template <int bits> Wide shr() const {
return (uint16x8x4_t) {{
vshrq_n_u16(fVec.val[0], bits),
vshrq_n_u16(fVec.val[1], bits),
vshrq_n_u16(fVec.val[2], bits),
vshrq_n_u16(fVec.val[3], bits),
}};
}
SkPx addNarrowHi(const SkPx& o) const {
return (uint8x8x4_t) {{
vshrn_n_u16(vaddw_u8(fVec.val[0], o.fVec.val[0]), 8),
vshrn_n_u16(vaddw_u8(fVec.val[1], o.fVec.val[1]), 8),
vshrn_n_u16(vaddw_u8(fVec.val[2], o.fVec.val[2]), 8),
vshrn_n_u16(vaddw_u8(fVec.val[3], o.fVec.val[3]), 8),
}};
}
};
Alpha alpha() const { return fVec.val[3]; }
Wide widenLo() const {
return (uint16x8x4_t) {{
vmovl_u8(fVec.val[0]),
vmovl_u8(fVec.val[1]),
vmovl_u8(fVec.val[2]),
vmovl_u8(fVec.val[3]),
}};
}
// TODO: these two can probably be done faster.
Wide widenHi() const { return this->widenLo().shl<8>(); }
Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
SkPx operator+(const SkPx& o) const {
return (uint8x8x4_t) {{
vadd_u8(fVec.val[0], o.fVec.val[0]),
vadd_u8(fVec.val[1], o.fVec.val[1]),
vadd_u8(fVec.val[2], o.fVec.val[2]),
vadd_u8(fVec.val[3], o.fVec.val[3]),
}};
}
SkPx operator-(const SkPx& o) const {
return (uint8x8x4_t) {{
vsub_u8(fVec.val[0], o.fVec.val[0]),
vsub_u8(fVec.val[1], o.fVec.val[1]),
vsub_u8(fVec.val[2], o.fVec.val[2]),
vsub_u8(fVec.val[3], o.fVec.val[3]),
}};
}
SkPx saturatedAdd(const SkPx& o) const {
return (uint8x8x4_t) {{
vqadd_u8(fVec.val[0], o.fVec.val[0]),
vqadd_u8(fVec.val[1], o.fVec.val[1]),
vqadd_u8(fVec.val[2], o.fVec.val[2]),
vqadd_u8(fVec.val[3], o.fVec.val[3]),
}};
}
Wide operator*(const Alpha& a) const {
return (uint16x8x4_t) {{
vmull_u8(fVec.val[0], a.fA),
vmull_u8(fVec.val[1], a.fA),
vmull_u8(fVec.val[2], a.fA),
vmull_u8(fVec.val[3], a.fA),
}};
}
SkPx approxMulDiv255(const Alpha& a) const {
return (*this * a).addNarrowHi(*this);
}
SkPx addAlpha(const Alpha& a) const {
return (uint8x8x4_t) {{
fVec.val[0],
fVec.val[1],
fVec.val[2],
vadd_u8(fVec.val[3], a.fA),
}};
}
};
} // namespace neon
typedef neon::SkPx SkPx;
#endif//SkPx_neon_DEFINED

View File

@ -1,111 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPx_none_DEFINED
#define SkPx_none_DEFINED
// Nothing fancy here. We're the backup _none case after all.
// Our declared sweet spot is simply a single pixel at a time.
namespace none {
struct SkPx {
static const int N = 1;
uint8_t f8[4];
SkPx(uint32_t px) { memcpy(f8, &px, 4); }
SkPx(uint8_t x, uint8_t y, uint8_t z, uint8_t a) {
f8[0] = x; f8[1] = y; f8[2] = z; f8[3] = a;
}
static SkPx Dup(uint32_t px) { return px; }
static SkPx Load(const uint32_t* px) { return *px; }
static SkPx Load(const uint32_t* px, int n) {
SkASSERT(false); // There are no 0<n<1.
return 0;
}
void store(uint32_t* px) const { memcpy(px, f8, 4); }
void store(uint32_t* px, int n) const {
SkASSERT(false); // There are no 0<n<1.
}
struct Alpha {
uint8_t fA;
Alpha(uint8_t a) : fA(a) {}
static Alpha Dup(uint8_t a) { return a; }
static Alpha Load(const uint8_t* a) { return *a; }
static Alpha Load(const uint8_t* a, int n) {
SkASSERT(false); // There are no 0<n<1.
return 0;
}
Alpha inv() const { return 255 - fA; }
};
struct Wide {
uint16_t f16[4];
Wide(uint16_t x, uint16_t y, uint16_t z, uint16_t a) {
f16[0] = x; f16[1] = y; f16[2] = z; f16[3] = a;
}
Wide operator+(const Wide& o) const {
return Wide(f16[0]+o.f16[0], f16[1]+o.f16[1], f16[2]+o.f16[2], f16[3]+o.f16[3]);
}
Wide operator-(const Wide& o) const {
return Wide(f16[0]-o.f16[0], f16[1]-o.f16[1], f16[2]-o.f16[2], f16[3]-o.f16[3]);
}
template <int bits> Wide shl() const {
return Wide(f16[0]<<bits, f16[1]<<bits, f16[2]<<bits, f16[3]<<bits);
}
template <int bits> Wide shr() const {
return Wide(f16[0]>>bits, f16[1]>>bits, f16[2]>>bits, f16[3]>>bits);
}
SkPx addNarrowHi(const SkPx& o) const {
Wide sum = (*this + o.widenLo()).shr<8>();
return SkPx(sum.f16[0], sum.f16[1], sum.f16[2], sum.f16[3]);
}
};
Alpha alpha() const { return f8[3]; }
Wide widenLo() const { return Wide(f8[0], f8[1], f8[2], f8[3]); }
Wide widenHi() const { return this->widenLo().shl<8>(); }
Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
SkPx operator+(const SkPx& o) const {
return SkPx(f8[0]+o.f8[0], f8[1]+o.f8[1], f8[2]+o.f8[2], f8[3]+o.f8[3]);
}
SkPx operator-(const SkPx& o) const {
return SkPx(f8[0]-o.f8[0], f8[1]-o.f8[1], f8[2]-o.f8[2], f8[3]-o.f8[3]);
}
SkPx saturatedAdd(const SkPx& o) const {
return SkPx(SkTMax(0, SkTMin(255, f8[0]+o.f8[0])),
SkTMax(0, SkTMin(255, f8[1]+o.f8[1])),
SkTMax(0, SkTMin(255, f8[2]+o.f8[2])),
SkTMax(0, SkTMin(255, f8[3]+o.f8[3])));
}
Wide operator*(const Alpha& a) const {
return Wide(f8[0]*a.fA, f8[1]*a.fA, f8[2]*a.fA, f8[3]*a.fA);
}
SkPx approxMulDiv255(const Alpha& a) const {
return (*this * a).addNarrowHi(*this);
}
SkPx addAlpha(const Alpha& a) const {
return SkPx(f8[0], f8[1], f8[2], f8[3]+a.fA);
}
};
} // namespace none
typedef none::SkPx SkPx;
#endif//SkPx_none_DEFINED

View File

@ -1,155 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPx_sse_DEFINED
#define SkPx_sse_DEFINED
// sse::SkPx's sweet spot is to work with 4 pixels at a time,
// stored interlaced, just as they sit in memory: rgba rgba rgba rgba.
// sse::SkPx's best way to work with alphas is similar,
// replicating the 4 alphas 4 times each across the pixel: aaaa aaaa aaaa aaaa.
// When working with fewer than 4 pixels, we load the pixels in the low lanes,
// usually filling the top lanes with zeros (but who cares, might be junk).
namespace sse {
struct SkPx {
static const int N = 4;
__m128i fVec;
SkPx(__m128i vec) : fVec(vec) {}
static SkPx Dup(uint32_t px) { return _mm_set1_epi32(px); }
static SkPx Load(const uint32_t* px) { return _mm_loadu_si128((const __m128i*)px); }
static SkPx Load(const uint32_t* px, int n) {
SkASSERT(n > 0 && n < 4);
switch (n) {
case 1: return _mm_cvtsi32_si128(px[0]);
case 2: return _mm_loadl_epi64((const __m128i*)px);
case 3: return _mm_or_si128(_mm_loadl_epi64((const __m128i*)px),
_mm_slli_si128(_mm_cvtsi32_si128(px[2]), 8));
}
return _mm_setzero_si128(); // Not actually reachable.
}
void store(uint32_t* px) const { _mm_storeu_si128((__m128i*)px, fVec); }
void store(uint32_t* px, int n) const {
SkASSERT(n > 0 && n < 4);
__m128i v = fVec;
if (n & 1) {
*px++ = _mm_cvtsi128_si32(v);
v = _mm_srli_si128(v, 4);
}
if (n & 2) {
_mm_storel_epi64((__m128i*)px, v);
}
}
struct Alpha {
__m128i fVec;
Alpha(__m128i vec) : fVec(vec) {}
static Alpha Dup(uint8_t a) { return _mm_set1_epi8(a); }
static Alpha Load(const uint8_t* a) {
__m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
return _mm_shuffle_epi8(as, _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0));
#else
as = _mm_unpacklo_epi8 (as, as); // ____ ____ 3322 1100
as = _mm_unpacklo_epi16(as, as); // 3333 2222 1111 0000
return as;
#endif
}
static Alpha Load(const uint8_t* a, int n) {
SkASSERT(n > 0 && n < 4);
uint8_t a4[] = { 0,0,0,0 };
switch (n) {
case 3: a4[2] = a[2]; // fall through
case 2: a4[1] = a[1]; // fall through
case 1: a4[0] = a[0];
}
return Load(a4);
}
Alpha inv() const { return _mm_sub_epi8(_mm_set1_epi8(~0), fVec); }
};
struct Wide {
__m128i fLo, fHi;
Wide(__m128i lo, __m128i hi) : fLo(lo), fHi(hi) {}
Wide operator+(const Wide& o) const {
return Wide(_mm_add_epi16(fLo, o.fLo), _mm_add_epi16(fHi, o.fHi));
}
Wide operator-(const Wide& o) const {
return Wide(_mm_sub_epi16(fLo, o.fLo), _mm_sub_epi16(fHi, o.fHi));
}
template <int bits> Wide shl() const {
return Wide(_mm_slli_epi16(fLo, bits), _mm_slli_epi16(fHi, bits));
}
template <int bits> Wide shr() const {
return Wide(_mm_srli_epi16(fLo, bits), _mm_srli_epi16(fHi, bits));
}
SkPx addNarrowHi(const SkPx& o) const {
Wide sum = (*this + o.widenLo()).shr<8>();
return _mm_packus_epi16(sum.fLo, sum.fHi);
}
};
Alpha alpha() const {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
return _mm_shuffle_epi8(fVec, _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3));
#else
// We exploit that A >= rgb for any premul pixel.
__m128i as = fVec; // 3xxx 2xxx 1xxx 0xxx
as = _mm_max_epu8(as, _mm_srli_epi32(as, 8)); // 33xx 22xx 11xx 00xx
as = _mm_max_epu8(as, _mm_srli_epi32(as, 16)); // 3333 2222 1111 0000
return as;
#endif
}
Wide widenLo() const {
return Wide(_mm_unpacklo_epi8(fVec, _mm_setzero_si128()),
_mm_unpackhi_epi8(fVec, _mm_setzero_si128()));
}
Wide widenHi() const {
return Wide(_mm_unpacklo_epi8(_mm_setzero_si128(), fVec),
_mm_unpackhi_epi8(_mm_setzero_si128(), fVec));
}
Wide widenLoHi() const {
return Wide(_mm_unpacklo_epi8(fVec, fVec),
_mm_unpackhi_epi8(fVec, fVec));
}
SkPx operator+(const SkPx& o) const { return _mm_add_epi8(fVec, o.fVec); }
SkPx operator-(const SkPx& o) const { return _mm_sub_epi8(fVec, o.fVec); }
SkPx saturatedAdd(const SkPx& o) const { return _mm_adds_epi8(fVec, o.fVec); }
Wide operator*(const Alpha& a) const {
__m128i pLo = _mm_unpacklo_epi8( fVec, _mm_setzero_si128()),
aLo = _mm_unpacklo_epi8(a.fVec, _mm_setzero_si128()),
pHi = _mm_unpackhi_epi8( fVec, _mm_setzero_si128()),
aHi = _mm_unpackhi_epi8(a.fVec, _mm_setzero_si128());
return Wide(_mm_mullo_epi16(pLo, aLo), _mm_mullo_epi16(pHi, aHi));
}
SkPx approxMulDiv255(const Alpha& a) const {
return (*this * a).addNarrowHi(*this);
}
SkPx addAlpha(const Alpha& a) const {
return _mm_add_epi8(fVec, _mm_and_si128(a.fVec, _mm_set1_epi32(0xFF000000)));
}
};
} // namespace sse
typedef sse::SkPx SkPx;
#endif//SkPx_sse_DEFINED