The only difference is that we now also put the guard flag
SK_SUPPORT_LEGACY_AAA in SkUserConfig.h. Previously, SkAnalyticEdge.cpp doesn't
get that flag from SkScan.h and that caused many problems.

BUG=skia:
TBR=reed@google.com,caryclark@google.com

Change-Id: I134bb76cebd6fffa712f438076668765321bba3b
Reviewed-on: https://skia-review.googlesource.com/6992
Reviewed-by: Yuqian Li <liyuqian@google.com>
Commit-Queue: Yuqian Li <liyuqian@google.com>
This commit is contained in:
Yuqian Li 2017-01-13 10:13:13 -05:00 committed by Skia Commit-Bot
parent 905a94ff39
commit 550148ba57
12 changed files with 766 additions and 158 deletions

View File

@ -1198,6 +1198,10 @@ int nanobench_main() {
gSkUseAnalyticAA = FLAGS_analyticAA;
if (FLAGS_forceAnalyticAA) {
gSkForceAnalyticAA = true;
}
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {

View File

@ -1289,6 +1289,10 @@ int dm_main() {
gSkUseAnalyticAA = FLAGS_analyticAA;
if (FLAGS_forceAnalyticAA) {
gSkForceAnalyticAA = true;
}
if (FLAGS_verbose) {
gVLog = stderr;
} else if (!FLAGS_writePath.isEmpty()) {

View File

@ -1822,7 +1822,12 @@ bool SampleWindow::onHandleChar(SkUnichar uni) {
}
break;
case 'A':
gSkUseAnalyticAA = !gSkUseAnalyticAA.load();
if (gSkUseAnalyticAA.load() && !gSkForceAnalyticAA.load()) {
gSkForceAnalyticAA = true;
} else {
gSkUseAnalyticAA = !gSkUseAnalyticAA.load();
gSkForceAnalyticAA = false;
}
this->inval(nullptr);
this->updateTitle();
break;
@ -2176,7 +2181,11 @@ void SampleWindow::updateTitle() {
title.prepend(gDeviceTypePrefix[fDeviceType]);
if (gSkUseAnalyticAA) {
title.prepend("<AAA> ");
if (gSkForceAnalyticAA) {
title.prepend("<FAAA> ");
} else {
title.prepend("<AAA> ");
}
}
if (fTilingMode != kNo_Tiling) {
title.prependf("<T: %s> ", gTilingInfo[fTilingMode].label);

View File

@ -48,34 +48,22 @@ bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1,
return true;
}
void SkAnalyticEdge::chopLineWithClip(const SkIRect& clip) {
int top = SkFixedFloorToInt(fUpperY);
SkASSERT(top < clip.fBottom);
// clip the line to the clip top
if (top < clip.fTop) {
SkASSERT(SkFixedCeilToInt(fLowerY) > clip.fTop);
SkFixed newY = SkIntToFixed(clip.fTop);
this->goY(newY);
fUpperY = newY;
}
}
bool SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) {
if (!fQEdge.setQuadraticWithoutUpdate(pts, 2)) {
fRiteE = nullptr;
if (!fQEdge.setQuadraticWithoutUpdate(pts, kDefaultAccuracy)) {
return false;
}
fQEdge.fQx >>= 2;
fQEdge.fQy >>= 2;
fQEdge.fQDx >>= 2;
fQEdge.fQDy >>= 2;
fQEdge.fQDDx >>= 2;
fQEdge.fQDDy >>= 2;
fQEdge.fQLastX >>= 2;
fQEdge.fQLastY >>= 2;
fQEdge.fQy = snapY(fQEdge.fQy);
fQEdge.fQLastY = snapY(fQEdge.fQLastY);
fQEdge.fQx >>= kDefaultAccuracy;
fQEdge.fQy >>= kDefaultAccuracy;
fQEdge.fQDx >>= kDefaultAccuracy;
fQEdge.fQDy >>= kDefaultAccuracy;
fQEdge.fQDDx >>= kDefaultAccuracy;
fQEdge.fQDDy >>= kDefaultAccuracy;
fQEdge.fQLastX >>= kDefaultAccuracy;
fQEdge.fQLastY >>= kDefaultAccuracy;
fQEdge.fQy = SnapY(fQEdge.fQy);
fQEdge.fQLastY = SnapY(fQEdge.fQLastY);
fWinding = fQEdge.fWinding;
fCurveCount = fQEdge.fCurveCount;
@ -105,15 +93,28 @@ bool SkAnalyticQuadraticEdge::updateQuadratic() {
{
newx = oldx + (dx >> shift);
newy = oldy + (dy >> shift);
SkFDot6 diffY = (newy - fSnappedY) >> 10;
slope = diffY ? QuickSkFDot6Div((newx - fSnappedX) >> 10, diffY) : SK_MaxS32;
if (SkAbs32(dy >> shift) >= SK_Fixed1 * 2) { // only snap when dy is large enough
SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY);
slope = diffY ? QuickSkFDot6Div(SkFixedToFDot6(newx - fSnappedX), diffY)
: SK_MaxS32;
newSnappedY = SkTMin<SkFixed>(fQEdge.fQLastY, SkFixedRoundToFixed(newy));
newSnappedX = newx - SkFixedMul(slope, newy - newSnappedY);
} else {
newSnappedY = SkTMin(fQEdge.fQLastY, snapY(newy));
newSnappedY = SkTMin(fQEdge.fQLastY, SnapY(newy));
newSnappedX = newx;
#ifdef SK_SUPPORT_LEGACY_AAA
SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY);
#else
SkFDot6 diffY = SkFixedToFDot6(newSnappedY - fSnappedY);
#endif
slope = diffY ? QuickSkFDot6Div(SkFixedToFDot6(newx - fSnappedX), diffY)
: SK_MaxS32;
}
#ifndef SK_SUPPORT_LEGACY_AAA
SkASSERT(slope == SK_MaxS32 ||
SkAbs32(fSnappedX + SkFixedMul(slope, newSnappedY - fSnappedY) - newSnappedX)
< SK_FixedHalf);
#endif
dx += fQEdge.fQDDx;
dy += fQEdge.fQDDy;
}
@ -146,28 +147,32 @@ bool SkAnalyticQuadraticEdge::updateQuadratic() {
}
bool SkAnalyticCubicEdge::setCubic(const SkPoint pts[4]) {
if (!fCEdge.setCubicWithoutUpdate(pts, 2)) {
fRiteE = nullptr;
if (!fCEdge.setCubicWithoutUpdate(pts, kDefaultAccuracy)) {
return false;
}
fCEdge.fCx >>= 2;
fCEdge.fCy >>= 2;
fCEdge.fCDx >>= 2;
fCEdge.fCDy >>= 2;
fCEdge.fCDDx >>= 2;
fCEdge.fCDDy >>= 2;
fCEdge.fCDDDx >>= 2;
fCEdge.fCDDDy >>= 2;
fCEdge.fCLastX >>= 2;
fCEdge.fCLastY >>= 2;
fCEdge.fCy = snapY(fCEdge.fCy);
fCEdge.fCLastY = snapY(fCEdge.fCLastY);
fCEdge.fCx >>= kDefaultAccuracy;
fCEdge.fCy >>= kDefaultAccuracy;
fCEdge.fCDx >>= kDefaultAccuracy;
fCEdge.fCDy >>= kDefaultAccuracy;
fCEdge.fCDDx >>= kDefaultAccuracy;
fCEdge.fCDDy >>= kDefaultAccuracy;
fCEdge.fCDDDx >>= kDefaultAccuracy;
fCEdge.fCDDDy >>= kDefaultAccuracy;
fCEdge.fCLastX >>= kDefaultAccuracy;
fCEdge.fCLastY >>= kDefaultAccuracy;
fCEdge.fCy = SnapY(fCEdge.fCy);
fCEdge.fCLastY = SnapY(fCEdge.fCLastY);
fWinding = fCEdge.fWinding;
fCurveCount = fCEdge.fCurveCount;
fCurveShift = fCEdge.fCurveShift;
fCubicDShift = fCEdge.fCubicDShift;
fSnappedY = fCEdge.fCy;
return this->updateCubic();
}
@ -203,17 +208,24 @@ bool SkAnalyticCubicEdge::updateCubic() {
newy = oldy;
}
SkFixed snappedOldY = SkAnalyticEdge::snapY(oldy);
SkFixed snappedNewY = SkAnalyticEdge::snapY(newy);
SkFixed slope = SkFixedToFDot6(snappedNewY - snappedOldY) == 0
SkFixed newSnappedY = SnapY(newy);
// we want to SkASSERT(snappedNewY <= fCEdge.fCLastY), but our finite fixedpoint
// doesn't always achieve that, so we have to explicitly pin it here.
if (fCEdge.fCLastY < newSnappedY) {
newSnappedY = fCEdge.fCLastY;
count = 0;
}
SkFixed slope = SkFixedToFDot6(newSnappedY - fSnappedY) == 0
? SK_MaxS32
: SkFDot6Div(SkFixedToFDot6(newx - oldx),
SkFixedToFDot6(snappedNewY - snappedOldY));
SkFixedToFDot6(newSnappedY - fSnappedY));
success = this->updateLine(oldx, snappedOldY, newx, snappedNewY, slope);
success = this->updateLine(oldx, fSnappedY, newx, newSnappedY, slope);
oldx = newx;
oldy = newy;
fSnappedY = newSnappedY;
} while (count < 0 && !success);
fCEdge.fCx = newx;

View File

@ -10,6 +10,11 @@
#include "SkEdge.h"
// Use this to check that we successfully guard the change against Chromium layout tests
#ifndef SK_SUPPORT_LEGACY_AAA
# define SK_SUPPORT_LEGACY_AAA
#endif
struct SkAnalyticEdge {
// Similar to SkEdge, the conic edges will be converted to quadratic edges
enum Type {
@ -21,6 +26,10 @@ struct SkAnalyticEdge {
SkAnalyticEdge* fNext;
SkAnalyticEdge* fPrev;
// During aaa_walk_edges, if this edge is a left edge,
// then fRiteE is its corresponding right edge. Otherwise it's nullptr.
SkAnalyticEdge* fRiteE;
SkFixed fX;
SkFixed fDX;
SkFixed fUpperX; // The x value when y = fUpperY
@ -30,6 +39,10 @@ struct SkAnalyticEdge {
SkFixed fDY; // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0.
// fDY is only used for blitting trapezoids.
SkFixed fSavedX; // For deferred blitting
SkFixed fSavedY; // For deferred blitting
SkFixed fSavedDY; // For deferred blitting
int8_t fCurveCount; // only used by kQuad(+) and kCubic(-)
uint8_t fCurveShift; // appled to all Dx/DDx/DDDx except for fCubicDShift exception
uint8_t fCubicDShift; // applied to fCDx and fCDy only in cubic
@ -37,7 +50,8 @@ struct SkAnalyticEdge {
static const int kDefaultAccuracy = 2; // default accuracy for snapping
static inline SkFixed snapY(SkFixed y, int accuracy = kDefaultAccuracy) {
static inline SkFixed SnapY(SkFixed y) {
const int accuracy = kDefaultAccuracy;
// This approach is safer than left shift, round, then right shift
return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy);
}
@ -55,15 +69,22 @@ struct SkAnalyticEdge {
}
}
inline bool setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip = nullptr);
inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
void chopLineWithClip(const SkIRect& clip);
inline bool intersectsClip(const SkIRect& clip) const {
SkASSERT(SkFixedFloorToInt(fUpperY) < clip.fBottom);
return SkFixedCeilToInt(fLowerY) > clip.fTop;
inline void goY(SkFixed y, int yShift) {
SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy);
SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift);
fY = y;
fX += fDX >> yShift;
}
inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) {
fSavedX = x;
fSavedY = y;
fSavedDY = dY;
}
inline bool setLine(const SkPoint& p0, const SkPoint& p1);
inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
#ifdef SK_DEBUG
void dump() const {
SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n",
@ -90,36 +111,47 @@ struct SkAnalyticQuadraticEdge : public SkAnalyticEdge {
bool setQuadratic(const SkPoint pts[3]);
bool updateQuadratic();
inline void keepContinuous() {
// We use fX as the starting x to ensure the continuouty.
// Without it, we may break the sorted edge list.
SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1);
SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump
fSnappedX = fX;
fSnappedY = fY;
}
};
struct SkAnalyticCubicEdge : public SkAnalyticEdge {
SkCubicEdge fCEdge;
SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping
bool setCubic(const SkPoint pts[4]);
bool updateCubic();
inline void keepContinuous() {
SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1);
fCEdge.fCx = fX;
fSnappedY = fY;
}
};
bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip) {
// We must set X/Y using the same way (times 4, to FDot6, then to Fixed) as Quads/Cubics.
bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
fRiteE = nullptr;
// We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
// Otherwise the order of the edge might be wrong due to precision limit.
SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * 4)) >> 2;
SkFixed y0 = snapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * 4)) >> 2);
SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * 4)) >> 2;
SkFixed y1 = snapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * 4)) >> 2);
const int accuracy = kDefaultAccuracy;
const int multiplier = (1 << kDefaultAccuracy);
SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
// are we a zero-height line?
if (y0 == y1) {
return false;
}
int top = SkFixedFloorToInt(y0);
int bot = SkFixedCeilToInt(y1);
// are we completely above or below the clip?
if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
return false;
}
int winding = 1;
if (y0 > y1) {
@ -128,7 +160,15 @@ bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect
winding = -1;
}
#ifdef SK_SUPPORT_LEGACY_AAA
SkFixed slope = SkFixedDiv(x1 - x0, y1 - y0);
#else
SkFDot6 dy = SkFixedToFDot6(y1 - y0);
SkFDot6 dx = SkFixedToFDot6(x1 - x0);
SkFixed slope = dy ? QuickSkFDot6Div(dx, dy) : SK_MaxS32;
SkASSERT(dx == 0 || slope != 0);
SkFixed absSlope = SkAbs32(slope);
#endif
fX = x0;
fDX = slope;
@ -136,14 +176,17 @@ bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect
fY = y0;
fUpperY = y0;
fLowerY = y1;
#ifdef SK_SUPPORT_LEGACY_AAA
fDY = x1 != x0 ? SkAbs32(SkFixedDiv(y1 - y0, x1 - x0)) : SK_MaxS32;
#else
fDY = dx == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
? QuickFDot6Inverse::Lookup(absSlope)
: SkAbs32(QuickSkFDot6Div(dy, dx));
#endif
fCurveCount = 0;
fWinding = SkToS8(winding);
fCurveShift = 0;
if (clip) {
this->chopLineWithClip(*clip);
}
return true;
}

View File

@ -16,6 +16,8 @@
std::atomic<bool> gSkUseAnalyticAA{true};
#endif
std::atomic<bool> gSkForceAnalyticAA{false};
static inline void blitrect(SkBlitter* blitter, const SkIRect& r) {
blitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
}

View File

@ -23,7 +23,13 @@ class SkPath;
*/
typedef SkIRect SkXRect;
// Use this to check that we successfully guard the change against Chromium layout tests
#ifndef SK_SUPPORT_LEGACY_AAA
# define SK_SUPPORT_LEGACY_AAA
#endif
extern std::atomic<bool> gSkUseAnalyticAA;
extern std::atomic<bool> gSkForceAnalyticAA;
class AdditiveBlitter;

View File

@ -34,10 +34,6 @@ void sk_fill_path(const SkPath& path, const SkIRect& clipRect,
SkBlitter* blitter, int start_y, int stop_y, int shiftEdgesUp,
bool pathContainedInClip);
void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter*,
int start_y, int stop_y, bool pathContainedInClip, bool isUsingMask,
bool forceRLE);
// blit the rects above and below avoid, clipped to clip
void sk_blit_above(SkBlitter*, const SkIRect& avoid, const SkRegion& clip);
void sk_blit_below(SkBlitter*, const SkIRect& avoid, const SkRegion& clip);

View File

@ -84,9 +84,13 @@ number of scan lines in our algorithm is only about 3 + H while the
///////////////////////////////////////////////////////////////////////////////
static inline void addAlpha(SkAlpha& alpha, SkAlpha delta) {
SkASSERT(alpha + (int)delta <= 256);
alpha = SkAlphaRuns::CatchOverflow(alpha + (int)delta);
static inline void addAlpha(SkAlpha* alpha, SkAlpha delta) {
SkASSERT(*alpha + (int)delta <= 256);
*alpha = SkAlphaRuns::CatchOverflow(*alpha + (int)delta);
}
static inline void safelyAddAlpha(SkAlpha* alpha, SkAlpha delta) {
*alpha = SkTMin(0xFF, *alpha + (int)delta);
}
class AdditiveBlitter : public SkBlitter {
@ -147,7 +151,7 @@ public:
void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
// Allowing following methods are used to blit rectangles during aaa_walk_convex_edges
// Since there aren't many rectangles, we can still break the slow speed of virtual functions.
// Since there aren't many rectangles, we can still bear the slow speed of virtual functions.
void blitAntiH(int x, int y, const SkAlpha alpha) override;
void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
void blitV(int x, int y, int height, SkAlpha alpha) override;
@ -227,14 +231,14 @@ void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int
void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
SkASSERT(x >= fMask.fBounds.fLeft -1);
addAlpha(this->getRow(y)[x], alpha);
addAlpha(&this->getRow(y)[x], alpha);
}
void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
SkASSERT(x >= fMask.fBounds.fLeft -1);
uint8_t* row = this->getRow(y);
for (int i=0; i<width; i++) {
addAlpha(row[x + i], alpha);
for (int i = 0; i < width; ++i) {
addAlpha(&row[x + i], alpha);
}
}
@ -246,7 +250,7 @@ void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
// This must be called as if this is a real blitter.
// So we directly set alpha rather than adding it.
uint8_t* row = this->getRow(y);
for (int i=0; i<height; i++) {
for (int i = 0; i < height; ++i) {
row[x] = alpha;
row += fMask.fRowBytes;
}
@ -257,7 +261,7 @@ void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) {
// This must be called as if this is a real blitter.
// So we directly set alpha rather than adding it.
uint8_t* row = this->getRow(y);
for (int i=0; i<height; i++) {
for (int i = 0; i < height; ++i) {
memset(row + x, 0xFF, width);
row += fMask.fRowBytes;
}
@ -290,7 +294,7 @@ public:
}
}
private:
protected:
SkBlitter* fRealBlitter;
/// Current y coordinate
@ -313,7 +317,7 @@ private:
int fOffsetX;
inline bool check(int x, int width) {
inline bool check(int x, int width) const {
#ifdef SK_DEBUG
if (x < 0 || x + width > fWidth) {
// SkDebugf("Ignore x = %d, width = %d\n", x, width);
@ -431,8 +435,8 @@ void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
}
fRuns.fRuns[x + i] = 1;
}
for (int i=0; i<len; i++) {
addAlpha(fRuns.fAlpha[x + i], antialias[i]);
for (int i = 0; i < len; ++i) {
addAlpha(&fRuns.fAlpha[x + i], antialias[i]);
}
}
void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
@ -463,12 +467,85 @@ void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha a
int RunBasedAdditiveBlitter::getWidth() { return fWidth; }
// This exists specifically for concave path filling.
// In those cases, we can easily accumulate alpha greater than 0xFF.
class SafeRLEAdditiveBlitter : public RunBasedAdditiveBlitter {
public:
SafeRLEAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
bool isInverse) : RunBasedAdditiveBlitter(realBlitter, ir, clip, isInverse) {}
void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
void blitAntiH(int x, int y, const SkAlpha alpha) override;
void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
};
void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
checkY(y);
x -= fLeft;
if (x < 0) {
len += x;
antialias -= x;
x = 0;
}
len = SkTMin(len, fWidth - x);
SkASSERT(check(x, len));
if (x < fOffsetX) {
fOffsetX = 0;
}
fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run
for (int i = 0; i < len; i += fRuns.fRuns[x + i]) {
for (int j = 1; j < fRuns.fRuns[x + i]; j++) {
fRuns.fRuns[x + i + j] = 1;
fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i];
}
fRuns.fRuns[x + i] = 1;
}
for (int i = 0; i < len; ++i) {
safelyAddAlpha(&fRuns.fAlpha[x + i], antialias[i]);
}
}
void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
checkY(y);
x -= fLeft;
if (x < fOffsetX) {
fOffsetX = 0;
}
if (check(x, 1)) {
// Break the run
fOffsetX = fRuns.add(x, 0, 1, 0, 0, fOffsetX);
safelyAddAlpha(&fRuns.fAlpha[x], alpha);
}
}
void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
checkY(y);
x -= fLeft;
if (x < fOffsetX) {
fOffsetX = 0;
}
if (check(x, width)) {
// Break the run
fOffsetX = fRuns.add(x, 0, width, 0, 0, fOffsetX);
for(int i = x; i < x + width; i += fRuns.fRuns[i]) {
safelyAddAlpha(&fRuns.fAlpha[i], alpha);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Return the alpha of a trapezoid whose height is 1
static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) {
SkASSERT(l1 >= 0 && l2 >= 0);
return ((l1 + l2) >> 9);
return (l1 + l2) >> 9;
}
// The alpha of right-triangle (a, a*b), in 16 bits
@ -524,7 +601,7 @@ static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r,
SkFixed firstH = SkFixedMul(first, dY); // vertical edge of the left-most triangle
alphas[0] = SkFixedMul(first, firstH) >> 9; // triangle alpha
SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle
for (int i = 1; i < R - 1; i++) {
for (int i = 1; i < R - 1; ++i) {
alphas[i] = alpha16 >> 8;
alpha16 += dY;
}
@ -557,17 +634,19 @@ static inline void computeAlphaBelowLine(
}
// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha
static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
static SK_ALWAYS_INLINE void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow,
bool isUsingMask) {
bool isUsingMask, bool noRealBlitter, bool needSafeCheck) {
if (isUsingMask) {
if (fullAlpha == 0xFF) {
if (fullAlpha == 0xFF && !noRealBlitter) { // noRealBlitter is needed for concave paths
maskRow[x] = alpha;
} else if (needSafeCheck) {
safelyAddAlpha(&maskRow[x], getPartialAlpha(alpha, fullAlpha));
} else {
addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha));
addAlpha(&maskRow[x], getPartialAlpha(alpha, fullAlpha));
}
} else {
if (fullAlpha == 0xFF) {
if (fullAlpha == 0xFF && !noRealBlitter) {
blitter->getRealBlitter()->blitV(x, y, 1, alpha);
} else {
blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha));
@ -575,14 +654,19 @@ static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
}
}
static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
static SK_ALWAYS_INLINE void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow,
bool isUsingMask) {
bool isUsingMask, bool noRealBlitter, bool needSafeCheck) {
if (isUsingMask) {
addAlpha(maskRow[x], a1);
addAlpha(maskRow[x + 1], a2);
if (needSafeCheck) {
safelyAddAlpha(&maskRow[x], a1);
safelyAddAlpha(&maskRow[x + 1], a2);
} else {
addAlpha(&maskRow[x], a1);
addAlpha(&maskRow[x + 1], a2);
}
} else {
if (fullAlpha == 0xFF) {
if (fullAlpha == 0xFF && !noRealBlitter) {
blitter->getRealBlitter()->blitAntiH2(x, y, a1, a2);
} else {
blitter->blitAntiH(x, y, a1);
@ -593,13 +677,18 @@ static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
// It's important that this is inline. Otherwise it'll be much slower.
static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len,
SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) {
SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask,
bool noRealBlitter, bool needSafeCheck) {
if (isUsingMask) {
for (int i=0; i<len; i++) {
addAlpha(maskRow[x + i], fullAlpha);
for (int i = 0; i < len; ++i) {
if (needSafeCheck) {
safelyAddAlpha(&maskRow[x + i], fullAlpha);
} else {
addAlpha(&maskRow[x + i], fullAlpha);
}
}
} else {
if (fullAlpha == 0xFF) {
if (fullAlpha == 0xFF && !noRealBlitter) {
blitter->getRealBlitter()->blitH(x, y, len);
} else {
blitter->blitAntiH(x, y, len, fullAlpha);
@ -610,13 +699,14 @@ static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, in
static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow,
bool isUsingMask) {
bool isUsingMask, bool noRealBlitter, bool needSafeCheck) {
int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr);
int len = R - L;
if (len == 1) {
SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll);
blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask);
blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask, noRealBlitter,
needSafeCheck);
return;
}
@ -637,7 +727,7 @@ static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
SkAlpha* tempAlphas = alphas + len + 1;
int16_t* runs = (int16_t*)(alphas + (len + 1) * 2);
for (int i = 0; i < len; i++) {
for (int i = 0; i < len; ++i) {
runs[i] = 1;
alphas[i] = fullAlpha;
}
@ -655,7 +745,7 @@ static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
} else {
computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16),
lDY, fullAlpha);
for (int i = uL; i < lL; i++) {
for (int i = uL; i < lL; ++i) {
if (alphas[i - L] > tempAlphas[i - L]) {
alphas[i - L] -= tempAlphas[i - L];
} else {
@ -676,7 +766,7 @@ static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
} else {
computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16),
rDY, fullAlpha);
for (int i = uR; i < lR; i++) {
for (int i = uR; i < lR; ++i) {
if (alphas[i - L] > tempAlphas[i - L]) {
alphas[i - L] -= tempAlphas[i - L];
} else {
@ -686,11 +776,16 @@ static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
}
if (isUsingMask) {
for (int i=0; i<len; i++) {
addAlpha(maskRow[L + i], alphas[i]);
for (int i = 0; i < len; ++i) {
if (needSafeCheck) {
safelyAddAlpha(&maskRow[L + i], alphas[i]);
} else {
addAlpha(&maskRow[L + i], alphas[i]);
}
}
} else {
if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter
if (fullAlpha == 0xFF && !noRealBlitter) {
// Real blitter is faster than RunBasedAdditiveBlitter
blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs);
} else {
blitter->blitAntiH(L, y, alphas, len);
@ -702,10 +797,11 @@ static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
}
}
static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
static SK_ALWAYS_INLINE void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
SkAlpha* maskRow, bool isUsingMask) {
SkAlpha* maskRow, bool isUsingMask, bool noRealBlitter = false,
bool needSafeCheck = false) {
SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value
if (ul > ur) {
@ -743,16 +839,19 @@ static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
int len = SkFixedCeilToInt(joinLeft - ul);
if (len == 1) {
SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll);
blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask);
blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask,
noRealBlitter, needSafeCheck);
} else if (len == 2) {
SkFixed first = joinLeft - SK_Fixed1 - ul;
SkFixed second = ll - ul - first;
SkAlpha a1 = partialTriangleToAlpha(first, lDY);
SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY);
blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask);
blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask,
noRealBlitter, needSafeCheck);
} else {
blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32,
fullAlpha, maskRow, isUsingMask);
fullAlpha, maskRow, isUsingMask, noRealBlitter,
needSafeCheck);
}
}
// SkAAClip requires that we blit from left to right.
@ -760,29 +859,30 @@ static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
if (joinLeft < joinRite) {
blit_full_alpha(blitter, y, SkFixedFloorToInt(joinLeft),
SkFixedFloorToInt(joinRite - joinLeft),
fullAlpha, maskRow, isUsingMask);
fullAlpha, maskRow, isUsingMask, noRealBlitter, needSafeCheck);
}
if (lr > joinRite) {
int len = SkFixedCeilToInt(lr - joinRite);
if (len == 1) {
SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite);
blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow,
isUsingMask);
isUsingMask, noRealBlitter, needSafeCheck);
} else if (len == 2) {
SkFixed first = joinRite + SK_Fixed1 - ur;
SkFixed second = lr - ur - first;
SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY);
SkAlpha a2 = partialTriangleToAlpha(second, rDY);
blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow,
isUsingMask);
isUsingMask, noRealBlitter, needSafeCheck);
} else {
blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY,
fullAlpha, maskRow, isUsingMask);
fullAlpha, maskRow, isUsingMask, noRealBlitter,
needSafeCheck);
}
}
} else {
blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow,
isUsingMask);
isUsingMask, noRealBlitter, needSafeCheck);
}
}
@ -809,7 +909,7 @@ static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticE
SkTQSort(list, list + count - 1);
// now make the edges linked in sorted order
for (int i = 1; i < count; i++) {
for (int i = 1; i < count; ++i) {
list[i - 1]->fNext = list[i];
list[i]->fPrev = list[i - 1];
}
@ -899,9 +999,9 @@ static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y);
}
static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter,
int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
bool isUsingMask) {
static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead,
AdditiveBlitter* blitter, int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
bool isUsingMask) {
validate_sort((SkAnalyticEdge*)prevHead->fNext);
SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext;
@ -1130,13 +1230,407 @@ END_WALK:
#endif
}
void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter* blitter,
int start_y, int stop_y, bool pathContainedInClip, bool isUsingMask,
bool forceRLE) { // forceRLE implies that SkAAClip is calling us
SkASSERT(blitter);
///////////////////////////////////////////////////////////////////////////////
// we only implemented the convex shapes yet
SkASSERT(!path.isInverseFillType() && path.isConvex());
static inline void remove_edge(SkAnalyticEdge* edge) {
edge->fPrev->fNext = edge->fNext;
edge->fNext->fPrev = edge->fPrev;
}
static inline void insert_edge_after(SkAnalyticEdge* edge, SkAnalyticEdge* afterMe) {
edge->fPrev = afterMe;
edge->fNext = afterMe->fNext;
afterMe->fNext->fPrev = edge;
afterMe->fNext = edge;
}
static void backward_insert_edge_based_on_x(SkAnalyticEdge* edge) {
SkFixed x = edge->fX;
SkAnalyticEdge* prev = edge->fPrev;
while (prev->fPrev && prev->fX > x) {
prev = prev->fPrev;
}
if (prev->fNext != edge) {
remove_edge(edge);
insert_edge_after(edge, prev);
}
}
static SkAnalyticEdge* backward_insert_start(SkAnalyticEdge* prev, SkFixed x) {
while (prev->fPrev && prev->fX > x) {
prev = prev->fPrev;
}
return prev;
}
static inline void updateNextNextY(SkFixed y, SkFixed nextY, SkFixed* nextNextY) {
*nextNextY = y > nextY && y < *nextNextY ? y : *nextNextY;
}
static inline void checkIntersection(const SkAnalyticEdge* edge, SkFixed nextY, SkFixed* nextNextY)
{
if (edge->fPrev->fPrev && edge->fPrev->fX + edge->fPrev->fDX > edge->fX + edge->fDX) {
*nextNextY = nextY + (SK_Fixed1 >> SkAnalyticEdge::kDefaultAccuracy);
}
}
static void insert_new_edges(SkAnalyticEdge* newEdge, SkFixed y, SkFixed* nextNextY) {
if (newEdge->fUpperY > y) {
updateNextNextY(newEdge->fUpperY, y, nextNextY);
return;
}
SkAnalyticEdge* prev = newEdge->fPrev;
if (prev->fX <= newEdge->fX) {
while (newEdge->fUpperY <= y) {
checkIntersection(newEdge, y, nextNextY);
updateNextNextY(newEdge->fLowerY, y, nextNextY);
newEdge = newEdge->fNext;
}
updateNextNextY(newEdge->fUpperY, y, nextNextY);
return;
}
// find first x pos to insert
SkAnalyticEdge* start = backward_insert_start(prev, newEdge->fX);
//insert the lot, fixing up the links as we go
do {
SkAnalyticEdge* next = newEdge->fNext;
do {
if (start->fNext == newEdge) {
goto nextEdge;
}
SkAnalyticEdge* after = start->fNext;
if (after->fX >= newEdge->fX) {
break;
}
SkASSERT(start != after);
start = after;
} while (true);
remove_edge(newEdge);
insert_edge_after(newEdge, start);
nextEdge:
checkIntersection(newEdge, y, nextNextY);
updateNextNextY(newEdge->fLowerY, y, nextNextY);
start = newEdge;
newEdge = next;
} while (newEdge->fUpperY <= y);
updateNextNextY(newEdge->fUpperY, y, nextNextY);
}
static void validate_edges_for_y(const SkAnalyticEdge* edge, SkFixed y) {
#ifdef SK_DEBUG
while (edge->fUpperY <= y) {
SkASSERT(edge->fPrev && edge->fNext);
SkASSERT(edge->fPrev->fNext == edge);
SkASSERT(edge->fNext->fPrev == edge);
SkASSERT(edge->fUpperY <= edge->fLowerY);
SkASSERT(edge->fPrev->fPrev == nullptr || edge->fPrev->fX <= edge->fX);
edge = edge->fNext;
}
#endif
}
// Return true if prev->fX, next->fX are too close in the current pixel row.
static inline bool edges_too_close(SkAnalyticEdge* prev, SkAnalyticEdge* next, SkFixed lowerY) {
// Note that even if the following test failed, the edges might still be very close to each
// other at some point within the current pixel row because of prev->fDX and next->fDX.
// However, to handle that case, we have to sacrafice more performance.
// I think the current quality is good enough (mainly by looking at Nebraska-StateSeal.svg)
// so I'll ignore fDX for performance tradeoff.
return next && prev && next->fUpperY < lowerY && prev->fX >= next->fX - SkAbs32(next->fDX);
// The following is more accurate but also slower.
// return (prev && prev->fPrev && next && next->fNext != nullptr && next->fUpperY < lowerY &&
// prev->fX + SkAbs32(prev->fDX) >= next->fX - SkAbs32(next->fDX));
}
// This function exists for the case where the previous rite edge is removed because
// its fLowerY <= nextY
static inline bool edges_too_close(int prevRite, SkFixed ul, SkFixed ll) {
return prevRite > SkFixedFloorToInt(ul) || prevRite > SkFixedFloorToInt(ll);
}
static inline void blit_saved_trapezoid(SkAnalyticEdge* leftE, SkFixed lowerY,
SkFixed lowerLeft, SkFixed lowerRite,
AdditiveBlitter* blitter, SkAlpha* maskRow, bool isUsingMask, bool noRealBlitter,
SkFixed leftClip, SkFixed rightClip) {
SkAnalyticEdge* riteE = leftE->fRiteE;
SkASSERT(riteE);
SkASSERT(riteE->fNext == nullptr || leftE->fSavedY == riteE->fSavedY);
SkASSERT(SkFixedFloorToInt(lowerY - 1) == SkFixedFloorToInt(leftE->fSavedY));
int y = SkFixedFloorToInt(leftE->fSavedY);
// Instead of using f2a(lowerY - leftE->fSavedY), we use the following fullAlpha
// to elimiate cumulative error: if there are many fractional y scan lines within the
// same row, the former may accumulate the rounding error while the later won't.
SkAlpha fullAlpha = f2a(lowerY - SkIntToFixed(y)) - f2a(leftE->fSavedY - SkIntToFixed(y));
// We need fSavedDY because the (quad or cubic) edge might be updated
blit_trapezoid_row(blitter, y,
SkTMax(leftE->fSavedX, leftClip), SkTMin(riteE->fSavedX, rightClip),
SkTMax(lowerLeft, leftClip), SkTMin(lowerRite, rightClip),
leftE->fSavedDY, riteE->fSavedDY, fullAlpha, maskRow, isUsingMask,
noRealBlitter ||
(fullAlpha == 0xFF && (edges_too_close(leftE->fPrev, leftE, lowerY)
|| edges_too_close(riteE, riteE->fNext, lowerY))),
true);
leftE->fRiteE = nullptr;
}
static inline void deferred_blit(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
SkFixed left, SkFixed leftDY, // don't save leftE->fX/fDY as they may have been updated
SkFixed y, SkFixed nextY, bool isIntegralNextY, bool leftEnds, bool riteEnds,
AdditiveBlitter* blitter, SkAlpha* maskRow, bool isUsingMask, bool noRealBlitter,
SkFixed leftClip, SkFixed rightClip, int yShift) {
if (leftE->fRiteE && leftE->fRiteE != riteE) {
// leftE's right edge changed. Blit the saved trapezoid.
SkASSERT(leftE->fRiteE->fNext == nullptr || leftE->fRiteE->fY == y);
blit_saved_trapezoid(leftE, y, left, leftE->fRiteE->fX,
blitter, maskRow, isUsingMask, noRealBlitter, leftClip, rightClip);
}
if (!leftE->fRiteE) {
// Save and defer blitting the trapezoid
SkASSERT(riteE->fRiteE == nullptr);
SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY);
SkASSERT(riteE->fNext == nullptr || riteE->fY == y);
leftE->saveXY(left, y, leftDY);
riteE->saveXY(riteE->fX, y, riteE->fDY);
leftE->fRiteE = riteE;
}
SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY);
riteE->goY(nextY, yShift);
// Always blit when edges end or nextY is integral
if (isIntegralNextY || leftEnds || riteEnds) {
blit_saved_trapezoid(leftE, nextY, leftE->fX, riteE->fX,
blitter, maskRow, isUsingMask, noRealBlitter, leftClip, rightClip);
}
}
static void aaa_walk_edges(SkAnalyticEdge* prevHead, SkAnalyticEdge* nextTail,
SkPath::FillType fillType, AdditiveBlitter* blitter, int start_y, int stop_y,
SkFixed leftClip, SkFixed rightClip, bool isUsingMask, bool forceRLE, bool useDeferred,
bool skipIntersect) {
prevHead->fX = prevHead->fUpperX = leftClip;
nextTail->fX = nextTail->fUpperX = rightClip;
SkFixed y = SkTMax(prevHead->fNext->fUpperY, SkIntToFixed(start_y));
SkFixed nextNextY = SK_MaxS32;
{
SkAnalyticEdge* edge;
for(edge = prevHead->fNext; edge->fUpperY <= y; edge = edge->fNext) {
edge->goY(y);
updateNextNextY(edge->fLowerY, y, &nextNextY);
}
updateNextNextY(edge->fUpperY, y, &nextNextY);
}
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (fillType & 1) ? 1 : -1;
bool isInverse = SkPath::IsInverseFillType(fillType);
if (isInverse && SkIntToFixed(start_y) != y) {
int width = SkFixedFloorToInt(rightClip - leftClip);
if (SkFixedFloorToInt(y) != start_y) {
blitter->getRealBlitter()->blitRect(SkFixedFloorToInt(leftClip), start_y,
width, SkFixedFloorToInt(y) - start_y);
start_y = SkFixedFloorToInt(y);
}
SkAlpha* maskRow = isUsingMask ? static_cast<MaskAdditiveBlitter*>(blitter)->getRow(start_y)
: nullptr;
blit_full_alpha(blitter, start_y, SkFixedFloorToInt(leftClip), width,
f2a(y - SkIntToFixed(start_y)), maskRow, isUsingMask, false, false);
}
while (true) {
int w = 0;
bool in_interval = isInverse;
SkFixed prevX = prevHead->fX;
SkFixed nextY = SkTMin(nextNextY, SkFixedCeilToFixed(y + 1));
bool isIntegralNextY = (nextY & (SK_Fixed1 - 1)) == 0;
SkAnalyticEdge* currE = prevHead->fNext;
SkAnalyticEdge* leftE = prevHead;
SkFixed left = leftClip;
SkFixed leftDY = 0;
bool leftEnds = false;
int prevRite = SkFixedFloorToInt(leftClip);
nextNextY = SK_MaxS32;
SkASSERT((nextY & ((SK_Fixed1 >> 2) - 1)) == 0);
int yShift = 0;
if ((nextY - y) & (SK_Fixed1 >> 2)) {
yShift = 2;
nextY = y + (SK_Fixed1 >> 2);
} else if ((nextY - y) & (SK_Fixed1 >> 1)) {
yShift = 1;
SkASSERT(nextY == y + (SK_Fixed1 >> 1));
}
SkAlpha fullAlpha = f2a(nextY - y);
// If we're using mask blitter, we advance the mask row in this function
// to save some "if" condition checks.
SkAlpha* maskRow = nullptr;
if (isUsingMask) {
maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(SkFixedFloorToInt(y));
}
SkASSERT(currE->fPrev == prevHead);
validate_edges_for_y(currE, y);
// Even if next - y == SK_Fixed1, we can still break the left-to-right order requirement
// of the SKAAClip: |\| (two trapezoids with overlapping middle wedges)
bool noRealBlitter = forceRLE; // forceRLE && (nextY - y != SK_Fixed1);
while (currE->fUpperY <= y) {
SkASSERT(currE->fLowerY >= nextY);
SkASSERT(currE->fY == y);
w += currE->fWinding;
bool prev_in_interval = in_interval;
in_interval = !(w & windingMask) == isInverse;
bool isLeft = in_interval && !prev_in_interval;
bool isRite = !in_interval && prev_in_interval;
bool currEnds = currE->fLowerY == nextY;
if (useDeferred) {
if (currE->fRiteE && !isLeft) {
// currE is a left edge previously, but now it's not.
// Blit the trapezoid between fSavedY and y.
SkASSERT(currE->fRiteE->fY == y);
blit_saved_trapezoid(currE, y, currE->fX, currE->fRiteE->fX,
blitter, maskRow, isUsingMask, noRealBlitter, leftClip, rightClip);
}
if (leftE->fRiteE == currE && !isRite) {
// currE is a right edge previously, but now it's not.
// Moreover, its corresponding leftE doesn't change (otherwise we'll handle it
// in the previous if clause). Hence we blit the trapezoid.
blit_saved_trapezoid(leftE, y, left, currE->fX,
blitter, maskRow, isUsingMask, noRealBlitter, leftClip, rightClip);
}
}
if (isRite) {
if (useDeferred) {
deferred_blit(leftE, currE, left, leftDY, y, nextY, isIntegralNextY,
leftEnds, currEnds, blitter, maskRow, isUsingMask, noRealBlitter,
leftClip, rightClip, yShift);
} else {
SkFixed rite = currE->fX;
currE->goY(nextY, yShift);
if (leftE->fDX < 0) {
left = SkTMax(leftClip, left);
leftE->fX = SkTMax(leftClip, leftE->fX);
} else {
left = SkTMin(rightClip, left);
leftE->fX = SkTMin(rightClip, leftE->fX);
}
if (currE->fDX < 0) {
rite = SkTMax(leftClip, rite);
currE->fX = SkTMax(leftClip, currE->fX);
} else {
rite = SkTMin(rightClip, rite);
currE->fX = SkTMin(rightClip, currE->fX);
}
blit_trapezoid_row(blitter, y >> 16, left, rite, leftE->fX, currE->fX,
leftDY, currE->fDY, fullAlpha, maskRow, isUsingMask,
noRealBlitter || (fullAlpha == 0xFF && (
edges_too_close(prevRite, left, leftE->fX) ||
edges_too_close(currE, currE->fNext, nextY)
)),
true);
prevRite = SkFixedCeilToInt(SkTMax(rite, currE->fX));
}
} else {
if (isLeft) {
left = currE->fX;
leftDY = currE->fDY;
leftE = currE;
leftEnds = leftE->fLowerY == nextY;
}
currE->goY(nextY, yShift);
}
SkAnalyticEdge* next = currE->fNext;
SkFixed newX;
while (currE->fLowerY <= nextY) {
if (currE->fCurveCount < 0) {
SkAnalyticCubicEdge* cubicEdge = (SkAnalyticCubicEdge*)currE;
cubicEdge->keepContinuous();
if (!cubicEdge->updateCubic()) {
break;
}
} else if (currE->fCurveCount > 0) {
SkAnalyticQuadraticEdge* quadEdge = (SkAnalyticQuadraticEdge*)currE;
quadEdge->keepContinuous();
if (!quadEdge->updateQuadratic()) {
break;
}
} else {
break;
}
}
SkASSERT(currE->fY == nextY);
if (currE->fLowerY <= nextY) {
remove_edge(currE);
} else {
updateNextNextY(currE->fLowerY, nextY, &nextNextY);
newX = currE->fX;
SkASSERT(currE->fLowerY > nextY);
if (newX < prevX) { // ripple currE backwards until it is x-sorted
// If the crossing edge is a right edge, blit the saved trapezoid.
if (leftE->fRiteE == currE && useDeferred) {
SkASSERT(leftE->fY == nextY && currE->fY == nextY);
blit_saved_trapezoid(leftE, nextY, leftE->fX, currE->fX,
blitter, maskRow, isUsingMask, noRealBlitter, leftClip, rightClip);
}
backward_insert_edge_based_on_x(currE);
} else {
prevX = newX;
}
if (!skipIntersect) {
checkIntersection(currE, nextY, &nextNextY);
}
}
currE = next;
SkASSERT(currE);
}
// was our right-edge culled away?
if (in_interval) {
if (useDeferred) {
deferred_blit(leftE, nextTail, left, leftDY, y, nextY, isIntegralNextY,
leftEnds, false, blitter, maskRow, isUsingMask, noRealBlitter,
leftClip, rightClip, yShift);
} else {
blit_trapezoid_row(blitter, y >> 16, left, rightClip, leftE->fX, rightClip,
leftDY, 0, fullAlpha, maskRow, isUsingMask,
noRealBlitter ||
(fullAlpha == 0xFF && edges_too_close(leftE->fPrev, leftE, nextY)),
true);
}
}
if (forceRLE) {
((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY);
}
y = nextY;
if (y >= SkIntToFixed(stop_y)) {
break;
}
// now currE points to the first edge with a fUpperY larger than the previous y
insert_new_edges(currE, y, &nextNextY);
}
}
static void aaa_fill_path(const SkPath& path, const SkIRect& clipRect,
AdditiveBlitter* blitter, int start_y, int stop_y, bool pathContainedInClip,
bool isUsingMask, bool forceRLE) { // forceRLE implies that SkAAClip is calling us
SkASSERT(blitter);
SkEdgeBuilder builder;
@ -1166,7 +1660,8 @@ void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter*
rect.fBottom = stop_y;
}
if (!rect.isEmpty()) {
blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height());
blitter->getRealBlitter()->blitRect(rect.fLeft, rect.fTop,
rect.width(), rect.height());
}
}
return;
@ -1176,6 +1671,7 @@ void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter*
// this returns the first and last edge after they're sorted into a dlink list
SkAnalyticEdge* edge = sort_edges(list, count, &last);
headEdge.fRiteE = nullptr;
headEdge.fPrev = nullptr;
headEdge.fNext = edge;
headEdge.fUpperY = headEdge.fLowerY = SK_MinS32;
@ -1185,13 +1681,14 @@ void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter*
headEdge.fUpperX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fRiteE = nullptr;
tailEdge.fPrev = last;
tailEdge.fNext = nullptr;
tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32;
headEdge.fX = SK_MaxS32;
headEdge.fDX = 0;
headEdge.fDY = SK_MaxS32;
headEdge.fUpperX = SK_MaxS32;
tailEdge.fX = SK_MaxS32;
tailEdge.fDX = 0;
tailEdge.fDY = SK_MaxS32;
tailEdge.fUpperX = SK_MaxS32;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
@ -1203,22 +1700,32 @@ void aaa_fill_path(const SkPath& path, const SkIRect& clipRect, AdditiveBlitter*
stop_y = clipRect.fBottom;
}
SkFixed leftBound = SkIntToFixed(rect.fLeft);
SkFixed rightBound = SkIntToFixed(rect.fRight);
if (isUsingMask) {
// If we're using mask, then we have to limit the bound within the path bounds.
// Otherwise, the edge drift may access an invalid address inside the mask.
SkIRect ir;
path.getBounds().roundOut(&ir);
leftBound = SkTMax(leftBound, SkIntToFixed(ir.fLeft));
rightBound = SkTMin(rightBound, SkIntToFixed(ir.fRight));
}
if (!path.isInverseFillType() && path.isConvex()) {
SkASSERT(count >= 2); // convex walker does not handle missing right edges
SkFixed leftBound = SkIntToFixed(rect.fLeft);
SkFixed rightBound = SkIntToFixed(rect.fRight);
if (isUsingMask) {
// If we're using mask, then we have to limit the bound within the path bounds.
// Otherwise, the edge drift may access an invalid address inside the mask.
SkIRect ir;
path.getBounds().roundOut(&ir);
leftBound = SkTMax(leftBound, SkIntToFixed(ir.fLeft));
rightBound = SkTMin(rightBound, SkIntToFixed(ir.fRight));
}
aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y,
leftBound, rightBound, isUsingMask);
} else {
SkFAIL("Concave AAA is not yet implemented!");
// Only use deferred blitting if there are many edges.
bool useDeferred = count >
(SkFixedFloorToInt(tailEdge.fPrev->fLowerY - headEdge.fNext->fUpperY) + 1) * 4;
// We skip intersection computation if there are many points which probably already
// give us enough fractional scan lines.
bool skipIntersect = path.countPoints() > (stop_y - start_y) / 2;
aaa_walk_edges(&headEdge, &tailEdge, path.getFillType(), blitter, start_y, stop_y,
leftBound, rightBound, isUsingMask, forceRLE, useDeferred, skipIntersect);
}
}
@ -1268,11 +1775,13 @@ void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter
if (origClip.isEmpty()) {
return;
}
#ifdef SK_SUPPORT_LEGACY_AAA
if (path.isInverseFillType() || !path.isConvex()) {
// Fall back as we only implemented the algorithm for convex shapes yet.
SkScan::AntiFillPath(path, origClip, blitter, forceRLE);
return;
}
#endif
const bool isInverse = path.isInverseFillType();
SkIRect ir;
@ -1337,9 +1846,7 @@ void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter
blitter = clipper.getBlitter();
if (isInverse) {
// Currently, we use the old path to render the inverse path,
// so we don't need this.
// sk_blit_above(blitter, ir, *clipRgn);
sk_blit_above(blitter, ir, *clipRgn);
}
SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
@ -1348,16 +1855,18 @@ void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter
MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
aaa_fill_path(path, clipRgn->getBounds(), &additiveBlitter, ir.fTop, ir.fBottom,
clipRect == nullptr, true, forceRLE);
} else {
} else if (!isInverse && path.isConvex()) {
RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
aaa_fill_path(path, clipRgn->getBounds(), &additiveBlitter, ir.fTop, ir.fBottom,
clipRect == nullptr, false, forceRLE);
} else {
SafeRLEAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
aaa_fill_path(path, clipRgn->getBounds(), &additiveBlitter, ir.fTop, ir.fBottom,
clipRect == nullptr, false, forceRLE);
}
if (isInverse) {
// Currently, we use the old path to render the inverse path,
// so we don't need this.
// sk_blit_below(blitter, ir, *clipRgn);
sk_blit_below(blitter, ir, *clipRgn);
}
}

View File

@ -753,9 +753,27 @@ void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
}
}
static bool suitableForAAA(const SkPath& path) {
#ifdef SK_SUPPORT_LEGACY_AAA
return true;
#endif
if (gSkForceAnalyticAA.load()) {
return true;
}
const SkRect& bounds = path.getBounds();
// When the path have so many points compared to the size of its bounds/resolution,
// it indicates that the path is not quite smooth in the current resolution:
// the expected number of turning points in every pixel row/column is significantly greater than
// zero. Hence Aanlytic AA is not likely to produce visible quality improvents, and Analytic AA
// might be slower than supersampling.
return path.countPoints() < SkTMax(bounds.width(), bounds.height()) / 2 - 10;
}
void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
SkBlitter* blitter) {
if (gSkUseAnalyticAA.load()) {
// Do not use AAA if path is too complicated:
// there won't be any speedup or significant visual improvement.
if (gSkUseAnalyticAA.load() && suitableForAAA(path)) {
SkScan::AAAFillPath(path, clip, blitter);
return;
}

View File

@ -68,6 +68,10 @@ DEFINE_bool2(pre_log, p, false, "Log before running each test. May be incomprehe
DEFINE_bool(analyticAA, true, "If false, disable analytic anti-aliasing");
DEFINE_bool(forceAnalyticAA, false, "Force analytic anti-aliasing even if the path is complicated: "
"whether it's concave or convex, we consider a path complicated"
"if its number of points is comparable to its resolution.");
bool CollectImages(SkCommandLineFlags::StringArray images, SkTArray<SkString>* output) {
SkASSERT(output);

View File

@ -33,6 +33,7 @@ DECLARE_bool(veryVerbose);
DECLARE_string(writePath);
DECLARE_bool(pre_log);
DECLARE_bool(analyticAA);
DECLARE_bool(forceAnalyticAA);
DECLARE_string(key);
DECLARE_string(properties);