Reland "strip down SkICC.cpp"

This reverts commit 27fe397bc0.

Reason for revert: time to fly.

Original change's description:
> Revert "strip down SkICC.cpp"
> 
> This reverts commit eab50eb9c6
> and this tiny bit of e61b969a07:
> 
>     https://skia-review.googlesource.com/c/skia/+/127122/3/tests/ICCTest.cpp
> 
> Change-Id: I4306e5118a4e5eb88c05078186a28bd443fd76f7
> Reviewed-on: https://skia-review.googlesource.com/127305
> Reviewed-by: Mike Klein <mtklein@chromium.org>
> Commit-Queue: Mike Klein <mtklein@chromium.org>

TBR=mtklein@chromium.org,brianosman@google.com

# Not skipping CQ checks because original CL landed > 1 day ago.

Change-Id: I93a6cfb66f0da0e098fdcb77ac1cd619e41614b1
Reviewed-on: https://skia-review.googlesource.com/129446
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
This commit is contained in:
Mike Klein 2018-05-22 13:47:52 +00:00 committed by Skia Commit-Bot
parent 89735a0f47
commit 5b58b7c14c
5 changed files with 105 additions and 566 deletions

View File

@ -12,98 +12,26 @@
#include "SkRefCnt.h"
struct SkColorSpaceTransferFn;
class SkColorSpace;
class SkData;
class SkMatrix44;
class SK_API SkICC : public SkRefCnt {
public:
SK_API sk_sp<SkData> SkWriteICCProfile(const SkColorSpaceTransferFn&, const float toXYZD50[9]);
/**
* Parse an ICC profile.
*
* Returns nullptr if the data is not a valid ICC profile or if the profile
* input space is not RGB.
*/
static sk_sp<SkICC> Make(const void*, size_t);
namespace SkICC {
static inline sk_sp<SkData> WriteToICC(const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50) {
if (toXYZD50.get(3,0) == 0 && toXYZD50.get(3,1) == 0 && toXYZD50.get(3,2) == 0 &&
toXYZD50.get(3,3) == 1 &&
toXYZD50.get(0,3) == 0 && toXYZD50.get(1,3) == 0 && toXYZD50.get(2,3) == 0) {
/**
* If the gamut can be represented as transformation into XYZ D50, returns
* true and sets the proper values in |toXYZD50|.
*
* If not, returns false. This indicates that the ICC data is too complex
* to isolate a simple gamut transformation.
*/
bool toXYZD50(SkMatrix44* toXYZD50) const;
/**
* If the transfer function can be represented as coefficients to the standard
* equation, returns true and sets |fn| to the proper values.
*
* If not, returns false. This indicates one of the following:
* (1) The R, G, and B transfer functions are not the same.
* (2) The transfer function is represented as a table that we have not managed
* to match to a standard curve.
* (3) The ICC data is too complex to isolate a single transfer function.
*/
bool isNumericalTransferFn(SkColorSpaceTransferFn* fn) const;
/**
* Please do not call this unless isNumericalTransferFn() has been called and it
* fails. SkColorSpaceTransferFn is the preferred representation.
*
* If it is not possible to represent the R, G, and B transfer functions numerically
* and it is still necessary to get the transfer function, this will return the
* transfer functions as three tables (R, G, and B).
*
* If possible, this will return tables of the same length as they were specified in
* the ICC profile. This means that the lengths of the three tables are not
* guaranteed to be the same. If the ICC representation was not a table, the length
* will be chosen arbitrarily.
*
* The lengths of the tables are all guaranteed to be at least 2. Entries in the
* tables are guaranteed to be in [0, 1].
*
* This API may be deleted in favor of a numerical approximation of the raw data.
*
* This function may fail, indicating that the ICC profile does not have transfer
* functions.
*/
struct Channel {
// Byte offset of the start of the table in |fStorage|
size_t fOffset;
int fCount;
};
struct Tables {
Channel fRed;
Channel fGreen;
Channel fBlue;
const float* red() {
return (const float*) (fStorage->bytes() + fRed.fOffset);
float m33[9];
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++) {
m33[3*r+c] = toXYZD50.get(r,c);
}
const float* green() {
return (const float*) (fStorage->bytes() + fGreen.fOffset);
return SkWriteICCProfile(fn, m33);
}
const float* blue() {
return (const float*) (fStorage->bytes() + fBlue.fOffset);
return nullptr;
}
}
sk_sp<SkData> fStorage;
};
bool rawTransferFnData(Tables* tables) const;
/**
* Write an ICC profile with transfer function |fn| and gamut |toXYZD50|.
*/
static sk_sp<SkData> WriteToICC(const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50);
private:
SkICC(sk_sp<SkColorSpace> colorSpace);
sk_sp<SkColorSpace> fColorSpace;
friend class ICCTest;
};
#endif
#endif//SkICC_DEFINED

View File

@ -7,134 +7,13 @@
#include "SkAutoMalloc.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXformPriv.h"
#include "SkColorSpace_XYZ.h"
#include "SkEndian.h"
#include "SkFixed.h"
#include "SkICC.h"
#include "SkICCPriv.h"
#include "SkMD5.h"
#include "SkString.h"
#include "SkUtils.h"
SkICC::SkICC(sk_sp<SkColorSpace> colorSpace)
: fColorSpace(std::move(colorSpace))
{}
sk_sp<SkICC> SkICC::Make(const void* ptr, size_t len) {
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(ptr, len);
if (!colorSpace) {
return nullptr;
}
return sk_sp<SkICC>(new SkICC(std::move(colorSpace)));
}
bool SkICC::toXYZD50(SkMatrix44* toXYZD50) const {
return fColorSpace->toXYZD50(toXYZD50);
}
bool SkICC::isNumericalTransferFn(SkColorSpaceTransferFn* coeffs) const {
return fColorSpace->isNumericalTransferFn(coeffs);
}
static const int kDefaultTableSize = 512; // Arbitrary
void fn_to_table(float* tablePtr, const SkColorSpaceTransferFn& fn) {
// Y = (aX + b)^g + e for X >= d
// Y = cX + f otherwise
for (int i = 0; i < kDefaultTableSize; i++) {
float x = ((float) i) / ((float) (kDefaultTableSize - 1));
if (x >= fn.fD) {
tablePtr[i] = clamp_0_1(powf(fn.fA * x + fn.fB, fn.fG) + fn.fE);
} else {
tablePtr[i] = clamp_0_1(fn.fC * x + fn.fF);
}
}
}
void copy_to_table(float* tablePtr, const SkGammas* gammas, int index) {
SkASSERT(gammas->isTable(index));
const float* ptr = gammas->table(index);
const size_t bytes = gammas->tableSize(index) * sizeof(float);
memcpy(tablePtr, ptr, bytes);
}
bool SkICC::rawTransferFnData(Tables* tables) const {
if (!fColorSpace->toXYZD50()) {
return false; // Can't even dream of handling A2B here...
}
SkColorSpace_XYZ* colorSpace = (SkColorSpace_XYZ*) fColorSpace.get();
SkColorSpaceTransferFn fn;
if (this->isNumericalTransferFn(&fn)) {
tables->fStorage = SkData::MakeUninitialized(kDefaultTableSize * sizeof(float));
fn_to_table((float*) tables->fStorage->writable_data(), fn);
tables->fRed.fOffset = tables->fGreen.fOffset = tables->fBlue.fOffset = 0;
tables->fRed.fCount = tables->fGreen.fCount = tables->fBlue.fCount = kDefaultTableSize;
return true;
}
const SkGammas* gammas = colorSpace->gammas();
SkASSERT(gammas);
if (gammas->allChannelsSame()) {
SkASSERT(gammas->isTable(0));
tables->fStorage = SkData::MakeUninitialized(gammas->tableSize(0) * sizeof(float));
copy_to_table((float*) tables->fStorage->writable_data(), gammas, 0);
tables->fRed.fOffset = tables->fGreen.fOffset = tables->fBlue.fOffset = 0;
tables->fRed.fCount = tables->fGreen.fCount = tables->fBlue.fCount = gammas->tableSize(0);
return true;
}
// Determine the storage size.
size_t storageSize = 0;
for (int i = 0; i < 3; i++) {
if (gammas->isTable(i)) {
storageSize += gammas->tableSize(i) * sizeof(float);
} else {
storageSize += kDefaultTableSize * sizeof(float);
}
}
// Fill in the tables.
tables->fStorage = SkData::MakeUninitialized(storageSize);
float* ptr = (float*) tables->fStorage->writable_data();
size_t offset = 0;
Channel rgb[3];
for (int i = 0; i < 3; i++) {
if (gammas->isTable(i)) {
copy_to_table(ptr, gammas, i);
rgb[i].fOffset = offset;
rgb[i].fCount = gammas->tableSize(i);
offset += rgb[i].fCount * sizeof(float);
ptr += rgb[i].fCount;
continue;
}
if (gammas->isNamed(i)) {
SkAssertResult(named_to_parametric(&fn, gammas->data(i).fNamed));
} else if (gammas->isValue(i)) {
value_to_parametric(&fn, gammas->data(i).fValue);
} else {
SkASSERT(gammas->isParametric(i));
fn = gammas->params(i);
}
fn_to_table(ptr, fn);
rgb[i].fOffset = offset;
rgb[i].fCount = kDefaultTableSize;
offset += kDefaultTableSize * sizeof(float);
ptr += kDefaultTableSize;
}
tables->fRed = rgb[0];
tables->fGreen = rgb[1];
tables->fBlue = rgb[2];
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static constexpr char kDescriptionTagBodyPrefix[12] =
{ 'G', 'o', 'o', 'g', 'l', 'e', '/', 'S', 'k', 'i', 'a' , '/'};
@ -165,9 +44,14 @@ static constexpr uint32_t kWhitePointTag[5] {
// Google Inc. 2016 (UTF-16)
static constexpr uint8_t kCopyrightTagBody[] = {
0x00, 0x47, 0x00, 0x6f, 0x00, 0x6f, 0x00, 0x67, 0x00, 0x6c, 0x00, 0x65, 0x00, 0x20, 0x00,
0x49, 0x00, 0x6e, 0x00, 0x63, 0x00, 0x2e, 0x00, 0x20, 0x00, 0x32, 0x00, 0x30, 0x00, 0x31,
0x00, 0x36,
0x00, 0x47, 0x00, 0x6f,
0x00, 0x6f, 0x00, 0x67,
0x00, 0x6c, 0x00, 0x65,
0x00, 0x20, 0x00, 0x49,
0x00, 0x6e, 0x00, 0x63,
0x00, 0x2e, 0x00, 0x20,
0x00, 0x32, 0x00, 0x30,
0x00, 0x31, 0x00, 0x36,
};
static_assert(SkIsAlign4(sizeof(kCopyrightTagBody)), "Copyright must be aligned to 4-bytes.");
static constexpr uint32_t kCopyrightTagHeader[7] {
@ -288,12 +172,12 @@ static SkFixed float_round_to_fixed(float x) {
return sk_float_saturate2int((float)floor((double)x * SK_Fixed1 + 0.5));
}
static void write_xyz_tag(uint32_t* ptr, const SkMatrix44& toXYZ, int col) {
static void write_xyz_tag(uint32_t* ptr, const float toXYZD50[9], int col) {
ptr[0] = SkEndian_SwapBE32(kXYZ_PCSSpace);
ptr[1] = 0;
ptr[2] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(0, col)));
ptr[3] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(1, col)));
ptr[4] = SkEndian_SwapBE32(float_round_to_fixed(toXYZ.getFloat(2, col)));
ptr[2] = SkEndian_SwapBE32(float_round_to_fixed(toXYZD50[0*3 + col]));
ptr[3] = SkEndian_SwapBE32(float_round_to_fixed(toXYZD50[1*3 + col]));
ptr[4] = SkEndian_SwapBE32(float_round_to_fixed(toXYZD50[2*3 + col]));
}
static void write_trc_tag(uint32_t* ptr, const SkColorSpaceTransferFn& fn) {
@ -309,12 +193,6 @@ static void write_trc_tag(uint32_t* ptr, const SkColorSpaceTransferFn& fn) {
ptr[9] = SkEndian_SwapBE32(float_round_to_fixed(fn.fF));
}
static bool is_3x3(const SkMatrix44& toXYZD50) {
return 0.0f == toXYZD50.get(3, 0) && 0.0f == toXYZD50.get(3, 1) && 0.0f == toXYZD50.get(3, 2) &&
0.0f == toXYZD50.get(0, 3) && 0.0f == toXYZD50.get(1, 3) && 0.0f == toXYZD50.get(2, 3) &&
1.0f == toXYZD50.get(3, 3);
}
static bool nearly_equal(float x, float y) {
// A note on why I chose this tolerance: transfer_fn_almost_equal() uses a
// tolerance of 0.001f, which doesn't seem to be enough to distinguish
@ -338,28 +216,18 @@ static bool nearly_equal(const SkColorSpaceTransferFn& u,
&& nearly_equal(u.fF, v.fF);
}
static bool nearly_equal(const SkMatrix44& toXYZD50, const float standard[9]) {
return nearly_equal(toXYZD50.getFloat(0, 0), standard[0])
&& nearly_equal(toXYZD50.getFloat(0, 1), standard[1])
&& nearly_equal(toXYZD50.getFloat(0, 2), standard[2])
&& nearly_equal(toXYZD50.getFloat(1, 0), standard[3])
&& nearly_equal(toXYZD50.getFloat(1, 1), standard[4])
&& nearly_equal(toXYZD50.getFloat(1, 2), standard[5])
&& nearly_equal(toXYZD50.getFloat(2, 0), standard[6])
&& nearly_equal(toXYZD50.getFloat(2, 1), standard[7])
&& nearly_equal(toXYZD50.getFloat(2, 2), standard[8])
&& nearly_equal(toXYZD50.getFloat(0, 3), 0.0f)
&& nearly_equal(toXYZD50.getFloat(1, 3), 0.0f)
&& nearly_equal(toXYZD50.getFloat(2, 3), 0.0f)
&& nearly_equal(toXYZD50.getFloat(3, 0), 0.0f)
&& nearly_equal(toXYZD50.getFloat(3, 1), 0.0f)
&& nearly_equal(toXYZD50.getFloat(3, 2), 0.0f)
&& nearly_equal(toXYZD50.getFloat(3, 3), 1.0f);
static bool nearly_equal(const float u[9], const float v[9]) {
for (int i = 0; i < 9; i++) {
if (!nearly_equal(u[i], v[i])) {
return false;
}
}
return true;
}
// Return nullptr if the color profile doen't have a special name.
const char* get_color_profile_description(const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50) {
const float toXYZD50[9]) {
bool srgb_xfer = nearly_equal(fn, gSRGB_TransferFn);
bool srgb_gamut = nearly_equal(toXYZD50, gSRGB_toXYZD50);
if (srgb_xfer && srgb_gamut) {
@ -400,7 +268,7 @@ const char* get_color_profile_description(const SkColorSpaceTransferFn& fn,
static void get_color_profile_tag(char dst[kICCDescriptionTagSize],
const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50) {
const float toXYZD50[9]) {
SkASSERT(dst);
if (const char* description = get_color_profile_description(fn, toXYZD50)) {
SkASSERT(strlen(description) < kICCDescriptionTagSize);
@ -410,12 +278,7 @@ static void get_color_profile_tag(char dst[kICCDescriptionTagSize],
} else {
strncpy(dst, kDescriptionTagBodyPrefix, sizeof(kDescriptionTagBodyPrefix));
SkMD5 md5;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
float value = toXYZD50.getFloat(i,j);
md5.write(&value, sizeof(value));
}
}
md5.write(toXYZD50, 9*sizeof(float));
static_assert(sizeof(fn) == sizeof(float) * 7, "packed");
md5.write(&fn, sizeof(fn));
SkMD5::Digest digest;
@ -430,29 +293,8 @@ static void get_color_profile_tag(char dst[kICCDescriptionTagSize],
}
}
SkString SkICCGetColorProfileTag(const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50) {
char tag[kICCDescriptionTagSize];
get_color_profile_tag(tag, fn, toXYZD50);
size_t len = kICCDescriptionTagSize;
while (len > 0 && tag[len - 1] == '\0') {
--len; // tag is padded out with zeros
}
SkASSERT(len != 0);
return SkString(tag, len);
}
// returns pointer just beyond where we just wrote.
static uint8_t* string_copy_ascii_to_utf16be(uint8_t* dst, const char* src, size_t count) {
while (count-- > 0) {
*dst++ = 0;
*dst++ = (uint8_t)(*src++);
}
return dst;
}
sk_sp<SkData> SkICC::WriteToICC(const SkColorSpaceTransferFn& fn, const SkMatrix44& toXYZD50) {
if (!is_3x3(toXYZD50) || !is_valid_transfer_fn(fn)) {
sk_sp<SkData> SkWriteICCProfile(const SkColorSpaceTransferFn& fn, const float toXYZD50[9]) {
if (!is_valid_transfer_fn(fn)) {
return nullptr;
}
@ -473,7 +315,12 @@ sk_sp<SkData> SkICC::WriteToICC(const SkColorSpaceTransferFn& fn, const SkMatrix
{
char colorProfileTag[kICCDescriptionTagSize];
get_color_profile_tag(colorProfileTag, fn, toXYZD50);
ptr = string_copy_ascii_to_utf16be(ptr, colorProfileTag, kICCDescriptionTagSize);
// ASCII --> big-endian UTF-16.
for (size_t i = 0; i < kICCDescriptionTagSize; i++) {
*ptr++ = 0;
*ptr++ = colorProfileTag[i];
}
}
// Write XYZ tags

View File

@ -51,11 +51,4 @@ enum ParaCurveType {
kGABCDEF_ParaCurveType = 4,
};
/*
* Given fn and toXYZD50, generate a decription tag that either includes a hash
* of the function and gamut or is a special name.
* Exposed for unit testing and tools.
*/
SkString SkICCGetColorProfileTag(const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50);
#endif // SkICCPriv_DEFINED

View File

@ -427,8 +427,6 @@ static inline sk_sp<SkData> icc_from_color_space(const SkImageInfo& info) {
if (cs->isNumericalTransferFn(&fn) && cs->toXYZD50(&toXYZD50)) {
return SkICC::WriteToICC(fn, toXYZD50);
}
// TODO: Should we support writing ICC profiles for additional color spaces?
return nullptr;
}

View File

@ -5,296 +5,69 @@
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkColorSpace.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpace_XYZ.h"
#include "SkData.h"
#include "SkICC.h"
#include "SkICCPriv.h"
#include "SkMatrix44.h"
#include "SkStream.h"
#include "Test.h"
#include "SkTypes.h"
static bool almost_equal(float a, float b) {
return SkTAbs(a - b) < 0.001f;
}
#if defined(SK_USE_SKCMS)
static inline void test_to_xyz_d50(skiatest::Reporter* r, SkICC* icc, bool shouldSucceed,
const float* reference) {
SkMatrix44 result(SkMatrix44::kUninitialized_Constructor);
REPORTER_ASSERT(r, shouldSucceed == icc->toXYZD50(&result));
if (shouldSucceed) {
float resultVals[16];
result.asColMajorf(resultVals);
for (int i = 0; i < 16; i++) {
REPORTER_ASSERT(r, almost_equal(resultVals[i], reference[i]));
}
}
}
#include "Resources.h"
#include "SkColorSpacePriv.h"
#include "SkICC.h"
#include "SkString.h"
#include "Test.h"
#include "skcms.h"
DEF_TEST(ICC_ToXYZD50, r) {
const float z30Reference[16] = {
0.59825f, 0.27103f, 0.00603f, 0.0f, 0.22243f, 0.67447f, 0.07368f, 0.0f, 0.14352f, 0.05449f,
0.74519f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
DEF_TEST(WriteICCProfile, r) {
auto adobeRGB = SkColorSpace::MakeRGB(g2Dot2_TransferFn, SkColorSpace::kAdobeRGB_Gamut);
struct {
SkColorSpaceTransferFn fn;
const float* toXYZD50;
const char* desc;
sk_sp<SkColorSpace> want;
} tests[] = {
{g2Dot2_TransferFn, gAdobeRGB_toXYZD50, "AdobeRGB", adobeRGB},
{ gSRGB_TransferFn, gSRGB_toXYZD50, "sRGB", SkColorSpace::MakeSRGB()},
};
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z30.get(), true, z30Reference);
for (auto test : tests) {
sk_sp<SkData> profile = SkWriteICCProfile(test.fn, test.toXYZD50);
REPORTER_ASSERT(r, profile);
const float z32Reference[16] = {
0.61583f, 0.28789f, 0.00513f, 0.0f, 0.20428f, 0.66972f, 0.06609f, 0.0f, 0.14409f, 0.04237f,
0.75368f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
};
skcms_ICCProfile parsed;
REPORTER_ASSERT(r, skcms_Parse(profile->data(), profile->size(), &parsed));
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, z32.get(), true, z32Reference);
sk_sp<SkColorSpace> got = SkColorSpace::Make(parsed);
REPORTER_ASSERT(r, got);
REPORTER_ASSERT(r, SkColorSpace::Equals(got.get(), test.want.get()));
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperLeft.get(), false, z32Reference);
skcms_ICCTag desc;
REPORTER_ASSERT(r, skcms_GetTagBySignature(&parsed,
SkSetFourByteTag('d','e','s','c'),
&desc));
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_to_xyz_d50(r, upperRight.get(), false, z32Reference);
}
static inline void test_is_numerical_transfer_fn(skiatest::Reporter* r, SkICC* icc,
bool shouldSucceed,
const SkColorSpaceTransferFn& reference) {
SkColorSpaceTransferFn result;
REPORTER_ASSERT(r, shouldSucceed == icc->isNumericalTransferFn(&result));
if (shouldSucceed) {
REPORTER_ASSERT(r, 0 == memcmp(&result, &reference, sizeof(SkColorSpaceTransferFn)));
}
}
DEF_TEST(ICC_IsNumericalTransferFn, r) {
SkColorSpaceTransferFn referenceFn;
referenceFn.fA = 1.0f;
referenceFn.fB = 0.0f;
referenceFn.fC = 0.0f;
referenceFn.fD = 0.0f;
referenceFn.fE = 0.0f;
referenceFn.fF = 0.0f;
referenceFn.fG = 2.2f;
sk_sp<SkData> data = GetResourceAsData("icc_profiles/HP_ZR30w.icc");
sk_sp<SkICC> z30 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z30.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/HP_Z32x.icc");
sk_sp<SkICC> z32 = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, z32.get(), true, referenceFn);
data = GetResourceAsData("icc_profiles/upperLeft.icc");
sk_sp<SkICC> upperLeft = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperLeft.get(), false, referenceFn);
data = GetResourceAsData("icc_profiles/upperRight.icc");
sk_sp<SkICC> upperRight = SkICC::Make(data->data(), data->size());
test_is_numerical_transfer_fn(r, upperRight.get(), false, referenceFn);
}
DEF_TEST(ICC_Adobe, r) {
// Test that the color spaces produced by our procedural Adobe factory, and the official
// Adobe ICC profile match exactly.
sk_sp<SkData> data = GetResourceAsData("icc_profiles/AdobeRGB1998.icc");
sk_sp<SkColorSpace> fromIcc = SkColorSpace::MakeICC(data->data(), data->size());
sk_sp<SkColorSpace> procedural = SkColorSpace::MakeRGB(g2Dot2_TransferFn,
SkColorSpace::kAdobeRGB_Gamut);
REPORTER_ASSERT(r, SkColorSpace::Equals(fromIcc.get(), procedural.get()));
}
static inline void test_write_icc(skiatest::Reporter* r, const SkColorSpaceTransferFn& fn,
const SkMatrix44& toXYZD50, bool writeToFile) {
sk_sp<SkData> profile = SkICC::WriteToICC(fn, toXYZD50);
if (writeToFile) {
SkFILEWStream stream("out.icc");
stream.write(profile->data(), profile->size());
// Rather than really carefully break down the 'desc' tag,
// just check our expected description is somewhere in there (as big-endian UTF-16).
uint8_t big_endian_utf16[16];
for (size_t i = 0; i < strlen(test.desc); i++) {
big_endian_utf16[2*i+0] = 0;
big_endian_utf16[2*i+1] = test.desc[i];
}
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(profile->data(), profile->size());
sk_sp<SkColorSpace> reference = SkColorSpace::MakeRGB(fn, toXYZD50);
REPORTER_ASSERT(r, SkColorSpace::Equals(reference.get(), colorSpace.get()));
}
DEF_TEST(ICC_WriteICC, r) {
SkColorSpaceTransferFn adobeFn;
adobeFn.fA = 1.0f;
adobeFn.fB = 0.0f;
adobeFn.fC = 0.0f;
adobeFn.fD = 0.0f;
adobeFn.fE = 0.0f;
adobeFn.fF = 0.0f;
adobeFn.fG = 2.2f;
SkMatrix44 adobeMatrix(SkMatrix44::kUninitialized_Constructor);
adobeMatrix.set3x3RowMajorf(gAdobeRGB_toXYZD50);
test_write_icc(r, adobeFn, adobeMatrix, false);
SkColorSpaceTransferFn srgbFn;
srgbFn.fA = 1.0f / 1.055f;
srgbFn.fB = 0.055f / 1.055f;
srgbFn.fC = 1.0f / 12.92f;
srgbFn.fD = 0.04045f;
srgbFn.fE = 0.0f;
srgbFn.fF = 0.0f;
srgbFn.fG = 2.4f;
SkMatrix44 srgbMatrix(SkMatrix44::kUninitialized_Constructor);
srgbMatrix.set3x3RowMajorf(gSRGB_toXYZD50);
test_write_icc(r, srgbFn, srgbMatrix, false);
SkString adobeTag = SkICCGetColorProfileTag(adobeFn, adobeMatrix);
SkString srgbTag = SkICCGetColorProfileTag(srgbFn, srgbMatrix);
REPORTER_ASSERT(r, adobeTag != srgbTag);
REPORTER_ASSERT(r, srgbTag.equals("sRGB"));
REPORTER_ASSERT(r, adobeTag.equals("AdobeRGB"));
}
static inline void test_raw_transfer_fn(skiatest::Reporter* r, SkICC* icc) {
SkICC::Tables tables;
bool result = icc->rawTransferFnData(&tables);
REPORTER_ASSERT(r, result);
REPORTER_ASSERT(r, 0.0f == tables.red()[0]);
REPORTER_ASSERT(r, 0.0f == tables.green()[0]);
REPORTER_ASSERT(r, 0.0f == tables.blue()[0]);
REPORTER_ASSERT(r, 1.0f == tables.red()[tables.fRed.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.green()[tables.fGreen.fCount - 1]);
REPORTER_ASSERT(r, 1.0f == tables.blue()[tables.fBlue.fCount - 1]);
}
class ICCTest {
public:
static sk_sp<SkICC> MakeICC(sk_sp<SkColorSpace> space) {
return sk_sp<SkICC>(new SkICC(std::move(space)));
SkString haystack((const char*)desc.buf, desc.size),
needle ((const char*)big_endian_utf16, 2*strlen(test.desc));
REPORTER_ASSERT(r, haystack.contains(needle.c_str()));
}
static sk_sp<SkICC> MakeICC(sk_sp<SkGammas> gammas) {
return MakeICC(sk_sp<SkColorSpace>(new SkColorSpace_XYZ(
kNonStandard_SkGammaNamed, std::move(gammas),
SkMatrix44(SkMatrix44::kIdentity_Constructor), nullptr)));
}
};
DEF_TEST(ICC_RawTransferFns, r) {
sk_sp<SkICC> srgb = ICCTest::MakeICC(SkColorSpace::MakeSRGB());
test_raw_transfer_fn(r, srgb.get());
// Lookup-table based gamma curves
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize);
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kTable_Type;
gammas->fData[i].fTable.fSize = tableSize;
gammas->fData[i].fTable.fOffset = 0;
}
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.05f;
table[2] = 0.10f;
table[3] = 0.15f;
table[4] = 0.25f;
table[5] = 0.35f;
table[6] = 0.45f;
table[7] = 0.60f;
table[8] = 0.75f;
table[9] = 1.00f;
sk_sp<SkICC> tbl = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, tbl.get());
DEF_TEST(AdobeRGB, r) {
if (sk_sp<SkData> profile = GetResourceAsData("icc_profiles/AdobeRGB1998.icc")) {
skcms_ICCProfile parsed;
REPORTER_ASSERT(r, skcms_Parse(profile->data(), profile->size(), &parsed));
// Parametric gamma curves
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kParam_Type;
gammas->fData[i].fParamOffset = 0;
auto got = SkColorSpace::Make(parsed);
auto want = SkColorSpace::MakeRGB(g2Dot2_TransferFn, SkColorSpace::kAdobeRGB_Gamut);
REPORTER_ASSERT(r, SkColorSpace::Equals(got.get(), want.get()));
}
}
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>
(memory, sizeof(SkGammas));
// Interval.
params->fD = 0.04045f;
// First equation:
params->fC = 1.0f / 12.92f;
params->fF = 0.0f;
// Second equation:
// Note that the function is continuous (it's actually sRGB).
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fE = 0.0f;
params->fG = 2.4f;
sk_sp<SkICC> param = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, param.get());
// Exponential gamma curves
gammas = sk_sp<SkGammas>(new SkGammas(3));
for (int i = 0; i < 3; ++i) {
gammas->fType[i] = SkGammas::Type::kValue_Type;
gammas->fData[i].fValue = 1.4f;
}
sk_sp<SkICC> exp = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, exp.get());
gammas = sk_sp<SkGammas>(new SkGammas(3));
gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type;
gammas->fData[0].fNamed = kSRGB_SkGammaNamed;
gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed;
gammas->fData[2].fNamed = kLinear_SkGammaNamed;
sk_sp<SkICC> named = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, named.get());
memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize +
sizeof(SkColorSpaceTransferFn));
gammas = sk_sp<SkGammas>(new (memory) SkGammas(3));
table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.15f;
table[2] = 0.20f;
table[3] = 0.25f;
table[4] = 0.35f;
table[5] = 0.45f;
table[6] = 0.55f;
table[7] = 0.70f;
table[8] = 0.85f;
table[9] = 1.00f;
params = SkTAddOffset<SkColorSpaceTransferFn>(memory,
sizeof(SkGammas) + sizeof(float) * tableSize);
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fC = 1.0f / 12.92f;
params->fD = 0.04045f;
params->fE = 0.0f;
params->fF = 0.0f;
params->fG = 2.4f;
gammas->fType[0] = SkGammas::Type::kValue_Type;
gammas->fData[0].fValue = 1.2f;
gammas->fType[1] = SkGammas::Type::kTable_Type;
gammas->fData[1].fTable.fSize = tableSize;
gammas->fData[1].fTable.fOffset = 0;
gammas->fType[2] = SkGammas::Type::kParam_Type;
gammas->fData[2].fParamOffset = sizeof(float) * tableSize;
sk_sp<SkICC> nonstd = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd.get());
// Reverse order of table and exponent
gammas->fType[1] = SkGammas::Type::kValue_Type;
gammas->fData[1].fValue = 1.2f;
gammas->fType[0] = SkGammas::Type::kTable_Type;
gammas->fData[0].fTable.fSize = tableSize;
gammas->fData[0].fTable.fOffset = 0;
sk_sp<SkICC> nonstd2 = ICCTest::MakeICC(gammas);
test_raw_transfer_fn(r, nonstd2.get());
}
#endif