Adding anisotropic mipmap levels to SkMipMap.

Adding 1x2, 1x3, 2x1, 3x1 filters to SkMipMap and enabling SkMipMap to generate anisotropic mip levels.

BUG=590804
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1750303002

Review URL: https://codereview.chromium.org/1750303002
This commit is contained in:
cblume 2016-03-01 13:54:30 -08:00 committed by Commit bot
parent 7dd5db43a2
commit 5b9ad7620b
2 changed files with 168 additions and 63 deletions

View File

@ -80,11 +80,67 @@ template <typename T> T add_121(const T& a, const T& b, const T& c) {
// In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
// else for even cases, we just use a 2x box filter.
//
// This produces 4 possible filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of src pixels
// we need to sample in each dimension to produce 1 dst pixel.
// This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
// src pixels we need to sample in each dimension to produce 1 dst pixel.
//
// OpenGL expects a full mipmap stack to contain anisotropic space as well.
// This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
// Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c = c00 + c10;
d[i] = F::Compact(c >> 1);
p0 += 2;
p1 += 2;
}
}
template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c10 = F::Expand(p1[0]);
auto c20 = F::Expand(p2[0]);
auto c = add_121(c00, c10, c20);
d[i] = F::Compact(c >> 2);
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c = c00 + c01;
d[i] = F::Compact(c >> 1);
p0 += 2;
}
}
template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
@ -102,6 +158,46 @@ template <typename F> void downsample_2_2(void* dst, const void* src, size_t src
}
}
template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c20 = F::Expand(p2[0]);
auto c21 = F::Expand(p2[1]);
auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
d[i] = F::Compact(c >> 3);
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto d = static_cast<typename F::Type*>(dst);
auto c02 = F::Expand(p0[0]);
for (int i = 0; i < count; ++i) {
auto c00 = c02;
auto c01 = F::Expand(p0[1]);
c02 = F::Expand(p0[2]);
auto c = add_121(c00, c01, c02);
d[i] = F::Compact(c >> 2);
p0 += 2;
}
}
template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
@ -125,29 +221,8 @@ template <typename F> void downsample_3_2(void* dst, const void* src, size_t src
}
}
template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
auto d = static_cast<typename F::Type*>(dst);
for (int i = 0; i < count; ++i) {
auto c00 = F::Expand(p0[0]);
auto c01 = F::Expand(p0[1]);
auto c10 = F::Expand(p1[0]);
auto c11 = F::Expand(p1[1]);
auto c20 = F::Expand(p2[0]);
auto c21 = F::Expand(p2[1]);
auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
d[i] = F::Compact(c >> 3);
p0 += 2;
p1 += 2;
p2 += 2;
}
}
template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
SkASSERT(count > 0);
auto p0 = static_cast<const typename F::Type*>(src);
auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
@ -191,8 +266,12 @@ size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
FilterProc* proc_1_2 = nullptr;
FilterProc* proc_1_3 = nullptr;
FilterProc* proc_2_1 = nullptr;
FilterProc* proc_2_2 = nullptr;
FilterProc* proc_2_3 = nullptr;
FilterProc* proc_3_1 = nullptr;
FilterProc* proc_3_2 = nullptr;
FilterProc* proc_3_3 = nullptr;
@ -201,27 +280,43 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
switch (ct) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
break;
case kRGB_565_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
break;
case kARGB_4444_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
break;
case kAlpha_8_SkColorType:
case kGray_8_SkColorType:
proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
break;
@ -231,6 +326,9 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
return nullptr;
}
if (src.width() <= 1 && src.height() <= 1) {
return nullptr;
}
// whip through our loop to compute the exact size needed
size_t size = 0;
int countLevels = 0;
@ -238,18 +336,15 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
int width = src.width();
int height = src.height();
for (;;) {
width >>= 1;
height >>= 1;
if (0 == width || 0 == height) {
break;
}
width = SkTMax(1, width >> 1);
height = SkTMax(1, height >> 1);
size += SkColorTypeMinRowBytes(ct, width) * height;
countLevels += 1;
if (1 == width && 1 == height) {
break;
}
}
}
if (0 == countLevels) {
return nullptr;
}
SkASSERT(countLevels == SkMipMap::ComputeLevelCount(src.width(), src.height()));
@ -283,21 +378,37 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
for (int i = 0; i < countLevels; ++i) {
FilterProc* proc;
if (height & 1) { // src-height is 3
if (width & 1) { // src-width is 3
proc = proc_3_3;
} else { // src-width is 2
proc = proc_2_3;
if (height & 1) {
if (height == 1) { // src-height is 1
if (width & 1) { // src-width is 3
proc = proc_3_1;
} else { // src-width is 2
proc = proc_2_1;
}
} else { // src-height is 3
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_3;
} else { // src-width is 3
proc = proc_3_3;
}
} else { // src-width is 2
proc = proc_2_3;
}
}
} else { // src-height is 2
if (width & 1) { // src-width is 3
proc = proc_3_2;
} else { // src-width is 2
} else { // src-height is 2
if (width & 1) {
if (width == 1) { // src-width is 1
proc = proc_1_2;
} else { // src-width is 3
proc = proc_3_2;
}
} else { // src-width is 2
proc = proc_2_2;
}
}
width >>= 1;
height >>= 1;
width = SkTMax(1, width >> 1);
height = SkTMax(1, height >> 1);
rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
levels[i].fPixmap = SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
@ -323,27 +434,21 @@ SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
}
int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
if (baseWidth < 1 || baseHeight < 1) {
return 0;
}
// OpenGL's spec requires that each mipmap level have height/width equal to
// max(1, floor(original_height / 2^i)
// (or original_width) where i is the mipmap level.
// Continue scaling down until both axes are size 1.
//
// This means it maintains isotropic space (both axes scaling down
// at the same rate) until one axis hits size 1.
// At that point, OpenGL continues to scale down into anisotropic space
// (where the scales are not the same between axes).
//
// Skia currently does not go into anisotropic space.
// Once an axis hits size 1 we stop.
// All this means is rather than use the largest axis we will use the
// smallest axis.
const int smallestAxis = SkTMin(baseWidth, baseHeight);
if (smallestAxis < 2) {
const int largestAxis = SkTMax(baseWidth, baseHeight);
if (largestAxis < 2) {
// SkMipMap::Build requires a minimum size of 2.
return 0;
}
const int leadingZeros = SkCLZ(static_cast<uint32_t>(smallestAxis));
const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
// If the value 00011010 has 3 leading 0s then it has 5 significant bits
// (the bits which are not leading zeros)
const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;

View File

@ -125,12 +125,12 @@ DEF_TEST(MipMap_ComputeLevelCount, reporter) {
{100, 0, 0},
{0, 0, 0},
// 1
{1, 100, 0},
{100, 1, 0},
{1, 100, 6},
{100, 1, 6},
{1, 1, 0},
// 2
{2, 100, 1},
{100, 2, 1},
{2, 100, 6},
{100, 2, 6},
{2, 2, 1},
// Test a handful of boundaries such as 63x63 and 64x64
@ -142,9 +142,9 @@ DEF_TEST(MipMap_ComputeLevelCount, reporter) {
{256, 256, 8},
// Test different dimensions, such as 256x64
{64, 129, 6},
{255, 32, 5},
{500, 1000, 8}
{64, 129, 7},
{255, 32, 7},
{500, 1000, 9}
};
for (auto& currentTest : tests) {