Allow gradient optimization with perspective

Before, gradients would only interpolate the linear portion of the
quadratic equation if there was no perspective. This updates them to
do so even in the case that there is perspective. The rearrangement
of math causes noise differences in the following gm tests:

gradients_no_texture_gpu
gradients_view_perspective_gpu
gradients_local_perspective_gpu
gradients_gpu

R=bsalomon@google.com

Author: cdalton@nvidia.com

Review URL: https://codereview.chromium.org/25645006

git-svn-id: http://skia.googlecode.com/svn/trunk@11595 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2013-10-04 01:20:09 +00:00
parent 57a3b763ca
commit 5fd7d5c20a
8 changed files with 233 additions and 249 deletions

View File

@ -21,3 +21,8 @@
## Added by edisonn as part of https://codereview.chromium.org/23851037/
#gradients
# Added by cdalton as part of https://codereview.chromium.org/25645006/
gradients_no_texture
gradients_view_perspective
gradients_local_perspective
gradients

View File

@ -41,12 +41,13 @@ enum GrCoordSet {
*/
class GrCoordTransform : public SkNoncopyable {
public:
GrCoordTransform() {}
GrCoordTransform() { SkDEBUGCODE(fInEffect = false); }
/**
* Create a transformation that maps [0, 1] to a texture's boundaries.
*/
GrCoordTransform(GrCoordSet sourceCoords, const GrTexture* texture) {
SkDEBUGCODE(fInEffect = false);
this->reset(sourceCoords, texture);
}
@ -56,20 +57,40 @@ public:
* coord convention.
*/
GrCoordTransform(GrCoordSet sourceCoords, const SkMatrix& m, const GrTexture* texture = NULL) {
SkDEBUGCODE(fInEffect = false);
this->reset(sourceCoords, m, texture);
}
void reset(GrCoordSet sourceCoords, const GrTexture* texture) {
SkASSERT(!fInEffect);
SkASSERT(NULL != texture);
this->reset(sourceCoords, GrEffect::MakeDivByTextureWHMatrix(texture), texture);
}
void reset(GrCoordSet sourceCoords, const SkMatrix& m, const GrTexture* texture = NULL) {
SkASSERT(!fInEffect);
fSourceCoords = sourceCoords;
fMatrix = m;
fReverseY = NULL != texture && kBottomLeft_GrSurfaceOrigin == texture->origin();
}
GrCoordTransform& operator= (const GrCoordTransform& other) {
SkASSERT(!fInEffect);
fSourceCoords = other.fSourceCoords;
fMatrix = other.fMatrix;
fReverseY = other.fReverseY;
return *this;
}
/**
* Access the matrix for editing. Note, this must be done before adding the transform to an
* effect, since effects are immutable.
*/
SkMatrix* accessMatrix() {
SkASSERT(!fInEffect);
return &fMatrix;
}
bool operator== (const GrCoordTransform& other) const {
return fSourceCoords == other.fSourceCoords &&
fMatrix.cheapEqualTo(other.fMatrix) &&
@ -86,6 +107,13 @@ private:
bool fReverseY;
typedef SkNoncopyable INHERITED;
#ifdef SK_DEBUG
public:
void setInEffect() const { fInEffect = true; }
private:
mutable bool fInEffect;
#endif
};
#endif

View File

@ -288,6 +288,8 @@ protected:
virtual bool onIsEqual(const GrEffect& effect) const SK_OVERRIDE;
const GrCoordTransform& getCoordTransform() const { return fCoordTransform; }
private:
static const GrCoordSet kCoordSet = kLocal_GrCoordSet;

View File

@ -355,8 +355,7 @@ public:
protected:
UniformHandle fVSParamUni;
UniformHandle fFSParamUni;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
@ -422,7 +421,20 @@ private:
: INHERITED(ctx, shader, matrix, tm)
, fCenterX1(shader.getCenterX1())
, fRadius0(shader.getStartRadius())
, fDiffRadius(shader.getDiffRadius()) { }
, fDiffRadius(shader.getDiffRadius()) {
// We pass the linear part of the quadratic as a varying.
// float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
fBTransform = this->getCoordTransform();
SkMatrix& bMatrix = *fBTransform.accessMatrix();
SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius);
bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) +
SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0]));
bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) +
SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1]));
bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) +
SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2]));
this->addCoordTransform(&fBTransform);
}
GR_DECLARE_EFFECT_TEST;
@ -430,9 +442,10 @@ private:
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
SkScalar fCenterX1;
SkScalar fRadius0;
SkScalar fDiffRadius;
GrCoordTransform fBTransform;
SkScalar fCenterX1;
SkScalar fRadius0;
SkScalar fDiffRadius;
// @}
@ -492,160 +505,124 @@ void GrGLConical2Gradient::emitCode(GrGLShaderBuilder* builder,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
this->emitUniforms(builder, key);
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_Visibility,
kFloat_GrSLType, "Conical2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Conical2FSParams", 6);
fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Conical2FSParams", 6);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
GrGLShaderBuilder::VertexBuilder* vertexBuilder =
(kVec2f_GrSLType == coords[0].type()) ? builder->getVertexBuilder() : NULL;
if (NULL != vertexBuilder) {
vertexBuilder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
&fVSVaryingName, &fFSVaryingName);
SkString cName("c");
SkString ac4Name("ac4");
SkString dName("d");
SkString qName("q");
SkString r0Name("r0");
SkString r1Name("r1");
SkString tName("t");
SkString p0; // 4a
SkString p1; // 1/a
SkString p2; // distance between centers
SkString p3; // start radius
SkString p4; // start radius squared
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5);
// We interpolate the linear component in coords[1].
SkASSERT(coords[0].type() == coords[1].type());
const char* coords2D;
SkString bVar;
if (kVec3f_GrSLType == coords[0].type()) {
builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n",
coords[0].c_str(), coords[1].c_str(), coords[0].c_str());
coords2D = "interpolants.xy";
bVar = "interpolants.z";
} else {
coords2D = coords[0].c_str();
bVar.printf("%s.x", coords[1].c_str());
}
// VS
{
SkString p2; // distance between centers
SkString p3; // start radius
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (NULL != vertexBuilder) {
// r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
vertexBuilder->vsCodeAppendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
fVSVaryingName, p2.c_str(),
coords[0].getVSName().c_str(), p3.c_str(), p5.c_str());
}
}
// c = (x^2)+(y^2) - params[4]
builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), coords2D, coords2D, p4.c_str());
// FS
{
SkString coords2D = builder->ensureFSCoords2D(coords, 0);
SkString cName("c");
SkString ac4Name("ac4");
SkString dName("d");
SkString qName("q");
SkString r0Name("r0");
SkString r1Name("r1");
SkString tName("t");
SkString p0; // 4a
SkString p1; // 1/a
SkString p2; // distance between centers
SkString p3; // start radius
SkString p4; // start radius squared
SkString p5; // difference in radii (r1 - r0)
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// ac4 = params[0] * c
builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (NULL != vertexBuilder) {
bVar = fFSVaryingName;
} else {
bVar = "b";
builder->fsCodeAppendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
bVar.c_str(), p2.c_str(), coords2D.c_str(),
p3.c_str(), p5.c_str());
}
// d = b^2 - ac4
builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
// only proceed if discriminant is >= 0
builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());
// c = (x^2)+(y^2) - params[4]
builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
coords2D.c_str(), coords2D.c_str(),
p4.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
// compute both roots
// r0 = q * params[1]
builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
qName.c_str(), p1.c_str());
// r1 = c / q
builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
cName.c_str(), qName.c_str());
// ac4 = params[0] * c
builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// d = b^2 - ac4
builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// so we'll look at the larger one first:
builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// only proceed if discriminant is >= 0
builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());
// if r(t) > 0, then we're done; t will be our x coordinate
builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
builder->fsCodeAppend("\t\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
// compute both roots
// r0 = q * params[1]
builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
qName.c_str(), p1.c_str());
// r1 = c / q
builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
cName.c_str(), qName.c_str());
// otherwise, if r(t) for the larger root was <= 0, try the other root
builder->fsCodeAppend("\t\t} else {\n");
builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// if r(t) > 0 for the smaller root, then t will be our x coordinate
builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
tName.c_str(), p5.c_str(), p3.c_str());
// so we'll look at the larger one first:
builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
builder->fsCodeAppend("\t\t\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
// if r(t) > 0, then we're done; t will be our x coordinate
builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
// end if (r(t) > 0) for smaller root
builder->fsCodeAppend("\t\t\t}\n");
// end if (r(t) > 0), else, for larger root
builder->fsCodeAppend("\t\t}\n");
// end if (discriminant >= 0)
builder->fsCodeAppend("\t}\n");
} else {
builder->fsCodeAppend("\t\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
// linear case: t = -c/b
builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// otherwise, if r(t) for the larger root was <= 0, try the other root
builder->fsCodeAppend("\t\t} else {\n");
builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0 for the smaller root, then t will be our x coordinate
builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
tName.c_str(), p5.c_str(), p3.c_str());
builder->fsCodeAppend("\t\t\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
// end if (r(t) > 0) for smaller root
builder->fsCodeAppend("\t\t\t}\n");
// end if (r(t) > 0), else, for larger root
builder->fsCodeAppend("\t\t}\n");
// end if (discriminant >= 0)
builder->fsCodeAppend("\t}\n");
} else {
// linear case: t = -c/b
builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
builder->fsCodeAppend("\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
builder->fsCodeAppend("\t}\n");
}
// if r(t) > 0, then t will be the x coordinate
builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
builder->fsCodeAppend("\t");
this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
builder->fsCodeAppend("\t}\n");
}
}
@ -678,8 +655,7 @@ void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
SkScalarToFloat(diffRadius)
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
uman.set1fv(fParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;

View File

@ -397,8 +397,7 @@ public:
protected:
UniformHandle fVSParamUni;
UniformHandle fFSParamUni;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
@ -463,7 +462,19 @@ private:
: INHERITED(ctx, shader, matrix, tm)
, fCenterX1(shader.getCenterX1())
, fRadius0(shader.getStartRadius())
, fPosRoot(shader.getDiffRadius() < 0) { }
, fPosRoot(shader.getDiffRadius() < 0) {
// We pass the linear part of the quadratic as a varying.
// float b = 2.0 * (fCenterX1 * x - fRadius0 * z)
fBTransform = this->getCoordTransform();
SkMatrix& bMatrix = *fBTransform.accessMatrix();
bMatrix[SkMatrix::kMScaleX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) -
SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp0]));
bMatrix[SkMatrix::kMSkewX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) -
SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp1]));
bMatrix[SkMatrix::kMTransX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) -
SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp2]));
this->addCoordTransform(&fBTransform);
}
GR_DECLARE_EFFECT_TEST;
@ -471,9 +482,10 @@ private:
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
SkScalar fCenterX1;
SkScalar fRadius0;
SkBool8 fPosRoot;
GrCoordTransform fBTransform;
SkScalar fCenterX1;
SkScalar fRadius0;
SkBool8 fPosRoot;
// @}
@ -535,103 +547,68 @@ void GrGLRadial2Gradient::emitCode(GrGLShaderBuilder* builder,
const TextureSamplerArray& samplers) {
this->emitUniforms(builder, key);
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_Visibility,
kFloat_GrSLType, "Radial2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Radial2FSParams", 6);
fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Radial2FSParams", 6);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
GrGLShaderBuilder::VertexBuilder* vertexBuilder =
(kVec2f_GrSLType == coords[0].type()) ? builder->getVertexBuilder() : NULL;
if (NULL != vertexBuilder) {
vertexBuilder->addVarying(kFloat_GrSLType, "Radial2BCoeff",
&fVSVaryingName, &fFSVaryingName);
SkString cName("c");
SkString ac4Name("ac4");
SkString rootName("root");
SkString t;
SkString p0;
SkString p1;
SkString p2;
SkString p3;
SkString p4;
SkString p5;
builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5);
// We interpolate the linear component in coords[1].
SkASSERT(coords[0].type() == coords[1].type());
const char* coords2D;
SkString bVar;
if (kVec3f_GrSLType == coords[0].type()) {
builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n",
coords[0].c_str(), coords[1].c_str(), coords[0].c_str());
coords2D = "interpolants.xy";
bVar = "interpolants.z";
} else {
coords2D = coords[0].c_str();
bVar.printf("%s.x", coords[1].c_str());
}
// VS
{
SkString p2;
SkString p3;
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
// c = (x^2)+(y^2) - params[4]
builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), coords2D, coords2D, p4.c_str());
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (NULL != vertexBuilder) {
// r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
vertexBuilder->vsCodeAppendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
fVSVaryingName, p2.c_str(),
coords[0].getVSName().c_str(), p3.c_str());
}
// If we aren't degenerate, emit some extra code, and accept a slightly
// more complex coord.
if (!fIsDegenerate) {
// ac4 = 4.0 * params[0] * c
builder->fsCodeAppendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
builder->fsCodeAppendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
rootName.c_str(), p1.c_str());
} else {
// t is: -c/b
t.printf("-%s / %s", cName.c_str(), bVar.c_str());
}
// FS
{
SkString coords2D = builder->ensureFSCoords2D(coords, 0);
SkString cName("c");
SkString ac4Name("ac4");
SkString rootName("root");
SkString t;
SkString p0;
SkString p1;
SkString p2;
SkString p3;
SkString p4;
SkString p5;
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (NULL != vertexBuilder) {
bVar = fFSVaryingName;
} else {
bVar = "b";
builder->fsCodeAppendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), p2.c_str(), coords2D.c_str(), p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(),
coords2D.c_str(),
coords2D.c_str(),
p4.c_str());
// If we aren't degenerate, emit some extra code, and accept a slightly
// more complex coord.
if (!fIsDegenerate) {
// ac4 = 4.0 * params[0] * c
builder->fsCodeAppendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
builder->fsCodeAppendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(),
rootName.c_str(), p1.c_str());
} else {
// t is: -c/b
t.printf("-%s / %s", cName.c_str(), bVar.c_str());
}
this->emitColor(builder, t.c_str(), key, outputColor, inputColor, samplers);
}
this->emitColor(builder, t.c_str(), key, outputColor, inputColor, samplers);
}
void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
@ -661,8 +638,7 @@ void GrGLRadial2Gradient::setData(const GrGLUniformManager& uman,
data.isPosRoot() ? 1.f : -1.f
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
uman.set1fv(fParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedPosRoot = data.isPosRoot();

View File

@ -89,6 +89,7 @@ const char* GrEffect::name() const {
void GrEffect::addCoordTransform(const GrCoordTransform* transform) {
fCoordTransforms.push_back(transform);
SkDEBUGCODE(transform->setInEffect();)
}
void GrEffect::addTextureAccess(const GrTextureAccess* access) {

View File

@ -391,8 +391,7 @@ void GrGLProgramEffectsBuilder::emitTransforms(const GrEffectRef& effect,
default:
GrCrash("Unexpected uniform type.");
}
SkNEW_APPEND_TO_TARRAY(outCoords, TransformedCoords,
(fsVaryingName, varyingType, vsVaryingName));
SkNEW_APPEND_TO_TARRAY(outCoords, TransformedCoords, (fsVaryingName, varyingType));
}
}

View File

@ -54,20 +54,17 @@ public:
*/
class TransformedCoords {
public:
TransformedCoords(const char* name, GrSLType type, const char* vsName)
: fName(name), fType(type), fVSName(vsName) {
TransformedCoords(const char* name, GrSLType type)
: fName(name), fType(type) {
}
const char* c_str() const { return fName.c_str(); }
GrSLType type() const { return fType; }
const SkString& getName() const { return fName; }
// TODO: Remove the VS name when we have vertexless shaders, and gradients are reworked.
const SkString& getVSName() const { return fVSName; }
private:
SkString fName;
GrSLType fType;
SkString fVSName;
};
typedef SkTArray<TransformedCoords> TransformedCoordsArray;