Convert Color32 code to perfect blend.

Before we commit to blend_256_round_alt, let's make sure blend_perfect is
really slower in practice (i.e. regresses on perf.skia.org).

blend_perfect is really the most desirable algorithm if we can afford it.  Not
only is it correct, but it's easy to think about and break into correct pieces:
for instance, its div255() doesn't require any coordination with the multiply.

This looks like a 30% hit according to microbenches.  That said, microbenches
said my previous change would be a 20-25% perf improvement, but it didn't end
up showing a significant effect at a high level.

As for correctness, I see a bunch of off-by-1 compared to blend_256_round_alt
(exactly what we'd expect), and one off-by-3 in a GM that looks like it has a
bunch of overdraw.

BUG=skia:

Review URL: https://codereview.chromium.org/1098913002
This commit is contained in:
mtklein 2015-04-20 10:52:26 -07:00 committed by Commit bot
parent 4912437891
commit 61221e7f87
3 changed files with 42 additions and 64 deletions

View File

@ -142,11 +142,8 @@ SkBlitRow::Proc32 SkBlitRow::ColorProcFactory() {
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
// interesting edge cases, and it's quite a bit faster than blend_perfect.
//
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src,
int count, SkPMColor color) {
@ -156,19 +153,19 @@ void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
}
unsigned invA = 255 - SkGetPackedA32(color);
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
unsigned round = 0;
#else // blend_256_round_alt, good
invA += invA >> 7;
unsigned round = (128 << 16) + (128 << 0);
#endif
while (count --> 0) {
// Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers.
const uint32_t mask = 0x00FF00FF;
uint32_t rb = (((*src >> 0) & mask) * invA + round) >> 8, // _r_b
ag = (((*src >> 8) & mask) * invA + round) >> 0; // a_g_
*dst = color + ((rb & mask) | (ag & ~mask));
uint32_t rb = (((*src >> 0) & mask) * invA), // r_b_
ag = (((*src >> 8) & mask) * invA); // a_g_
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
uint32_t round = (128 << 16) + (128 << 0);
rb += round;
ag += round;
rb += (rb & ~mask) >> 8;
ag += (ag & ~mask) >> 8;
#endif
*dst = color + (((rb>>8) & mask) | ((ag>>0) & ~mask));
src++;
dst++;
}

View File

@ -234,41 +234,30 @@ void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
/* SSE2 version of Color32()
* portable version is in core/SkBlitRow_D32.cpp
*/
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
// interesting edge cases, and it's quite a bit faster than blend_perfect.
//
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
/* SSE2 version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) {
switch (SkGetPackedA32(color)) {
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
case 255: sk_memset32(dst, color, count); return;
}
__m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color));
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
__m128i colorAndRound = colorHigh;
#else // blend_256_round_alt, good
__m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128));
#endif
unsigned invA = 255 - SkGetPackedA32(color);
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
__m128i invA16 = _mm_set1_epi16(invA);
#else // blend_256_round_alt, good
SkASSERT(invA + (invA >> 7) < 256); // We should still fit in the low byte here.
__m128i invA16 = _mm_set1_epi16(invA + (invA >> 7));
#endif
__m128i color_2x_high = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color)),
invA_8x = _mm_set1_epi16(255 - SkGetPackedA32(color));
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
auto kernel = [&](const __m128i& src4) -> __m128i {
__m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())),
hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128()));
return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8),
_mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8));
auto kernel = [&](const __m128i& src_4x) -> __m128i {
__m128i lo = _mm_mullo_epi16(invA_8x, _mm_unpacklo_epi8(src_4x, _mm_setzero_si128())),
hi = _mm_mullo_epi16(invA_8x, _mm_unpackhi_epi8(src_4x, _mm_setzero_si128()));
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
lo = _mm_add_epi16(lo, _mm_set1_epi16(128));
hi = _mm_add_epi16(hi, _mm_set1_epi16(128));
lo = _mm_add_epi16(lo, _mm_srli_epi16(lo, 8));
hi = _mm_add_epi16(hi, _mm_srli_epi16(hi, 8));
#endif
return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(color_2x_high, lo), 8),
_mm_srli_epi16(_mm_add_epi16(color_2x_high, hi), 8));
};
while (count >= 8) {

View File

@ -1681,38 +1681,30 @@ void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
// interesting edge cases, and it's quite a bit faster than blend_perfect.
//
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
/* NEON version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
switch (SkGetPackedA32(color)) {
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
case 255: sk_memset32(dst, color, count); return;
}
uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
uint16x8_t colorAndRound = colorHigh;
#else // blend_256_round_alt, good
uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
#endif
unsigned invA = 255 - SkGetPackedA32(color);
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
uint8x8_t invA8 = vdup_n_u8(invA);
#else // blend_256_round_alt, good
SkASSERT(invA + (invA >> 7) < 256); // This next part only works if alpha is not 0.
uint8x8_t invA8 = vdup_n_u8(invA + (invA >> 7));
#endif
uint16x8_t color_2x_high = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
uint8x8_t invA_8x = vdup_n_u8(255 - SkGetPackedA32(color));
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA_8x),
hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA_8x);
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
lo = vaddq_u16(lo, vdupq_n_u16(128));
hi = vaddq_u16(hi, vdupq_n_u16(128));
lo = vaddq_u16(lo, vshrq_n_u16(lo, 8));
hi = vaddq_u16(hi, vshrq_n_u16(hi, 8));
#endif
return (uint32x4_t)
vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
vcombine_u8(vaddhn_u16(color_2x_high, lo), vaddhn_u16(color_2x_high, hi));
};
while (count >= 8) {