Reland "start cleaning up non-skcms SkColorSpaceXforms"

This is a reland of 339133f82c

Original change's description:
> start cleaning up non-skcms SkColorSpaceXforms
> 
> I think this gets rid of
>   - SkColorSpaceXform_Base
>   - SkColorSpaceXform_XYZ
>   - SkColorSpaceXform_A2B
> and lots of support code.  Might be more left to clean up?
> 
> Change-Id: I560d974d1e879dfd6a63ee2244a3dd88bd495c8a
> Reviewed-on: https://skia-review.googlesource.com/129512
> Commit-Queue: Brian Osman <brianosman@google.com>
> Auto-Submit: Mike Klein <mtklein@chromium.org>
> Reviewed-by: Brian Osman <brianosman@google.com>

Change-Id: I33ee0d8bcfd72c401823a2e7d5168c9ecc9a5181
Reviewed-on: https://skia-review.googlesource.com/129624
Reviewed-by: Mike Klein <mtklein@google.com>
Commit-Queue: Mike Klein <mtklein@google.com>
This commit is contained in:
Mike Klein 2018-05-22 10:32:20 -04:00 committed by Skia Commit-Bot
parent bb9cad053b
commit 6747f52778
18 changed files with 39 additions and 1771 deletions

View File

@ -85,8 +85,6 @@ skia_core_sources = [
"$_src/core/SkColorSpaceXformCanvas.cpp",
"$_src/core/SkColorSpaceXformer.cpp",
"$_src/core/SkColorSpaceXformer.h",
"$_src/core/SkColorSpaceXform_A2B.cpp",
"$_src/core/SkColorSpaceXform_A2B.h",
"$_src/core/SkColorTable.cpp",
"$_src/core/SkConvertPixels.cpp",
"$_src/core/SkConvertPixels.h",

View File

@ -43,7 +43,6 @@ tests_sources = [
"$_tests/ColorMatrixTest.cpp",
"$_tests/ColorPrivTest.cpp",
"$_tests/ColorSpaceTest.cpp",
"$_tests/ColorSpaceXformTest.cpp",
"$_tests/ColorTest.cpp",
"$_tests/CopySurfaceTest.cpp",
"$_tests/CPlusPlusEleven.cpp",

View File

@ -9,7 +9,7 @@
#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkColorSpace.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpaceXformPriv.h"
#include "SkData.h"
#include "SkFrameHolder.h"
#include "SkGifCodec.h"
@ -657,8 +657,9 @@ bool SkCodec::initializeColorXform(const SkImageInfo& dstInfo, SkEncodedInfo::Al
bool needsColorCorrectPremul = needs_premul(dstInfo.alphaType(), encodedAlpha) &&
SkTransferFunctionBehavior::kRespect == premulBehavior;
if (needs_color_xform(dstInfo, fSrcInfo.colorSpace(), needsColorCorrectPremul)) {
fColorXform = SkColorSpaceXform_Base::New(fSrcInfo.colorSpace(), dstInfo.colorSpace(),
premulBehavior);
fColorXform = SkMakeColorSpaceXform(fSrcInfo.colorSpace(),
dstInfo.colorSpace(),
premulBehavior);
if (!fColorXform) {
return false;
}

View File

@ -5,596 +5,23 @@
* found in the LICENSE file.
*/
#include "SkColorData.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXform.h"
#include "SkColorSpaceXformPriv.h"
#include "SkColorSpaceXform_A2B.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkHalf.h"
#include "SkMakeUnique.h"
#include "SkOpts.h"
#include "SkPM4fPriv.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
#include "../jumper/SkJumper.h"
static constexpr float sk_linear_from_2dot2[256] = {
0.000000000000000000f, 0.000005077051900662f, 0.000023328004666099f, 0.000056921765712193f,
0.000107187362341244f, 0.000175123977503027f, 0.000261543754548491f, 0.000367136269815943f,
0.000492503787191433f, 0.000638182842167022f, 0.000804658499513058f, 0.000992374304074325f,
0.001201739522438400f, 0.001433134589671860f, 0.001686915316789280f, 0.001963416213396470f,
0.002262953160706430f, 0.002585825596234170f, 0.002932318323938360f, 0.003302703032003640f,
0.003697239578900130f, 0.004116177093282750f, 0.004559754922526020f, 0.005028203456855540f,
0.005521744850239660f, 0.006040593654849810f, 0.006584957382581690f, 0.007155037004573030f,
0.007751027397660610f, 0.008373117745148580f, 0.009021491898012130f, 0.009696328701658230f,
0.010397802292555300f, 0.011126082368383200f, 0.011881334434813700f, 0.012663720031582100f,
0.013473396940142600f, 0.014310519374884100f, 0.015175238159625200f, 0.016067700890886900f,
0.016988052089250000f, 0.017936433339950200f, 0.018912983423721500f, 0.019917838438785700f,
0.020951131914781100f, 0.022012994919336500f, 0.023103556157921400f, 0.024222942067534200f,
0.025371276904734600f, 0.026548682828472900f, 0.027755279978126000f, 0.028991186547107800f,
0.030256518852388700f, 0.031551391400226400f, 0.032875916948383800f, 0.034230206565082000f,
0.035614369684918800f, 0.037028514161960200f, 0.038472746320194600f, 0.039947171001525600f,
0.041451891611462500f, 0.042987010162657100f, 0.044552627316421400f, 0.046148842422351000f,
0.047775753556170600f, 0.049433457555908000f, 0.051122050056493400f, 0.052841625522879000f,
0.054592277281760300f, 0.056374097551979800f, 0.058187177473685400f, 0.060031607136313200f,
0.061907475605455800f, 0.063814870948677200f, 0.065753880260330100f, 0.067724589685424300f,
0.069727084442598800f, 0.071761448846239100f, 0.073827766327784600f, 0.075926119456264800f,
0.078056589958101900f, 0.080219258736215100f, 0.082414205888459200f, 0.084641510725429500f,
0.086901251787660300f, 0.089193506862247800f, 0.091518352998919500f, 0.093875866525577800f,
0.096266123063339700f, 0.098689197541094500f, 0.101145164209600000f, 0.103634096655137000f,
0.106156067812744000f, 0.108711149979039000f, 0.111299414824660000f, 0.113920933406333000f,
0.116575776178572000f, 0.119264013005047000f, 0.121985713169619000f, 0.124740945387051000f,
0.127529777813422000f, 0.130352278056244000f, 0.133208513184300000f, 0.136098549737202000f,
0.139022453734703000f, 0.141980290685736000f, 0.144972125597231000f, 0.147998022982685000f,
0.151058046870511000f, 0.154152260812165000f, 0.157280727890073000f, 0.160443510725344000f,
0.163640671485290000f, 0.166872271890766000f, 0.170138373223312000f, 0.173439036332135000f,
0.176774321640903000f, 0.180144289154390000f, 0.183548998464951000f, 0.186988508758844000f,
0.190462878822409000f, 0.193972167048093000f, 0.197516431440340000f, 0.201095729621346000f,
0.204710118836677000f, 0.208359655960767000f, 0.212044397502288000f, 0.215764399609395000f,
0.219519718074868000f, 0.223310408341127000f, 0.227136525505149000f, 0.230998124323267000f,
0.234895259215880000f, 0.238827984272048000f, 0.242796353254002000f, 0.246800419601550000f,
0.250840236436400000f, 0.254915856566385000f, 0.259027332489606000f, 0.263174716398492000f,
0.267358060183772000f, 0.271577415438375000f, 0.275832833461245000f, 0.280124365261085000f,
0.284452061560024000f, 0.288815972797219000f, 0.293216149132375000f, 0.297652640449211000f,
0.302125496358853000f, 0.306634766203158000f, 0.311180499057984000f, 0.315762743736397000f,
0.320381548791810000f, 0.325036962521076000f, 0.329729032967515000f, 0.334457807923889000f,
0.339223334935327000f, 0.344025661302187000f, 0.348864834082879000f, 0.353740900096629000f,
0.358653905926199000f, 0.363603897920553000f, 0.368590922197487000f, 0.373615024646202000f,
0.378676250929840000f, 0.383774646487975000f, 0.388910256539059000f, 0.394083126082829000f,
0.399293299902674000f, 0.404540822567962000f, 0.409825738436323000f, 0.415148091655907000f,
0.420507926167587000f, 0.425905285707146000f, 0.431340213807410000f, 0.436812753800359000f,
0.442322948819202000f, 0.447870841800410000f, 0.453456475485731000f, 0.459079892424160000f,
0.464741134973889000f, 0.470440245304218000f, 0.476177265397440000f, 0.481952237050698000f,
0.487765201877811000f, 0.493616201311074000f, 0.499505276603030000f, 0.505432468828216000f,
0.511397818884880000f, 0.517401367496673000f, 0.523443155214325000f, 0.529523222417277000f,
0.535641609315311000f, 0.541798355950137000f, 0.547993502196972000f, 0.554227087766085000f,
0.560499152204328000f, 0.566809734896638000f, 0.573158875067523000f, 0.579546611782525000f,
0.585972983949661000f, 0.592438030320847000f, 0.598941789493296000f, 0.605484299910907000f,
0.612065599865624000f, 0.618685727498780000f, 0.625344720802427000f, 0.632042617620641000f,
0.638779455650817000f, 0.645555272444935000f, 0.652370105410821000f, 0.659223991813387000f,
0.666116968775851000f, 0.673049073280942000f, 0.680020342172095000f, 0.687030812154625000f,
0.694080519796882000f, 0.701169501531402000f, 0.708297793656032000f, 0.715465432335048000f,
0.722672453600255000f, 0.729918893352071000f, 0.737204787360605000f, 0.744530171266715000f,
0.751895080583051000f, 0.759299550695091000f, 0.766743616862161000f, 0.774227314218442000f,
0.781750677773962000f, 0.789313742415586000f, 0.796916542907978000f, 0.804559113894567000f,
0.812241489898490000f, 0.819963705323528000f, 0.827725794455034000f, 0.835527791460841000f,
0.843369730392169000f, 0.851251645184515000f, 0.859173569658532000f, 0.867135537520905000f,
0.875137582365205000f, 0.883179737672745000f, 0.891262036813419000f, 0.899384513046529000f,
0.907547199521614000f, 0.915750129279253000f, 0.923993335251873000f, 0.932276850264543000f,
0.940600707035753000f, 0.948964938178195000f, 0.957369576199527000f, 0.965814653503130000f,
0.974300202388861000f, 0.982826255053791000f, 0.991392843592940000f, 1.000000000000000000f,
};
///////////////////////////////////////////////////////////////////////////////////////////////////
static void build_table_linear_from_gamma(float* outTable, float exponent) {
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
*outTable++ = powf(x, exponent);
}
std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(SkColorSpace* src, SkColorSpace* dst) {
return SkMakeColorSpaceXform(src, dst, SkTransferFunctionBehavior::kRespect);
}
// outTable is always 256 entries, inTable may be larger or smaller.
static void build_table_linear_from_gamma(float* outTable, const float* inTable,
int inTableSize) {
if (256 == inTableSize) {
memcpy(outTable, inTable, sizeof(float) * 256);
return;
}
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
*outTable++ = interp_lut(x, inTable, inTableSize);
}
}
static void build_table_linear_from_gamma(float* outTable, float g, float a, float b, float c,
float d, float e, float f) {
// Y = (aX + b)^g + e for X >= d
// Y = cX + f otherwise
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
if (x >= d) {
*outTable++ = clamp_0_1(powf(a * x + b, g) + e);
} else {
*outTable++ = clamp_0_1(c * x + f);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static const int kDstGammaTableSize = SkColorSpaceXform_Base::kDstGammaTableSize;
static void build_table_linear_to_gamma(uint8_t* outTable, float exponent) {
float toGammaExp = 1.0f / exponent;
for (int i = 0; i < kDstGammaTableSize; i++) {
float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1)));
outTable[i] = clamp_normalized_float_to_byte(powf(x, toGammaExp));
}
}
static void build_table_linear_to_gamma(uint8_t* outTable, const float* inTable,
int inTableSize) {
invert_table_gamma(nullptr, outTable, kDstGammaTableSize, inTable, inTableSize);
}
static float inverse_parametric(float x, float g, float a, float b, float c, float d, float e,
float f) {
// We need to take the inverse of the following piecewise function.
// Y = (aX + b)^g + e for X >= d
// Y = cX + f otherwise
// Assume that the gamma function is continuous, or this won't make much sense anyway.
// Plug in |d| to the second equation to calculate the new piecewise interval.
// Then simply use the inverse of the original functions.
float interval = c * d + f;
if (x < interval) {
// X = (Y - F) / C
if (0.0f == c) {
// The gamma curve for this segment is constant, so the inverse is undefined.
// Since this is the lower segment, guess zero.
return 0.0f;
}
return (x - f) / c;
}
// X = ((Y - E)^(1 / G) - B) / A
if (0.0f == a || 0.0f == g) {
// The gamma curve for this segment is constant, so the inverse is undefined.
// Since this is the upper segment, guess one.
return 1.0f;
}
return (powf(x - e, 1.0f / g) - b) / a;
}
static void build_table_linear_to_gamma(uint8_t* outTable, float g, float a,
float b, float c, float d, float e, float f) {
for (int i = 0; i < kDstGammaTableSize; i++) {
float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1)));
float y = inverse_parametric(x, g, a, b, c, d, e, f);
outTable[i] = clamp_normalized_float_to_byte(y);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct GammaFns {
const T* fSRGBTable;
const T* f2Dot2Table;
void (*fBuildFromValue)(T*, float);
void (*fBuildFromTable)(T*, const float*, int);
void (*fBuildFromParam)(T*, float, float, float, float, float, float, float);
};
static const GammaFns<float> kToLinear {
sk_linear_from_srgb,
sk_linear_from_2dot2,
&build_table_linear_from_gamma,
&build_table_linear_from_gamma,
&build_table_linear_from_gamma,
};
static const GammaFns<uint8_t> kFromLinear {
nullptr,
nullptr,
&build_table_linear_to_gamma,
&build_table_linear_to_gamma,
&build_table_linear_to_gamma,
};
// Build tables to transform src gamma to linear.
template <typename T>
static void build_gamma_tables(const T* outGammaTables[3], T* gammaTableStorage, int gammaTableSize,
const SkColorSpace_XYZ* space, const GammaFns<T>& fns,
bool gammasAreMatching)
{
switch (space->gammaNamed()) {
case kSRGB_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.fSRGBTable;
break;
case k2Dot2Curve_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.f2Dot2Table;
break;
case kLinear_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = nullptr;
break;
default: {
const SkGammas* gammas = space->gammas();
SkASSERT(gammas);
auto build_table = [=](int i) {
if (gammas->isNamed(i)) {
switch (gammas->data(i).fNamed) {
case kSRGB_SkGammaNamed:
(*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize],
gSRGB_TransferFn.fG,
gSRGB_TransferFn.fA,
gSRGB_TransferFn.fB,
gSRGB_TransferFn.fC,
gSRGB_TransferFn.fD,
gSRGB_TransferFn.fE,
gSRGB_TransferFn.fF);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
case k2Dot2Curve_SkGammaNamed:
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 2.2f);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
case kLinear_SkGammaNamed:
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 1.0f);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
default:
SkASSERT(false);
break;
}
} else if (gammas->isValue(i)) {
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize],
gammas->data(i).fValue);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
} else if (gammas->isTable(i)) {
(*fns.fBuildFromTable)(&gammaTableStorage[i * gammaTableSize], gammas->table(i),
gammas->data(i).fTable.fSize);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
} else {
SkASSERT(gammas->isParametric(i));
const SkColorSpaceTransferFn& params = gammas->params(i);
(*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize], params.fG,
params.fA, params.fB, params.fC, params.fD, params.fE,
params.fF);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
}
};
if (gammasAreMatching) {
build_table(0);
outGammaTables[1] = outGammaTables[0];
outGammaTables[2] = outGammaTables[0];
} else {
build_table(0);
build_table(1);
build_table(2);
}
break;
}
}
}
void SkColorSpaceXform_Base::BuildDstGammaTables(const uint8_t* dstGammaTables[3],
uint8_t* dstStorage,
const SkColorSpace_XYZ* space,
bool gammasAreMatching) {
build_gamma_tables(dstGammaTables, dstStorage, kDstGammaTableSize, space, kFromLinear,
gammasAreMatching);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(SkColorSpace* src,
SkColorSpace* dst) {
return SkColorSpaceXform_Base::New(src, dst, SkTransferFunctionBehavior::kRespect);
}
std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform_Base::New(
std::unique_ptr<SkColorSpaceXform> SkMakeColorSpaceXform(
SkColorSpace* src,
SkColorSpace* dst,
SkTransferFunctionBehavior premulBehavior) {
if (!src || !dst) {
// Invalid input
return nullptr;
}
if (!dst->toXYZD50()) {
SkCSXformPrintf("only XYZ destinations supported\n");
return nullptr;
}
#if defined(SK_USE_SKCMS)
return MakeSkcmsXform(src, dst, premulBehavior);
#else
if (src->toXYZD50()) {
return skstd::make_unique<SkColorSpaceXform_XYZ>(static_cast<SkColorSpace_XYZ*>(src),
static_cast<SkColorSpace_XYZ*>(dst),
premulBehavior);
if (src && dst && dst->toXYZD50()) {
return SkMakeColorSpaceXform_skcms(src, dst, premulBehavior);
}
return skstd::make_unique<SkColorSpaceXform_A2B>(static_cast<SkColorSpace_A2B*>(src),
static_cast<SkColorSpace_XYZ*>(dst));
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static inline int num_tables(SkColorSpace_XYZ* space) {
switch (space->gammaNamed()) {
case kSRGB_SkGammaNamed:
case k2Dot2Curve_SkGammaNamed:
case kLinear_SkGammaNamed:
return 0;
default: {
const SkGammas* gammas = space->gammas();
SkASSERT(gammas);
// It's likely that each component will have the same gamma. In this case,
// we only need to build one table.
return gammas->allChannelsSame() ? 1 : 3;
}
}
}
SkColorSpaceXform_XYZ::SkColorSpaceXform_XYZ(SkColorSpace_XYZ* src,
SkColorSpace_XYZ* dst,
SkTransferFunctionBehavior premulBehavior)
: fPremulBehavior(premulBehavior)
{
fColorSpacesAreIdentical = SkColorSpace::Equals(src, dst);
SkMatrix44 srcToDst(SkMatrix44::kIdentity_Constructor);
if (!fColorSpacesAreIdentical && *src->toXYZD50() != *dst->toXYZD50()) {
srcToDst.setConcat(*dst->fromXYZD50(), *src->toXYZD50());
}
fSrcToDst[ 0] = srcToDst.get(0, 0);
fSrcToDst[ 1] = srcToDst.get(1, 0);
fSrcToDst[ 2] = srcToDst.get(2, 0);
fSrcToDst[ 3] = srcToDst.get(0, 1);
fSrcToDst[ 4] = srcToDst.get(1, 1);
fSrcToDst[ 5] = srcToDst.get(2, 1);
fSrcToDst[ 6] = srcToDst.get(0, 2);
fSrcToDst[ 7] = srcToDst.get(1, 2);
fSrcToDst[ 8] = srcToDst.get(2, 2);
fSrcToDst[ 9] = srcToDst.get(0, 3);
fSrcToDst[10] = srcToDst.get(1, 3);
fSrcToDst[11] = srcToDst.get(2, 3);
fSrcToDstIsIdentity = srcToDst.isIdentity();
const int numSrcTables = num_tables(src);
const size_t srcEntries = numSrcTables * 256;
const bool srcGammasAreMatching = (1 >= numSrcTables);
fSrcStorage.reset(srcEntries);
build_gamma_tables(fSrcGammaTables, fSrcStorage.get(), 256, src, kToLinear,
srcGammasAreMatching);
const int numDstTables = num_tables(dst);
dst->toDstGammaTables(fDstGammaTables, &fDstStorage, numDstTables);
if (src->gammaIsLinear()) {
fSrcGamma = kLinear_SrcGamma;
} else if (kSRGB_SkGammaNamed == src->gammaNamed()) {
fSrcGamma = kSRGB_SrcGamma;
} else {
fSrcGamma = kTable_SrcGamma;
}
switch (dst->gammaNamed()) {
case kSRGB_SkGammaNamed:
fDstGamma = kSRGB_DstGamma;
break;
case k2Dot2Curve_SkGammaNamed:
fDstGamma = k2Dot2_DstGamma;
break;
case kLinear_SkGammaNamed:
fDstGamma = kLinear_DstGamma;
break;
default:
fDstGamma = kTable_DstGamma;
break;
}
}
bool SkColorSpaceXform_XYZ::apply(ColorFormat dstColorFormat, void* dst,
ColorFormat srcColorFormat, const void* src,
int len, SkAlphaType alphaType) const {
if (fColorSpacesAreIdentical && kPremul_SkAlphaType != alphaType) {
if ((kRGBA_8888_ColorFormat == dstColorFormat &&
kRGBA_8888_ColorFormat == srcColorFormat) ||
(kBGRA_8888_ColorFormat == dstColorFormat &&
kBGRA_8888_ColorFormat == srcColorFormat))
{
memcpy(dst, src, len * sizeof(uint32_t));
return true;
}
if ((kRGBA_8888_ColorFormat == dstColorFormat &&
kBGRA_8888_ColorFormat == srcColorFormat) ||
(kBGRA_8888_ColorFormat == dstColorFormat &&
kRGBA_8888_ColorFormat == srcColorFormat))
{
SkOpts::RGBA_to_BGRA((uint32_t*)dst, src, len);
return true;
}
}
SkRasterPipeline_<256> pipeline;
SkJumper_MemoryCtx src_ctx = { (void*)src, 0 },
dst_ctx = { (void*)dst, 0 };
SkJumper_LoadTablesCtx loadTables;
switch (srcColorFormat) {
case kRGBA_8888_ColorFormat:
if (kLinear_SrcGamma == fSrcGamma) {
pipeline.append(SkRasterPipeline::load_8888, &src_ctx);
} else {
loadTables.src = src;
loadTables.r = fSrcGammaTables[0];
loadTables.g = fSrcGammaTables[1];
loadTables.b = fSrcGammaTables[2];
pipeline.append(SkRasterPipeline::load_tables, &loadTables);
}
break;
case kBGRA_8888_ColorFormat:
if (kLinear_SrcGamma == fSrcGamma) {
pipeline.append(SkRasterPipeline::load_bgra, &src_ctx);
} else {
loadTables.src = src;
loadTables.r = fSrcGammaTables[2];
loadTables.g = fSrcGammaTables[1];
loadTables.b = fSrcGammaTables[0];
pipeline.append(SkRasterPipeline::load_tables, &loadTables);
pipeline.append(SkRasterPipeline::swap_rb);
}
break;
case kRGBA_F16_ColorFormat:
if (kLinear_SrcGamma != fSrcGamma) {
return false;
}
pipeline.append(SkRasterPipeline::load_f16, &src_ctx);
break;
case kRGBA_F32_ColorFormat:
if (kLinear_SrcGamma != fSrcGamma) {
return false;
}
pipeline.append(SkRasterPipeline::load_f32, &src_ctx);
break;
case kRGBA_U16_BE_ColorFormat:
switch (fSrcGamma) {
case kLinear_SrcGamma:
pipeline.append(SkRasterPipeline::load_u16_be, &src_ctx);
break;
case kSRGB_SrcGamma:
pipeline.append(SkRasterPipeline::load_u16_be, &src_ctx);
pipeline.append(SkRasterPipeline::from_srgb);
break;
case kTable_SrcGamma:
loadTables.src = src;
loadTables.r = fSrcGammaTables[0];
loadTables.g = fSrcGammaTables[1];
loadTables.b = fSrcGammaTables[2];
pipeline.append(SkRasterPipeline::load_tables_u16_be, &loadTables);
break;
}
break;
case kRGB_U16_BE_ColorFormat:
switch (fSrcGamma) {
case kLinear_SrcGamma:
pipeline.append(SkRasterPipeline::load_rgb_u16_be, &src_ctx);
break;
case kSRGB_SrcGamma:
pipeline.append(SkRasterPipeline::load_rgb_u16_be, &src_ctx);
pipeline.append(SkRasterPipeline::from_srgb);
break;
case kTable_SrcGamma:
loadTables.src = src;
loadTables.r = fSrcGammaTables[0];
loadTables.g = fSrcGammaTables[1];
loadTables.b = fSrcGammaTables[2];
pipeline.append(SkRasterPipeline::load_tables_rgb_u16_be, &loadTables);
break;
}
break;
default:
return false;
}
if (!fSrcToDstIsIdentity) {
pipeline.append(SkRasterPipeline::matrix_3x4, fSrcToDst);
if (kRGBA_F16_ColorFormat != dstColorFormat &&
kRGBA_F32_ColorFormat != dstColorFormat)
{
bool need_clamp_0, need_clamp_1;
analyze_3x4_matrix(fSrcToDst, &need_clamp_0, &need_clamp_1);
if (need_clamp_0) { pipeline.append(SkRasterPipeline::clamp_0); }
if (need_clamp_1) { pipeline.append(SkRasterPipeline::clamp_1); }
}
}
if (kPremul_SkAlphaType == alphaType && SkTransferFunctionBehavior::kRespect == fPremulBehavior)
{
pipeline.append(SkRasterPipeline::premul);
}
SkJumper_ByteTablesRGBCtx tables;
float to_2dot2 = 1/2.2f;
switch (fDstGamma) {
case kSRGB_DstGamma:
pipeline.append(SkRasterPipeline::to_srgb);
break;
case k2Dot2_DstGamma:
pipeline.append(SkRasterPipeline::gamma, &to_2dot2);
break;
case kTable_DstGamma:
tables.r = fDstGammaTables[0];
tables.g = fDstGammaTables[1];
tables.b = fDstGammaTables[2];
tables.n = SkColorSpaceXform_Base::kDstGammaTableSize;
pipeline.append(SkRasterPipeline::byte_tables_rgb, &tables);
default:
break;
}
if (kPremul_SkAlphaType == alphaType && SkTransferFunctionBehavior::kIgnore == fPremulBehavior)
{
pipeline.append(SkRasterPipeline::premul);
}
switch (dstColorFormat) {
case kRGBA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::store_8888, &dst_ctx);
break;
case kBGRA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::store_bgra, &dst_ctx);
break;
case kRGBA_F16_ColorFormat:
if (kLinear_DstGamma != fDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f16, &dst_ctx);
break;
case kRGBA_F32_ColorFormat:
if (kLinear_DstGamma != fDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f32, &dst_ctx);
break;
case kBGR_565_ColorFormat:
if (kOpaque_SkAlphaType != alphaType) {
return false;
}
pipeline.append(SkRasterPipeline::store_565, &dst_ctx);
break;
default:
return false;
}
pipeline.run(0,0, len,1);
return true;
}
std::unique_ptr<SkColorSpaceXform> SlowIdentityXform(SkColorSpace_XYZ* space) {
auto xform = skstd::make_unique<SkColorSpaceXform_XYZ>(space, space,
SkTransferFunctionBehavior::kRespect);
xform->pretendNotToBeIdentityForTesting();
return std::move(xform);
return nullptr;
}
bool SkColorSpaceXform::Apply(SkColorSpace* dstCS, ColorFormat dstFormat, void* dst,
@ -606,5 +33,5 @@ bool SkColorSpaceXform::Apply(SkColorSpace* dstCS, ColorFormat dstFormat, void*
case kPremul_AlphaOp: at = kPremul_SkAlphaType; break;
case kSrcIsOpaque_AlphaOp: at = kOpaque_SkAlphaType; break;
}
return New(srcCS, dstCS)->apply(dstFormat, dst, srcFormat, src, len, at);
return SkColorSpaceXform::New(srcCS, dstCS)->apply(dstFormat, dst, srcFormat, src, len, at);
}

View File

@ -9,79 +9,14 @@
#define SkColorSpaceXformPriv_DEFINED
#include "SkColorSpaceXform.h"
#include "SkHalf.h"
#include "SkSRGB.h"
#define SkCSXformPrintfDefined 0
#define SkCSXformPrintf(...)
std::unique_ptr<SkColorSpaceXform> SkMakeColorSpaceXform(SkColorSpace* src,
SkColorSpace* dst,
SkTransferFunctionBehavior);
// Interpolating lookup in a variably sized table.
static inline float interp_lut(float input, const float* table, int tableSize) {
float index = input * (tableSize - 1);
float diff = index - sk_float_floor2int(index);
return table[(int) sk_float_floor2int(index)] * (1.0f - diff) +
table[(int) sk_float_ceil2int(index)] * diff;
}
// Expand range from 0-1 to 0-255, then convert.
static inline uint8_t clamp_normalized_float_to_byte(float v) {
// The ordering of the logic is a little strange here in order
// to make sure we convert NaNs to 0.
v = v * 255.0f;
if (v >= 254.5f) {
return 255;
} else if (v >= 0.5f) {
return (uint8_t) (v + 0.5f);
} else {
return 0;
}
}
static inline float clamp_0_1(float v) {
// The ordering of the logic is a little strange here in order
// to make sure we convert NaNs to 0.
if (v >= 1.0f) {
return 1.0f;
} else if (v >= 0.0f) {
return v;
} else {
return 0.0f;
}
}
/**
* Invert table lookup. Ex: what indices corresponds to the input values?
* This will have strange results when the table is not increasing.
* But any sane gamma function will be increasing.
* @param outTableFloat Destination table for float (0-1) results. Can be nullptr if not wanted.
* @param outTableByte Destination table for byte (0-255) results. Can be nullptr if not wanted.
* @param outTableSize Number of elements in |outTableFloat| or |outTableBytes|
* @param inTable The source table to invert
* @param inTableSize The number of elements in |inTable|
*/
static inline void invert_table_gamma(float* outTableFloat, uint8_t* outTableByte,
int outTableSize, const float* inTable, int inTableSize) {
// should never have a gamma table this small anyway, 0/1 are either not allowed
// or imply a non-table gamma such as linear/exponential
SkASSERT(inTableSize >= 2);
int inIndex = 1;
for (int outIndex = 0; outIndex < outTableSize; ++outIndex) {
const float input = outIndex / (outTableSize - 1.0f);
while (inIndex < inTableSize - 1 && inTable[inIndex] < input) {
++inIndex;
}
const float diff = input - inTable[inIndex - 1];
const float distance = inTable[inIndex] - inTable[inIndex - 1];
const float normalizedIndex = (inIndex - 1) + diff / distance;
const float index = normalizedIndex / (inTableSize - 1);
if (outTableByte) {
outTableByte[outIndex] = clamp_normalized_float_to_byte(index);
}
if (outTableFloat) {
outTableFloat[outIndex] = clamp_0_1(index);
}
}
}
std::unique_ptr<SkColorSpaceXform> SkMakeColorSpaceXform_skcms(SkColorSpace* src,
SkColorSpace* dst,
SkTransferFunctionBehavior);
static inline SkColorSpaceXform::ColorFormat select_xform_format(SkColorType colorType) {
switch (colorType) {

View File

@ -1,347 +0,0 @@
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorSpaceXform_A2B.h"
#include "SkColorData.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXformPriv.h"
#include "SkMakeUnique.h"
#include "SkNx.h"
#include "SkSRGB.h"
#include "SkTypes.h"
#include "../jumper/SkJumper.h"
bool SkColorSpaceXform_A2B::apply(ColorFormat dstFormat, void* dst, ColorFormat srcFormat,
const void* src, int count, SkAlphaType alphaType) const {
SkRasterPipeline_<256> pipeline;
SkJumper_MemoryCtx src_ctx = { (void*)src, 0 },
dst_ctx = { (void*)dst, 0 };
switch (srcFormat) {
case kBGRA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::load_bgra, &src_ctx);
break;
case kRGBA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::load_8888, &src_ctx);
break;
case kRGBA_U16_BE_ColorFormat:
pipeline.append(SkRasterPipeline::load_u16_be, &src_ctx);
break;
case kRGB_U16_BE_ColorFormat:
pipeline.append(SkRasterPipeline::load_rgb_u16_be, &src_ctx);
break;
default:
SkCSXformPrintf("F16/F32 sources must be linear.\n");
return false;
}
pipeline.extend(fElementsPipeline);
if (kPremul_SkAlphaType == alphaType) {
pipeline.append(SkRasterPipeline::premul);
}
switch (dstFormat) {
case kBGRA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::store_bgra, &dst_ctx);
break;
case kRGBA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::store_8888, &dst_ctx);
break;
case kRGBA_F16_ColorFormat:
if (!fLinearDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f16, &dst_ctx);
break;
case kRGBA_F32_ColorFormat:
if (!fLinearDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f32, &dst_ctx);
break;
case kBGR_565_ColorFormat:
if (kOpaque_SkAlphaType != alphaType) {
return false;
}
pipeline.append(SkRasterPipeline::store_565, &dst_ctx);
break;
default:
return false;
}
pipeline.run(0,0, count,1);
return true;
}
static inline bool gamma_to_parametric(SkColorSpaceTransferFn* coeffs, const SkGammas& gammas,
int channel) {
switch (gammas.type(channel)) {
case SkGammas::Type::kNamed_Type:
return named_to_parametric(coeffs, gammas.data(channel).fNamed);
case SkGammas::Type::kValue_Type:
value_to_parametric(coeffs, gammas.data(channel).fValue);
return true;
case SkGammas::Type::kParam_Type:
*coeffs = gammas.params(channel);
return true;
default:
return false;
}
}
SkColorSpaceXform_A2B::SkColorSpaceXform_A2B(SkColorSpace_A2B* srcSpace,
SkColorSpace_XYZ* dstSpace)
: fElementsPipeline(&fAlloc)
, fLinearDstGamma(kLinear_SkGammaNamed == dstSpace->gammaNamed()) {
#if (SkCSXformPrintfDefined)
static const char* debugGammaNamed[4] = {
"Linear", "SRGB", "2.2", "NonStandard"
};
static const char* debugGammas[5] = {
"None", "Named", "Value", "Table", "Param"
};
#endif
int currentChannels;
switch (srcSpace->iccType()) {
case SkColorSpace::kRGB_Type:
currentChannels = 3;
break;
case SkColorSpace::kCMYK_Type: {
currentChannels = 4;
// CMYK images from JPEGs (the only format that supports it) are actually
// inverted CMYK, so we need to invert every channel.
fElementsPipeline.append(SkRasterPipeline::invert);
break;
}
default:
currentChannels = 0;
SkASSERT(false);
}
// add in all input color space -> PCS xforms
for (int i = 0; i < srcSpace->count(); ++i) {
const SkColorSpace_A2B::Element& e = srcSpace->element(i);
SkASSERT(e.inputChannels() == currentChannels);
currentChannels = e.outputChannels();
switch (e.type()) {
case SkColorSpace_A2B::Element::Type::kGammaNamed: {
if (kLinear_SkGammaNamed == e.gammaNamed()) {
break;
}
// Take the fast path for ordinary sRGB.
if (3 == currentChannels && kSRGB_SkGammaNamed == e.gammaNamed()) {
SkCSXformPrintf("fast path from sRGB\n");
fElementsPipeline.append(SkRasterPipeline::from_srgb);
break;
}
SkCSXformPrintf("Gamma stage added: %s\n", debugGammaNamed[(int)e.gammaNamed()]);
auto fn = fAlloc.make<SkColorSpaceTransferFn>();
SkAssertResult(named_to_parametric(fn, e.gammaNamed()));
if (is_just_gamma(*fn)) {
fElementsPipeline.append(SkRasterPipeline::gamma, &fn->fG);
} else {
fElementsPipeline.append(SkRasterPipeline::parametric_r, fn);
fElementsPipeline.append(SkRasterPipeline::parametric_g, fn);
fElementsPipeline.append(SkRasterPipeline::parametric_b, fn);
}
break;
}
case SkColorSpace_A2B::Element::Type::kGammas: {
const SkGammas& gammas = e.gammas();
SkCSXformPrintf("Gamma stage added:");
for (int channel = 0; channel < gammas.channels(); ++channel) {
SkCSXformPrintf(" %s", debugGammas[(int)gammas.type(channel)]);
}
SkCSXformPrintf("\n");
bool gammaNeedsRef = false;
for (int channel = 0; channel < gammas.channels(); ++channel) {
if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
SkTableTransferFn table = {
gammas.table(channel),
gammas.data(channel).fTable.fSize,
};
gammaNeedsRef |= !this->buildTableFn(&table);
this->addTableFn(table, channel);
} else {
SkColorSpaceTransferFn fn;
SkAssertResult(gamma_to_parametric(&fn, gammas, channel));
this->addTransferFn(fn, channel);
}
}
if (gammaNeedsRef) {
this->copy(sk_ref_sp(&gammas));
}
break;
}
case SkColorSpace_A2B::Element::Type::kCLUT: {
SkCSXformPrintf("CLUT (%d -> %d) stage added\n", e.colorLUT().inputChannels(),
e.colorLUT().outputChannels());
struct Ctx : SkJumper_ColorLookupTableCtx {
sk_sp<const SkColorLookUpTable> clut;
};
auto ctx = fAlloc.make<Ctx>();
ctx->clut = sk_ref_sp(&e.colorLUT());
ctx->table = ctx->clut->table();
for (int i = 0; i < ctx->clut->inputChannels(); i++) {
ctx->limits[i] = ctx->clut->gridPoints(i);
}
switch (e.colorLUT().inputChannels()) {
case 3: fElementsPipeline.append(SkRasterPipeline::clut_3D, ctx); break;
case 4: fElementsPipeline.append(SkRasterPipeline::clut_4D, ctx); break;
default: SkDEBUGFAIL("need to handle 1 or 2 channel color lookup tables.");
}
fElementsPipeline.append(SkRasterPipeline::clamp_0);
fElementsPipeline.append(SkRasterPipeline::clamp_1);
break;
}
case SkColorSpace_A2B::Element::Type::kMatrix:
if (!e.matrix().isIdentity()) {
SkCSXformPrintf("Matrix stage added\n");
addMatrix(e.matrix());
}
break;
}
}
// Lab PCS -> XYZ PCS
if (SkColorSpace_A2B::PCS::kLAB == srcSpace->pcs()) {
SkCSXformPrintf("Lab -> XYZ element added\n");
fElementsPipeline.append(SkRasterPipeline::lab_to_xyz);
}
// we should now be in XYZ PCS
SkASSERT(3 == currentChannels);
// and XYZ PCS -> output color space xforms
if (!dstSpace->fromXYZD50()->isIdentity()) {
addMatrix(*dstSpace->fromXYZD50());
}
switch (dstSpace->gammaNamed()) {
case kLinear_SkGammaNamed:
// do nothing
break;
case k2Dot2Curve_SkGammaNamed: {
fElementsPipeline.append(SkRasterPipeline::gamma, this->copy(1/2.2f));
break;
}
case kSRGB_SkGammaNamed:
fElementsPipeline.append(SkRasterPipeline::to_srgb);
break;
case kNonStandard_SkGammaNamed: {
for (int channel = 0; channel < 3; ++channel) {
const SkGammas& gammas = *dstSpace->gammas();
if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
static constexpr int kInvTableSize = 256;
auto storage = fAlloc.makeArray<float>(kInvTableSize);
invert_table_gamma(storage, nullptr, kInvTableSize,
gammas.table(channel),
gammas.data(channel).fTable.fSize);
SkTableTransferFn table = { storage, kInvTableSize };
this->addTableFn(table, channel);
} else {
SkColorSpaceTransferFn fn;
SkAssertResult(gamma_to_parametric(&fn, gammas, channel));
this->addTransferFn(fn.invert(), channel);
}
}
}
break;
}
}
void SkColorSpaceXform_A2B::addTransferFn(const SkColorSpaceTransferFn& fn, int channelIndex) {
switch (channelIndex) {
case 0:
fElementsPipeline.append(SkRasterPipeline::parametric_r, this->copy(fn));
break;
case 1:
fElementsPipeline.append(SkRasterPipeline::parametric_g, this->copy(fn));
break;
case 2:
fElementsPipeline.append(SkRasterPipeline::parametric_b, this->copy(fn));
break;
case 3:
fElementsPipeline.append(SkRasterPipeline::parametric_a, this->copy(fn));
break;
default:
SkASSERT(false);
}
}
/**
* |fn| is an in-out parameter. If the table is too small to perform reasonable table-lookups
* without interpolation, we will build a bigger table.
*
* This returns false if we use the original table, meaning we do nothing here but need to keep
* a reference to the original table. This returns true if we build a new table and the original
* table can be discarded.
*/
bool SkColorSpaceXform_A2B::buildTableFn(SkTableTransferFn* fn) {
// Arbitrary, but seems like a reasonable guess.
static constexpr int kMinTableSize = 256;
if (fn->fSize >= kMinTableSize) {
return false;
}
float* outTable = fAlloc.makeArray<float>(kMinTableSize);
float step = 1.0f / (kMinTableSize - 1);
for (int i = 0; i < kMinTableSize; i++) {
outTable[i] = interp_lut(i * step, fn->fData, fn->fSize);
}
fn->fData = outTable;
fn->fSize = kMinTableSize;
return true;
}
void SkColorSpaceXform_A2B::addTableFn(const SkTableTransferFn& fn, int channelIndex) {
switch (channelIndex) {
case 0:
fElementsPipeline.append(SkRasterPipeline::table_r, this->copy(fn));
break;
case 1:
fElementsPipeline.append(SkRasterPipeline::table_g, this->copy(fn));
break;
case 2:
fElementsPipeline.append(SkRasterPipeline::table_b, this->copy(fn));
break;
case 3:
fElementsPipeline.append(SkRasterPipeline::table_a, this->copy(fn));
break;
default:
SkASSERT(false);
}
}
void SkColorSpaceXform_A2B::addMatrix(const SkMatrix44& m44) {
auto m = fAlloc.makeArray<float>(12);
m[0] = m44.get(0,0); m[ 1] = m44.get(1,0); m[ 2] = m44.get(2,0);
m[3] = m44.get(0,1); m[ 4] = m44.get(1,1); m[ 5] = m44.get(2,1);
m[6] = m44.get(0,2); m[ 7] = m44.get(1,2); m[ 8] = m44.get(2,2);
m[9] = m44.get(0,3); m[10] = m44.get(1,3); m[11] = m44.get(2,3);
SkASSERT(m44.get(3,0) == 0.0f);
SkASSERT(m44.get(3,1) == 0.0f);
SkASSERT(m44.get(3,2) == 0.0f);
SkASSERT(m44.get(3,3) == 1.0f);
fElementsPipeline.append(SkRasterPipeline::matrix_3x4, m);
fElementsPipeline.append(SkRasterPipeline::clamp_0);
fElementsPipeline.append(SkRasterPipeline::clamp_1);
}

View File

@ -1,46 +0,0 @@
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkColorSpaceXform_A2B_DEFINED
#define SkColorSpaceXform_A2B_DEFINED
#include "SkArenaAlloc.h"
#include "SkColorSpaceXform.h"
#include "SkRasterPipeline.h"
class SkColorSpace_A2B;
class SkColorSpace_XYZ;
struct SkTableTransferFn {
const float* fData;
int fSize;
};
class SkColorSpaceXform_A2B : public SkColorSpaceXform {
public:
SkColorSpaceXform_A2B(SkColorSpace_A2B* srcSpace, SkColorSpace_XYZ* dstSpace);
bool apply(ColorFormat dstFormat, void* dst, ColorFormat srcFormat, const void* src,
int count, SkAlphaType alphaType) const override;
private:
void addTransferFn(const SkColorSpaceTransferFn& fn, int channelIndex);
bool buildTableFn(SkTableTransferFn* table);
void addTableFn(const SkTableTransferFn& table, int channelIndex);
void addMatrix(const SkMatrix44& matrix);
SkRasterPipeline fElementsPipeline;
bool fLinearDstGamma;
SkArenaAlloc fAlloc{128}; // TODO: tune?
template <typename T>
T* copy(const T& val) { return fAlloc.make<T>(val); }
};
#endif

View File

@ -1,79 +0,0 @@
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkColorSpaceXform_Base_DEFINED
#define SkColorSpaceXform_Base_DEFINED
#include "SkColorSpace.h"
#include "SkColorSpaceXform.h"
#include "SkTemplates.h"
class SkColorSpace_XYZ;
class SkColorSpaceXform_Base {
public:
// A somewhat more powerful SkColorSpaceXform::New() that allows tweaking premulBehavior.
static std::unique_ptr<SkColorSpaceXform> New(SkColorSpace* srcSpace,
SkColorSpace* dstSpace,
SkTransferFunctionBehavior premulBehavior);
static constexpr int kDstGammaTableSize = 1024;
static void BuildDstGammaTables(const uint8_t* outGammaTables[3],
uint8_t* gammaTableStorage,
const SkColorSpace_XYZ* space,
bool gammasAreMatching);
};
class SkColorSpaceXform_XYZ : public SkColorSpaceXform {
public:
SkColorSpaceXform_XYZ(SkColorSpace_XYZ* src, SkColorSpace_XYZ* dst, SkTransferFunctionBehavior);
bool apply(ColorFormat dstFormat, void* dst,
ColorFormat srcFormat, const void* src,
int count, SkAlphaType alphaType) const override;
void pretendNotToBeIdentityForTesting() {
fSrcToDstIsIdentity = false;
}
private:
enum SrcGamma {
kLinear_SrcGamma,
kTable_SrcGamma,
kSRGB_SrcGamma,
};
enum DstGamma {
kLinear_DstGamma,
kSRGB_DstGamma,
k2Dot2_DstGamma,
kTable_DstGamma,
};
// These tables pointers may point into fSrcStorage/fDstStorage or into pre-baked tables.
const float* fSrcGammaTables[3];
const uint8_t* fDstGammaTables[3];
SkAutoTMalloc<float> fSrcStorage;
sk_sp<SkData> fDstStorage;
float fSrcToDst[12];
bool fSrcToDstIsIdentity;
bool fColorSpacesAreIdentical;
SrcGamma fSrcGamma;
DstGamma fDstGamma;
SkTransferFunctionBehavior fPremulBehavior;
};
// For testing. Bypasses opts for when src and dst color spaces are equal.
std::unique_ptr<SkColorSpaceXform> SlowIdentityXform(SkColorSpace_XYZ* space);
#if defined(SK_USE_SKCMS)
std::unique_ptr<SkColorSpaceXform> MakeSkcmsXform(SkColorSpace* src, SkColorSpace* dst,
SkTransferFunctionBehavior premulBehavior);
#endif
#endif

View File

@ -17,15 +17,7 @@ public:
skcms_AlphaFormat premulFormat)
: fSrcProfile(srcProfile)
, fDstProfile(dstProfile)
, fPremulFormat(premulFormat) {
#ifndef SK_DONT_OPTIMIZE_SRC_PROFILES_FOR_SPEED
skcms_OptimizeForSpeed(&fSrcProfile);
#endif
#ifndef SK_DONT_OPTIMIZE_DST_PROFILES_FOR_SPEED
// (This doesn't do anything yet, but we'd sure like it to.)
skcms_OptimizeForSpeed(&fDstProfile);
#endif
}
, fPremulFormat(premulFormat) {}
bool apply(ColorFormat, void*, ColorFormat, const void*, int, SkAlphaType) const override;
@ -88,10 +80,11 @@ void SkColorSpace::toProfile(skcms_ICCProfile* profile) const {
}
}
std::unique_ptr<SkColorSpaceXform> MakeSkcmsXform(SkColorSpace* src, SkColorSpace* dst,
SkTransferFunctionBehavior premulBehavior) {
std::unique_ptr<SkColorSpaceXform> SkMakeColorSpaceXform_skcms(SkColorSpace* src,
SkColorSpace* dst,
SkTransferFunctionBehavior premul) {
// Construct skcms_ICCProfiles from each color space. For now, support A2B and XYZ.
// Eventually, only need to support XYZ. Map premulBehavior to one of the two premul formats
// Eventually, only need to support XYZ. Map premul to one of the two premul formats
// in skcms.
skcms_ICCProfile srcProfile, dstProfile;
@ -102,8 +95,9 @@ std::unique_ptr<SkColorSpaceXform> MakeSkcmsXform(SkColorSpace* src, SkColorSpac
return nullptr;
}
skcms_AlphaFormat premulFormat = SkTransferFunctionBehavior::kRespect == premulBehavior
? skcms_AlphaFormat_PremulLinear : skcms_AlphaFormat_PremulAsEncoded;
skcms_AlphaFormat premulFormat = SkTransferFunctionBehavior::kRespect == premul
? skcms_AlphaFormat_PremulLinear
: skcms_AlphaFormat_PremulAsEncoded;
return skstd::make_unique<SkColorSpaceXform_skcms>(srcProfile, dstProfile, premulFormat);
}

View File

@ -7,7 +7,7 @@
#include "SkColorFilter.h"
#include "SkColorSpaceXformer.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpaceXformPriv.h"
#include "SkDrawLooper.h"
#include "SkGradientShader.h"
#include "SkImage.h"
@ -25,7 +25,7 @@ SkColorSpaceXformer::SkColorSpaceXformer(sk_sp<SkColorSpace> dst,
SkColorSpaceXformer::~SkColorSpaceXformer() {}
std::unique_ptr<SkColorSpaceXformer> SkColorSpaceXformer::Make(sk_sp<SkColorSpace> dst) {
std::unique_ptr<SkColorSpaceXform> fromSRGB = SkColorSpaceXform_Base::New(
std::unique_ptr<SkColorSpaceXform> fromSRGB = SkMakeColorSpaceXform(
SkColorSpace::MakeSRGB().get(), dst.get(), SkTransferFunctionBehavior::kIgnore);
return fromSRGB

View File

@ -7,7 +7,7 @@
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpaceXformPriv.h"
#include "SkOpts.h"
SkColorSpace_XYZ::SkColorSpace_XYZ(SkGammaNamed gammaNamed, const SkMatrix44& toXYZD50)
@ -103,23 +103,6 @@ sk_sp<SkColorSpace> SkColorSpace_XYZ::makeColorSpin() const {
return sk_sp<SkColorSpace>(new SkColorSpace_XYZ(fGammaNamed, fGammas, spin, fProfileData));
}
void SkColorSpace_XYZ::toDstGammaTables(const uint8_t* tables[3], sk_sp<SkData>* storage,
int numTables) const {
fToDstGammaOnce([this, numTables] {
const bool gammasAreMatching = numTables <= 1;
fDstStorage =
SkData::MakeUninitialized(numTables * SkColorSpaceXform_Base::kDstGammaTableSize);
SkColorSpaceXform_Base::BuildDstGammaTables(fToDstGammaTables,
(uint8_t*) fDstStorage->writable_data(), this,
gammasAreMatching);
});
*storage = fDstStorage;
tables[0] = fToDstGammaTables[0];
tables[1] = fToDstGammaTables[1];
tables[2] = fToDstGammaTables[2];
}
sk_sp<SkColorSpace> SkColorSpace_XYZ::makeNonlinearBlending() const {
if (this->nonlinearBlending()) {
return sk_ref_sp(const_cast<SkColorSpace_XYZ*>(this));

View File

@ -54,10 +54,6 @@ private:
mutable SkMatrix44 fFromXYZD50;
mutable SkOnce fFromXYZOnce;
mutable sk_sp<SkData> fDstStorage;
mutable const uint8_t* fToDstGammaTables[3];
mutable SkOnce fToDstGammaOnce;
bool fNonlinearBlending = false;
friend class SkColorSpace;

View File

@ -5,7 +5,6 @@
* found in the LICENSE file.
*/
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpaceXformPriv.h"
#include "SkColorSpacePriv.h"
#include "SkColorTable.h"
@ -149,7 +148,7 @@ static inline bool apply_color_xform(const SkImageInfo& dstInfo, void* dstPixels
}
std::unique_ptr<SkColorSpaceXform> xform =
SkColorSpaceXform_Base::New(srcInfo.colorSpace(), dstInfo.colorSpace(), behavior);
SkMakeColorSpaceXform(srcInfo.colorSpace(), dstInfo.colorSpace(), behavior);
if (!xform) {
return false;
}

View File

@ -40,7 +40,7 @@
M(clamp_0) M(clamp_1) M(clamp_a) M(clamp_a_dst) \
M(unpremul) M(premul) M(premul_dst) \
M(force_opaque) M(force_opaque_dst) \
M(set_rgb) M(swap_rb) M(invert) \
M(set_rgb) M(swap_rb) \
M(from_srgb) M(from_srgb_dst) M(to_srgb) \
M(black_color) M(white_color) M(uniform_color) \
M(seed_shader) M(dither) \
@ -54,8 +54,7 @@
M(load_bgra) M(load_bgra_dst) M(store_bgra) M(gather_bgra) \
M(load_1010102) M(load_1010102_dst) M(store_1010102) M(gather_1010102) \
M(bilerp_clamp_8888) \
M(load_u16_be) M(load_rgb_u16_be) M(store_u16_be) \
M(load_tables_u16_be) M(load_tables_rgb_u16_be) M(load_tables) \
M(store_u16_be) \
M(load_rgba) M(store_rgba) \
M(scale_u8) M(scale_565) M(scale_1_float) \
M( lerp_u8) M( lerp_565) M( lerp_1_float) \
@ -72,11 +71,9 @@
M(matrix_perspective) \
M(parametric_r) M(parametric_g) M(parametric_b) \
M(parametric_a) M(gamma) M(gamma_dst) \
M(table_r) M(table_g) M(table_b) M(table_a) \
M(lab_to_xyz) \
M(mirror_x) M(repeat_x) \
M(mirror_y) M(repeat_y) \
M(decal_x) M(decal_y) M(decal_x_and_y) \
M(mirror_x) M(repeat_x) \
M(mirror_y) M(repeat_y) \
M(decal_x) M(decal_y) M(decal_x_and_y) \
M(check_decal_mask) \
M(negate_x) \
M(bilinear_nx) M(bilinear_px) M(bilinear_ny) M(bilinear_py) \
@ -98,9 +95,8 @@
M(alter_2pt_conical_unswap) \
M(mask_2pt_conical_nan) \
M(mask_2pt_conical_degenerates) M(apply_vector_mask) \
M(byte_tables) M(byte_tables_rgb) \
M(byte_tables) \
M(rgb_to_hsl) M(hsl_to_rgb) \
M(clut_3D) M(clut_4D) \
M(gauss_a_to_rgba)
class SkRasterPipeline {

View File

@ -61,21 +61,6 @@ struct SkJumper_CallbackCtx {
float* read_from = rgba;
};
struct SkJumper_LoadTablesCtx {
const void* src;
const float *r, *g, *b;
};
struct SkJumper_TableCtx {
const float* table;
int size;
};
struct SkJumper_ByteTablesRGBCtx {
const uint8_t *r, *g, *b;
int n;
};
// This should line up with the memory layout of SkColorSpaceTransferFn.
struct SkJumper_ParametricTransferFunction {
float G, A,B,C,D,E,F;
@ -99,9 +84,4 @@ struct SkJumper_UniformColorCtx {
uint16_t rgba[4]; // [0,255] in a 16-bit lane.
};
struct SkJumper_ColorLookupTableCtx {
const float* table;
int limits[4];
};
#endif//SkJumper_DEFINED

View File

@ -1275,12 +1275,6 @@ STAGE(swap_rb, Ctx::None) {
r = b;
b = tmp;
}
STAGE(invert, Ctx::None) {
r = inv(r);
g = inv(g);
b = inv(b);
a = inv(a);
}
STAGE(move_src_dst, Ctx::None) {
dr = r;
@ -1475,38 +1469,6 @@ STAGE(lerp_565, const SkJumper_MemoryCtx* ctx) {
a = lerp(da, a, ca);
}
STAGE(load_tables, const SkJumper_LoadTablesCtx* c) {
auto px = load<U32>((const uint32_t*)c->src + dx, tail);
r = gather(c->r, (px ) & 0xff);
g = gather(c->g, (px >> 8) & 0xff);
b = gather(c->b, (px >> 16) & 0xff);
a = cast( (px >> 24)) * (1/255.0f);
}
STAGE(load_tables_u16_be, const SkJumper_LoadTablesCtx* c) {
auto ptr = (const uint16_t*)c->src + 4*dx;
U16 R,G,B,A;
load4(ptr, tail, &R,&G,&B,&A);
// c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
r = gather(c->r, expand(R) & 0xff);
g = gather(c->g, expand(G) & 0xff);
b = gather(c->b, expand(B) & 0xff);
a = (1/65535.0f) * cast(expand(bswap(A)));
}
STAGE(load_tables_rgb_u16_be, const SkJumper_LoadTablesCtx* c) {
auto ptr = (const uint16_t*)c->src + 3*dx;
U16 R,G,B;
load3(ptr, tail, &R,&G,&B);
// c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
r = gather(c->r, expand(R) & 0xff);
g = gather(c->g, expand(G) & 0xff);
b = gather(c->b, expand(B) & 0xff);
a = 1.0f;
}
STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkJumper_ByteTablesCtx
struct Tables { const uint8_t *r, *g, *b, *a; };
auto tables = (const Tables*)ctx;
@ -1517,21 +1479,6 @@ STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkJumper_ByteTable
a = from_byte(gather(tables->a, to_unorm(a, 255)));
}
STAGE(byte_tables_rgb, const SkJumper_ByteTablesRGBCtx* ctx) {
int scale = ctx->n - 1;
r = from_byte(gather(ctx->r, to_unorm(r, scale)));
g = from_byte(gather(ctx->g, to_unorm(g, scale)));
b = from_byte(gather(ctx->b, to_unorm(b, scale)));
}
SI F table(F v, const SkJumper_TableCtx* ctx) {
return gather(ctx->table, to_unorm(v, ctx->size - 1));
}
STAGE(table_r, const SkJumper_TableCtx* ctx) { r = table(r, ctx); }
STAGE(table_g, const SkJumper_TableCtx* ctx) { g = table(g, ctx); }
STAGE(table_b, const SkJumper_TableCtx* ctx) { b = table(b, ctx); }
STAGE(table_a, const SkJumper_TableCtx* ctx) { a = table(a, ctx); }
SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) {
F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F)
, approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E);
@ -1553,25 +1500,6 @@ STAGE(gamma_dst, const float* G) {
db = approx_powf(db, *G);
}
STAGE(lab_to_xyz, Ctx::None) {
F L = r * 100.0f,
A = g * 255.0f - 128.0f,
B = b * 255.0f - 128.0f;
F Y = (L + 16.0f) * (1/116.0f),
X = Y + A*(1/500.0f),
Z = Y - B*(1/200.0f);
X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f));
Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f));
Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f));
// Adjust to D50 illuminant.
r = X * 0.96422f;
g = Y ;
b = Z * 0.82521f;
}
STAGE(load_a8, const SkJumper_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
@ -1774,28 +1702,6 @@ STAGE(store_f16, const SkJumper_MemoryCtx* ctx) {
, to_half(a));
}
STAGE(load_u16_be, const SkJumper_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, 4*dx,dy);
U16 R,G,B,A;
load4(ptr,tail, &R,&G,&B,&A);
r = (1/65535.0f) * cast(expand(bswap(R)));
g = (1/65535.0f) * cast(expand(bswap(G)));
b = (1/65535.0f) * cast(expand(bswap(B)));
a = (1/65535.0f) * cast(expand(bswap(A)));
}
STAGE(load_rgb_u16_be, const SkJumper_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, 3*dx,dy);
U16 R,G,B;
load3(ptr,tail, &R,&G,&B);
r = (1/65535.0f) * cast(expand(bswap(R)));
g = (1/65535.0f) * cast(expand(bswap(G)));
b = (1/65535.0f) * cast(expand(bswap(B)));
a = 1.0f;
}
STAGE(store_u16_be, const SkJumper_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
@ -2195,58 +2101,6 @@ STAGE(callback, SkJumper_CallbackCtx* c) {
load4(c->read_from,0, &r,&g,&b,&a);
}
// Our general strategy is to recursively interpolate each dimension,
// accumulating the index to sample at, and our current pixel stride to help accumulate the index.
template <int dim>
SI void color_lookup_table(const SkJumper_ColorLookupTableCtx* ctx,
F& r, F& g, F& b, F a, U32 index, U32 stride) {
// We'd logically like to sample this dimension at x.
int limit = ctx->limits[dim-1];
F src;
switch(dim) {
case 1: src = r; break;
case 2: src = g; break;
case 3: src = b; break;
case 4: src = a; break;
}
F x = src * (limit - 1);
// We can't index an array by a float (darn) so we have to snap to nearby integers lo and hi.
U32 lo = trunc_(x ),
hi = trunc_(x + 0.9999f);
// Recursively sample at lo and hi.
F lr = r, lg = g, lb = b,
hr = r, hg = g, hb = b;
color_lookup_table<dim-1>(ctx, lr,lg,lb,a, stride*lo + index, stride*limit);
color_lookup_table<dim-1>(ctx, hr,hg,hb,a, stride*hi + index, stride*limit);
// Linearly interpolate those colors based on their distance to x.
F t = x - cast(lo);
r = lerp(lr, hr, t);
g = lerp(lg, hg, t);
b = lerp(lb, hb, t);
}
// Bottom out our recursion at 0 dimensions, i.e. just return the colors at index.
template<>
inline void color_lookup_table<0>(const SkJumper_ColorLookupTableCtx* ctx,
F& r, F& g, F& b, F a, U32 index, U32 stride) {
r = gather(ctx->table, 3*index+0);
g = gather(ctx->table, 3*index+1);
b = gather(ctx->table, 3*index+2);
}
STAGE(clut_3D, const SkJumper_ColorLookupTableCtx* ctx) {
color_lookup_table<3>(ctx, r,g,b,a, 0,1);
// This 3D color lookup table leaves alpha alone.
}
STAGE(clut_4D, const SkJumper_ColorLookupTableCtx* ctx) {
color_lookup_table<4>(ctx, r,g,b,a, 0,1);
// "a" was really CMYK's K, so we just set alpha opaque.
a = 1.0f;
}
STAGE(gauss_a_to_rgba, Ctx::None) {
// x = 1 - x;
// exp(-x * x * 4) - 0.018f;
@ -2697,13 +2551,6 @@ STAGE_PP(move_dst_src, Ctx::None) {
a = da;
}
STAGE_PP(invert, Ctx::None) {
r = inv(r);
g = inv(g);
b = inv(b);
a = inv(a);
}
// ~~~~~~ Blend modes ~~~~~~ //
// The same logic applied to all 4 channels.
@ -3398,15 +3245,13 @@ static NotImplemented
load_f16 , load_f16_dst , store_f16 , gather_f16,
load_f32 , load_f32_dst , store_f32 , gather_f32,
load_1010102, load_1010102_dst, store_1010102, gather_1010102,
load_u16_be, load_rgb_u16_be, store_u16_be,
load_tables_u16_be, load_tables_rgb_u16_be,
load_tables, byte_tables, byte_tables_rgb,
store_u16_be,
byte_tables,
colorburn, colordodge, softlight, hue, saturation, color, luminosity,
matrix_3x4, matrix_4x5, matrix_4x3,
parametric_r, parametric_g, parametric_b, parametric_a,
table_r, table_g, table_b, table_a,
gamma, gamma_dst,
lab_to_xyz, rgb_to_hsl, hsl_to_rgb, clut_3D, clut_4D,
rgb_to_hsl, hsl_to_rgb,
gauss_a_to_rgba,
mirror_x, repeat_x,
mirror_y, repeat_y,

View File

@ -1,365 +0,0 @@
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorPriv.h"
#include "SkColorSpace.h"
#include "SkColorSpaceXform.h"
#include "SkColorSpaceXformPriv.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkData.h"
#include "SkGammas.h"
#include "SkImageInfo.h"
#include "SkMalloc.h"
#include "SkMatrix.h"
#include "SkMatrix44.h"
#include "SkRefCnt.h"
#include "SkTemplates.h"
#include "SkTypes.h"
#include "Test.h"
#include <memory>
#include <utility>
#include <vector>
static constexpr int kChannels = 3;
class ColorSpaceXformTest {
public:
static std::unique_ptr<SkColorSpaceXform> CreateIdentityXform(const sk_sp<SkGammas>& gammas) {
// Logically we can pass any matrix here. For simplicty, pass I(), i.e. D50 XYZ gamut.
sk_sp<SkColorSpace> space(new SkColorSpace_XYZ(
kNonStandard_SkGammaNamed, gammas, SkMatrix::I(), nullptr));
// Use special testing entry point, so we don't skip the xform, even though src == dst.
return SlowIdentityXform(static_cast<SkColorSpace_XYZ*>(space.get()));
}
static std::unique_ptr<SkColorSpaceXform> CreateIdentityXform_A2B(
SkGammaNamed gammaNamed, const sk_sp<SkGammas>& gammas) {
std::vector<SkColorSpace_A2B::Element> srcElements;
// sRGB
const float values[16] = {
0.4358f, 0.3853f, 0.1430f, 0.0f,
0.2224f, 0.7170f, 0.0606f, 0.0f,
0.0139f, 0.0971f, 0.7139f, 0.0f,
0.0000f, 0.0000f, 0.0000f, 1.0f
};
SkMatrix44 arbitraryMatrix{SkMatrix44::kUninitialized_Constructor};
arbitraryMatrix.setRowMajorf(values);
if (kNonStandard_SkGammaNamed == gammaNamed) {
SkASSERT(gammas);
srcElements.push_back(SkColorSpace_A2B::Element(gammas));
} else {
srcElements.push_back(SkColorSpace_A2B::Element(gammaNamed, kChannels));
}
srcElements.push_back(SkColorSpace_A2B::Element(arbitraryMatrix));
auto srcSpace =
ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ,
std::move(srcElements));
sk_sp<SkColorSpace> dstSpace(new SkColorSpace_XYZ(gammaNamed, gammas, arbitraryMatrix,
nullptr));
return SkColorSpaceXform::New(static_cast<SkColorSpace_A2B*>(srcSpace.get()),
static_cast<SkColorSpace_XYZ*>(dstSpace.get()));
}
static sk_sp<SkColorSpace> CreateA2BSpace(SkColorSpace_A2B::PCS pcs,
std::vector<SkColorSpace_A2B::Element> elements) {
return sk_sp<SkColorSpace>(new SkColorSpace_A2B(SkColorSpace::kRGB_Type,
std::move(elements),
pcs, nullptr));
}
};
static bool almost_equal(int x, int y, int tol=1) {
return SkTAbs(x-y) <= tol;
}
static void test_identity_xform(skiatest::Reporter* r, const sk_sp<SkGammas>& gammas,
bool repeat) {
// Arbitrary set of 10 pixels
constexpr int width = 10;
constexpr uint32_t srcPixels[width] = {
0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271,
0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, };
uint32_t dstPixels[width];
// Create and perform an identity xform.
std::unique_ptr<SkColorSpaceXform> xform = ColorSpaceXformTest::CreateIdentityXform(gammas);
bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels,
SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width,
kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
// Since the src->dst matrix is the identity, and the gamma curves match,
// the pixels should be unchanged.
for (int i = 0; i < width; i++) {
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF),
SkGetPackedB32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF),
SkGetPackedG32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF),
SkGetPackedR32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF),
SkGetPackedA32(dstPixels[i])));
}
if (repeat) {
// We should cache part of the transform after the run. So it is interesting
// to make sure it still runs correctly the second time.
test_identity_xform(r, gammas, false);
}
}
static void test_identity_xform_A2B(skiatest::Reporter* r, SkGammaNamed gammaNamed,
const sk_sp<SkGammas>& gammas, int tol=1) {
#if defined(SK_USE_SKCMS)
(void)r;
(void)gammaNamed;
(void)gammas;
(void)tol;
#else
// Arbitrary set of 10 pixels
constexpr int width = 10;
constexpr uint32_t srcPixels[width] = {
0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271,
0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, };
uint32_t dstPixels[width];
// Create and perform an identity xform.
auto xform = ColorSpaceXformTest::CreateIdentityXform_A2B(gammaNamed, gammas);
bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels,
SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width,
kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
// Since the src->dst matrix is the identity, and the gamma curves match,
// the pixels should be ~unchanged.
for (int i = 0; i < width; i++) {
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF),
SkGetPackedB32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF),
SkGetPackedG32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF),
SkGetPackedR32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF),
SkGetPackedA32(dstPixels[i]), tol));
}
#endif
}
DEF_TEST(ColorSpaceXform_TableGamma, r) {
// Lookup-table based gamma curves
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize);
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kTable_Type;
gammas->fData[i].fTable.fSize = tableSize;
gammas->fData[i].fTable.fOffset = 0;
}
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.05f;
table[2] = 0.10f;
table[3] = 0.15f;
table[4] = 0.25f;
table[5] = 0.35f;
table[6] = 0.45f;
table[7] = 0.60f;
table[8] = 0.75f;
table[9] = 1.00f;
// This table's pretty small compared to real ones in the wild (think 256),
// so we give test_identity_xform_A2B a wide tolerance.
// This lets us implement table transfer functions with a single lookup.
const int tolerance = 13;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance);
}
DEF_TEST(ColorSpaceXform_ParametricGamma, r) {
// Parametric gamma curves
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn));
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kParam_Type;
gammas->fData[i].fParamOffset = 0;
}
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>
(memory, sizeof(SkGammas));
// Interval.
params->fD = 0.04045f;
// First equation:
params->fC = 1.0f / 12.92f;
params->fF = 0.0f;
// Second equation:
// Note that the function is continuous (it's actually sRGB).
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fE = 0.0f;
params->fG = 2.4f;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
}
DEF_TEST(ColorSpaceXform_ExponentialGamma, r) {
// Exponential gamma curves
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kValue_Type;
gammas->fData[i].fValue = 1.4f;
}
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
}
DEF_TEST(ColorSpaceXform_NamedGamma, r) {
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new SkGammas(kChannels));
gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type;
gammas->fData[0].fNamed = kSRGB_SkGammaNamed;
gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed;
gammas->fData[2].fNamed = kLinear_SkGammaNamed;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
test_identity_xform_A2B(r, kSRGB_SkGammaNamed, nullptr);
test_identity_xform_A2B(r, k2Dot2Curve_SkGammaNamed, nullptr);
test_identity_xform_A2B(r, kLinear_SkGammaNamed, nullptr);
}
DEF_TEST(ColorSpaceXform_NonMatchingGamma, r) {
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize +
sizeof(SkColorSpaceTransferFn));
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.15f;
table[2] = 0.20f;
table[3] = 0.25f;
table[4] = 0.35f;
table[5] = 0.45f;
table[6] = 0.55f;
table[7] = 0.70f;
table[8] = 0.85f;
table[9] = 1.00f;
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>(memory,
sizeof(SkGammas) + sizeof(float) * tableSize);
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fC = 1.0f / 12.92f;
params->fD = 0.04045f;
params->fE = 0.0f;
params->fF = 0.0f;
params->fG = 2.4f;
gammas->fType[0] = SkGammas::Type::kValue_Type;
gammas->fData[0].fValue = 1.2f;
// See ColorSpaceXform_TableGamma... we've decided to allow some tolerance
// for SkJumper's implementation of tables.
const int tolerance = 12;
gammas->fType[1] = SkGammas::Type::kTable_Type;
gammas->fData[1].fTable.fSize = tableSize;
gammas->fData[1].fTable.fOffset = 0;
gammas->fType[2] = SkGammas::Type::kParam_Type;
gammas->fData[2].fParamOffset = sizeof(float) * tableSize;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance);
}
#if !defined(SK_USE_SKCMS)
DEF_TEST(ColorSpaceXform_A2BCLUT, r) {
constexpr int inputChannels = 3;
constexpr int gp = 4; // # grid points
constexpr int numEntries = gp*gp*gp*3;
const uint8_t gridPoints[3] = {gp, gp, gp};
void* memory = sk_malloc_throw(sizeof(SkColorLookUpTable) + sizeof(float) * numEntries);
sk_sp<SkColorLookUpTable> colorLUT(new (memory) SkColorLookUpTable(inputChannels, gridPoints));
// make a CLUT that rotates R, G, and B ie R->G, G->B, B->R
float* table = SkTAddOffset<float>(memory, sizeof(SkColorLookUpTable));
for (int r = 0; r < gp; ++r) {
for (int g = 0; g < gp; ++g) {
for (int b = 0; b < gp; ++b) {
table[3*(gp*gp*r + gp*g + b) + 0] = g * (1.f / (gp - 1.f));
table[3*(gp*gp*r + gp*g + b) + 1] = b * (1.f / (gp - 1.f));
table[3*(gp*gp*r + gp*g + b) + 2] = r * (1.f / (gp - 1.f));
}
}
}
// build an even distribution of pixels every (7 / 255) steps
// to test the xform on
constexpr int pixelgp = 7;
constexpr int numPixels = pixelgp*pixelgp*pixelgp;
SkAutoTMalloc<uint32_t> srcPixels(numPixels);
int srcIndex = 0;
for (int r = 0; r < pixelgp; ++r) {
for (int g = 0; g < pixelgp; ++g) {
for (int b = 0; b < pixelgp; ++b) {
const int red = (int) (r * (255.f / (pixelgp - 1.f)));
const int green = (int) (g * (255.f / (pixelgp - 1.f)));
const int blue = (int) (b * (255.f / (pixelgp - 1.f)));
srcPixels[srcIndex] = SkColorSetRGB(red, green, blue);
++srcIndex;
}
}
}
SkAutoTMalloc<uint32_t> dstPixels(numPixels);
// src space is identity besides CLUT
std::vector<SkColorSpace_A2B::Element> srcElements;
srcElements.push_back(SkColorSpace_A2B::Element(std::move(colorLUT)));
auto srcSpace = ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ,
std::move(srcElements));
// dst space is entirely identity
auto dstSpace = SkColorSpace::MakeRGB(SkColorSpace::kLinear_RenderTargetGamma, SkMatrix44::I());
auto xform = SkColorSpaceXform::New(srcSpace.get(), dstSpace.get());
bool result = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, dstPixels.get(),
SkColorSpaceXform::kRGBA_8888_ColorFormat, srcPixels.get(),
numPixels, kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
for (int i = 0; i < numPixels; ++i) {
REPORTER_ASSERT(r, almost_equal(SkColorGetR(srcPixels[i]),
SkColorGetG(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(SkColorGetG(srcPixels[i]),
SkColorGetB(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(SkColorGetB(srcPixels[i]),
SkColorGetR(dstPixels[i])));
}
}
#endif
DEF_TEST(SkColorSpaceXform_LoadTail, r) {
std::unique_ptr<uint64_t[]> srcPixel(new uint64_t[1]);
srcPixel[0] = 0;
uint32_t dstPixel;
sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
SkColorSpace::kDCIP3_D65_Gamut);
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
std::unique_ptr<SkColorSpaceXform> xform = SkColorSpaceXform::New(p3.get(), srgb.get());
// ASAN will catch us if we read past the tail.
bool success = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, &dstPixel,
SkColorSpaceXform::kRGBA_U16_BE_ColorFormat, srcPixel.get(), 1,
kUnpremul_SkAlphaType);
REPORTER_ASSERT(r, success);
}

View File

@ -93,14 +93,6 @@ static uint16_t h(float f) {
: SkTo<uint16_t>((s>>16) + (em>>13) - ((127-15)<<10));
}
static uint16_t n(uint16_t x) {
return (x<<8) | (x>>8);
}
static float a(uint16_t x) {
return (1/65535.0f) * x;
}
DEF_TEST(SkRasterPipeline_tail, r) {
{
float data[][4] = {
@ -164,46 +156,6 @@ DEF_TEST(SkRasterPipeline_tail, r) {
}
}
}
{
uint16_t data[][3] = {
{n(00), n(01), n(02)},
{n(10), n(11), n(12)},
{n(20), n(21), n(22)},
{n(30), n(31), n(32)}
};
float answer[][4] = {
{a(00), a(01), a(02), 1.0f},
{a(10), a(11), a(12), 1.0f},
{a(20), a(21), a(22), 1.0f},
{a(30), a(31), a(32), 1.0f}
};
float buffer[4][4];
SkJumper_MemoryCtx src = { &data[0][0], 0 },
dst = { &buffer[0][0], 0 };
for (unsigned i = 1; i <= 4; i++) {
memset(buffer, 0xff, sizeof(buffer));
SkRasterPipeline_<256> p;
p.append(SkRasterPipeline::load_rgb_u16_be, &src);
p.append(SkRasterPipeline::store_f32, &dst);
p.run(0,0, i,1);
for (unsigned j = 0; j < i; j++) {
for (unsigned k = 0; k < 4; k++) {
if (buffer[j][k] != answer[j][k]) {
ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, answer[j][k], buffer[j][k]);
}
}
}
for (int j = i; j < 4; j++) {
for (auto f : buffer[j]) {
REPORTER_ASSERT(r, SkScalarIsNaN(f));
}
}
}
}
}
DEF_TEST(SkRasterPipeline_lowp, r) {