Make GrShape compute keys for short paths from path data instead of using the gen id.

GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2357643002

Review-Url: https://codereview.chromium.org/2357643002
This commit is contained in:
bsalomon 2016-09-21 08:26:57 -07:00 committed by Commit bot
parent 8eb43e5f63
commit 67fa4e31d8
5 changed files with 182 additions and 152 deletions

View File

@ -98,6 +98,29 @@ public:
*/
static void CreateDrawArcPath(SkPath* path, const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect);
/**
* Returns a pointer to the verb data. Note that the verbs are stored backwards in memory and
* thus the returned pointer is the last verb.
*/
static const uint8_t* VerbData(const SkPath& path) {
return path.fPathRef->verbsMemBegin();
}
/** Returns a raw pointer to the path points */
static const SkPoint* PointData(const SkPath& path) {
return path.fPathRef->points();
}
/** Returns the number of conic weights in the path */
static int ConicWeightCnt(const SkPath& path) {
return path.fPathRef->countWeights();
}
/** Returns a raw pointer to the path conic weights. */
static const SkScalar* ConicWeightData(const SkPath& path) {
return path.fPathRef->conicWeights();
}
};
#endif

View File

@ -8,132 +8,21 @@
#include "GrPath.h"
#include "GrShape.h"
// Verb count limit for generating path key from content of a volatile path.
// The value should accomodate at least simple rects and rrects.
static const int kSimpleVolatilePathVerbLimit = 10;
static inline void write_style_key(uint32_t* key, const GrStyle& style) {
// Pass 1 for the scale since the GPU will apply the style not GrStyle::applyToPath().
GrStyle::WriteKey(key, style, GrStyle::Apply::kPathEffectAndStrokeRec, SK_Scalar1);
}
static inline int style_data_cnt(const GrStyle& style) {
int cnt = GrStyle::KeySize(style, GrStyle::Apply::kPathEffectAndStrokeRec);
void GrPath::ComputeKey(const GrShape& shape, GrUniqueKey* key, bool* outIsVolatile) {
int geoCnt = shape.unstyledKeySize();
int styleCnt = GrStyle::KeySize(shape.style(), GrStyle::Apply::kPathEffectAndStrokeRec);
// This should only fail for an arbitrary path effect, and we should not have gotten
// here with anything other than a dash path effect.
SkASSERT(cnt >= 0);
return cnt;
}
static inline void write_style_key(uint32_t* dst, const GrStyle& style) {
// Pass 1 for the scale since the GPU will apply the style not GrStyle::applyToPath().
GrStyle::WriteKey(dst, style, GrStyle::Apply::kPathEffectAndStrokeRec, SK_Scalar1);
}
// Encodes the full path data to the unique key for very small paths that wouldn't otherwise have a
// key. This is typically hit when clipping stencils the clip stack.
inline static bool compute_key_for_simple_path(const GrShape& shape, GrUniqueKey* key) {
if (shape.hasUnstyledKey()) {
return false;
}
SkPath path;
shape.asPath(&path);
// The check below should take care of negative values casted positive.
const int verbCnt = path.countVerbs();
if (verbCnt > kSimpleVolatilePathVerbLimit) {
return false;
}
// If somebody goes wild with the constant, it might cause an overflow.
static_assert(kSimpleVolatilePathVerbLimit <= 100,
"big_simple_volatile_path_verb_limit_may_cause_overflow");
const int pointCnt = path.countPoints();
if (pointCnt < 0) {
SkASSERT(false);
return false;
}
SkSTArray<16, SkScalar, true> conicWeights(16);
if ((path.getSegmentMasks() & SkPath::kConic_SegmentMask) != 0) {
SkPath::RawIter iter(path);
SkPath::Verb verb;
SkPoint points[4];
while ((verb = iter.next(points)) != SkPath::kDone_Verb) {
if (verb == SkPath::kConic_Verb) {
conicWeights.push_back(iter.conicWeight());
}
}
}
const int conicWeightCnt = conicWeights.count();
// Construct counts that align as uint32_t counts.
#define ARRAY_DATA32_COUNT(array_type, count) \
static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t)))
const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt);
const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt);
const int conicWeightData32Cnt = ARRAY_DATA32_COUNT(SkScalar, conicWeightCnt);
#undef ARRAY_DATA32_COUNT
// The unique key data is a "message" with following fragments:
// 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt
// (fragment 0, fixed size)
// 1) verb, point data and conic weights (varying size)
// 2) stroke data (varying size)
const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt + conicWeightData32Cnt;
const int styleDataCnt = style_data_cnt(shape.style());
static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + styleDataCnt);
int i = 0;
builder[i++] = path.getFillType();
// Serialize the verbCnt to make the whole message unambiguous.
// We serialize two variable length fragments to the message:
// * verbs, point data and conic weights (fragment 1)
// * stroke data (fragment 2)
// "Proof:"
// Verb count establishes unambiguous verb data.
// Verbs encode also point data size and conic weight size.
// Thus the fragment 1 is unambiguous.
// Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message
// has been established.
builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok.
// Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be
// uninitialized. This does not produce ambiguous verb data, since we have serialized the exact
// verb count.
if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) {
builder[i + verbData32Cnt - 1] = 0;
}
path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt);
i += verbData32Cnt;
static_assert(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t),
"skpoint_array_needs_padding");
// Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment.
path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt);
i += pointData32Cnt;
if (conicWeightCnt > 0) {
if (conicWeightData32Cnt != static_cast<int>(
(conicWeightCnt * sizeof(SkScalar) / sizeof(uint32_t)))) {
builder[i + conicWeightData32Cnt - 1] = 0;
}
memcpy(&builder[i], conicWeights.begin(), conicWeightCnt * sizeof(SkScalar));
SkDEBUGCODE(i += conicWeightData32Cnt);
}
SkASSERT(i == baseData32Cnt);
if (styleDataCnt > 0) {
write_style_key(&builder[baseData32Cnt], shape.style());
}
return true;
}
inline static bool compute_key_for_general_shape(const GrShape& shape, GrUniqueKey* key) {
int geoCnt = shape.unstyledKeySize();
int styleCnt = style_data_cnt(shape.style());
if (styleCnt < 0 || geoCnt < 0) {
return false;
SkASSERT(styleCnt >= 0);
if (geoCnt < 0) {
*outIsVolatile = true;
return;
}
static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kGeneralPathDomain, geoCnt + styleCnt);
@ -141,16 +30,7 @@ inline static bool compute_key_for_general_shape(const GrShape& shape, GrUniqueK
if (styleCnt) {
write_style_key(&builder[geoCnt], shape.style());
}
return true;
}
void GrPath::ComputeKey(const GrShape& shape, GrUniqueKey* key, bool* outIsVolatile) {
if (compute_key_for_simple_path(shape, key)) {
*outIsVolatile = false;
return;
}
*outIsVolatile = !compute_key_for_general_shape(shape, key);
}
#ifdef SK_DEBUG
@ -170,13 +50,6 @@ bool GrPath::isEqualTo(const SkPath& path, const GrStyle& style) const {
return false;
}
}
// We treat same-rect ovals as identical - but only when not dashing.
SkRect ovalBounds;
if (!fStyle.isDashed() && fSkPath.isOval(&ovalBounds)) {
SkRect otherOvalBounds;
return path.isOval(&otherOvalBounds) && ovalBounds == otherOvalBounds;
}
return fSkPath == path;
}
#endif

View File

@ -72,6 +72,49 @@ SkRect GrShape::styledBounds() const {
return bounds;
}
// If the path is small enough to be keyed from its data this returns key length, otherwise -1.
static int path_key_from_data_size(const SkPath& path) {
const int verbCnt = path.countVerbs();
if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) {
return -1;
}
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
// 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to
// a uint32_t length.
return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt;
}
// Writes the path data key into the passed pointer.
static void write_path_key_from(const SkPath& path, uint32_t* origKey) {
uint32_t* key = origKey;
// The check below should take care of negative values casted positive.
const int verbCnt = path.countVerbs();
const int pointCnt = path.countPoints();
const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path);
SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt);
SkASSERT(pointCnt && verbCnt);
*key++ = path.getFillType();
*key++ = verbCnt;
memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t));
int verbKeySize = SkAlign4(verbCnt);
// pad out to uint32_t alignment using value that will stand out when debugging.
uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt;
memset(pad, 0xDE, verbKeySize - verbCnt);
key += verbKeySize >> 2;
memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt);
GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t));
key += 2 * pointCnt;
memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt);
GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t));
SkDEBUGCODE(key += conicWeightCnt);
SkASSERT(key - origKey == path_key_from_data_size(path));
}
int GrShape::unstyledKeySize() const {
if (fInheritedKey.count()) {
return fInheritedKey.count();
@ -88,10 +131,14 @@ int GrShape::unstyledKeySize() const {
GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint));
// 4 for the end points and 1 for the inverseness
return 5;
case Type::kPath:
case Type::kPath: {
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
return dataKeySize;
}
if (0 == fPathData.fGenID) {
return -1;
} else {
}
// The key is the path ID and fill type.
return 2;
}
@ -124,7 +171,12 @@ void GrShape::writeUnstyledKey(uint32_t* key) const {
key += 4;
*key++ = fLineData.fInverted ? 1 : 0;
break;
case Type::kPath:
case Type::kPath: {
int dataKeySize = path_key_from_data_size(fPathData.fPath);
if (dataKeySize >= 0) {
write_path_key_from(fPathData.fPath, key);
return;
}
SkASSERT(fPathData.fGenID);
*key++ = fPathData.fGenID;
// We could canonicalize the fill rule for paths that don't differentiate between
@ -133,6 +185,7 @@ void GrShape::writeUnstyledKey(uint32_t* key) const {
break;
}
}
}
SkASSERT(key - origKey == this->unstyledKeySize());
}

View File

@ -34,6 +34,10 @@
*/
class GrShape {
public:
// Keys for paths may be extracted from the path data for small paths. Clients aren't supposed
// to have to worry about this. This value is exposed for unit tests.
static constexpr int kMaxKeyFromDataVerbCnt = 10;
GrShape() { this->initType(Type::kEmpty); }
explicit GrShape(const SkPath& path) : GrShape(path, GrStyle::SimpleFill()) {}

View File

@ -1078,14 +1078,16 @@ void test_unknown_path_effect(skiatest::Reporter* reporter, const Geo& geo) {
bool filterPath(SkPath* dst, const SkPath& src, SkStrokeRec*,
const SkRect* cullR) const override {
*dst = src;
dst->lineTo(0, 0);
dst->lineTo(10, 10);
// To avoid triggering data-based keying of paths with few verbs we add many segments.
for (int i = 0; i < 100; ++i) {
dst->lineTo(SkIntToScalar(i), SkIntToScalar(i));
}
return true;
}
void computeFastBounds(SkRect* dst, const SkRect& src) const override {
*dst = src;
dst->growToInclude(0, 0);
dst->growToInclude(10, 10);
dst->growToInclude(100, 100);
}
static sk_sp<SkPathEffect> Make() { return sk_sp<SkPathEffect>(new AddLineTosPathEffect); }
Factory getFactory() const override { return nullptr; }
@ -1156,9 +1158,18 @@ void test_make_hairline_path_effect(skiatest::Reporter* reporter, const Geo& geo
a.setFillType(b.getFillType());
REPORTER_ASSERT(reporter, a == b);
REPORTER_ASSERT(reporter, a == c);
// If the resulting path is small enough then it will have a key.
REPORTER_ASSERT(reporter, paths_fill_same(a, b));
REPORTER_ASSERT(reporter, paths_fill_same(a, c));
if (c.countVerbs() <= GrShape::kMaxKeyFromDataVerbCnt) {
REPORTER_ASSERT(reporter, !peCase.appliedPathEffectKey().empty());
REPORTER_ASSERT(reporter, peCase.appliedPathEffectKey() ==
peCase.appliedFullStyleKey());
} else {
REPORTER_ASSERT(reporter, peCase.appliedPathEffectKey().empty());
REPORTER_ASSERT(reporter, peCase.appliedFullStyleKey().empty());
}
}
REPORTER_ASSERT(reporter, peCase.appliedPathEffectShape().style().isSimpleHairline());
REPORTER_ASSERT(reporter, peCase.appliedFullStyleShape().style().isSimpleHairline());
}
@ -1173,8 +1184,8 @@ void test_volatile_path(skiatest::Reporter* reporter, const Geo& geo) {
dashAndStroke.setStyle(SkPaint::kStroke_Style);
TestCase volatileCase(reporter, vPath, dashAndStroke);
// We expect a shape made from a volatile path to have a key iff the shape is recognized
// as a specialized geometry.
if (geo.isNonPath(dashAndStroke)) {
// as a specialized geometry or it has a small verb count.
if (geo.isNonPath(dashAndStroke) || vPath.countVerbs() <= GrShape::kMaxKeyFromDataVerbCnt) {
REPORTER_ASSERT(reporter, SkToBool(volatileCase.baseKey().count()));
// In this case all the keys should be identical to the non-volatile case.
TestCase nonVolatileCase(reporter, geo.path(), dashAndStroke);
@ -1768,6 +1779,70 @@ static void test_stroked_lines(skiatest::Reporter* r) {
TestCase::kAllSame_ComparisonExpecation);
}
static void test_short_path_keys(skiatest::Reporter* r) {
SkPaint paints[4];
paints[1].setStyle(SkPaint::kStroke_Style);
paints[1].setStrokeWidth(5.f);
paints[2].setStyle(SkPaint::kStroke_Style);
paints[2].setStrokeWidth(0.f);
paints[3].setStyle(SkPaint::kStrokeAndFill_Style);
paints[3].setStrokeWidth(5.f);
auto compare = [r, &paints] (SkPath* pathA, SkPath* pathB,
TestCase::ComparisonExpecation expectation) {
for (const SkPaint& paint : paints) {
for (PathGeo::Invert invert : {PathGeo::Invert::kNo, PathGeo::Invert::kYes}) {
for (bool aIsVolatile : {false, true}) {
for (bool bIsVolatile : {false, true}) {
pathA->setIsVolatile(aIsVolatile);
pathB->setIsVolatile(bIsVolatile);
TestCase caseA(PathGeo(*pathA, invert), paint, r);
TestCase caseB(PathGeo(*pathB, invert), paint, r);
caseA.compare(r, caseB, expectation);
}
}
}
}
};
SkPath pathA;
SkPath pathB;
// Two identical paths
pathA.lineTo(10.f, 10.f);
pathA.conicTo(20.f, 20.f, 20.f, 30.f, 0.7f);
pathB.lineTo(10.f, 10.f);
pathB.conicTo(20.f, 20.f, 20.f, 30.f, 0.7f);
compare(&pathA, &pathB, TestCase::kAllSame_ComparisonExpecation);
// Give path b a different point
pathB.reset();
pathB.lineTo(10.f, 10.f);
pathB.conicTo(21.f, 20.f, 20.f, 30.f, 0.7f);
compare(&pathA, &pathB, TestCase::kAllDifferent_ComparisonExpecation);
// Give path b a different conic weight
pathB.reset();
pathB.lineTo(10.f, 10.f);
pathB.conicTo(20.f, 20.f, 20.f, 30.f, 0.6f);
compare(&pathA, &pathB, TestCase::kAllDifferent_ComparisonExpecation);
// Give path b an extra lineTo verb
pathB.reset();
pathB.lineTo(10.f, 10.f);
pathB.conicTo(20.f, 20.f, 20.f, 30.f, 0.6f);
pathB.lineTo(50.f, 50.f);
compare(&pathA, &pathB, TestCase::kAllDifferent_ComparisonExpecation);
// Give path b a close
pathB.reset();
pathB.lineTo(10.f, 10.f);
pathB.conicTo(20.f, 20.f, 20.f, 30.f, 0.7f);
pathB.close();
compare(&pathA, &pathB, TestCase::kAllDifferent_ComparisonExpecation);
}
DEF_TEST(GrShape, reporter) {
SkTArray<std::unique_ptr<Geo>> geos;
SkTArray<std::unique_ptr<RRectPathGeo>> rrectPathGeos;
@ -1894,6 +1969,8 @@ DEF_TEST(GrShape, reporter) {
test_lines(reporter);
test_stroked_lines(reporter);
test_short_path_keys(reporter);
}
#endif