SkPathRef: one allocation for pts+verbs, path GenID, copy-on-write

Review URL: https://codereview.appspot.com/6488063/



git-svn-id: http://skia.googlecode.com/svn/trunk@5433 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
bsalomon@google.com 2012-09-07 15:35:06 +00:00
parent 9a4125283a
commit 69aca79b5c
5 changed files with 749 additions and 169 deletions

View File

@ -109,6 +109,7 @@
'<(skia_src_path)/core/SkPathHeap.cpp',
'<(skia_src_path)/core/SkPathHeap.h',
'<(skia_src_path)/core/SkPathMeasure.cpp',
'<(skia_src_path)/core/SkPathRef.h',
'<(skia_src_path)/core/SkPicture.cpp',
'<(skia_src_path)/core/SkPictureFlat.cpp',
'<(skia_src_path)/core/SkPictureFlat.h',

View File

@ -13,6 +13,7 @@
#include "SkInstCnt.h"
#include "SkMatrix.h"
#include "SkTDArray.h"
#include "SkRefCnt.h"
#ifdef SK_BUILD_FOR_ANDROID
#define GEN_ID_INC fGenerationID++
@ -26,6 +27,7 @@ class SkReader32;
class SkWriter32;
class SkAutoPathBoundsUpdate;
class SkString;
class SkPathRef;
/** \class SkPath
@ -255,9 +257,7 @@ public:
/** Return the number of points in the path
*/
int countPoints() const {
return this->getPoints(NULL, 0);
}
int countPoints() const;
/** Return the point at the specified index. If the index is out of range
(i.e. is not 0 <= index < countPoints()) then the returned coordinates
@ -275,9 +275,7 @@ public:
/** Return the number of verbs in the path
*/
int countVerbs() const {
return this->getVerbs(NULL, 0);
}
int countVerbs() const;
/** Returns the number of verbs in the path. Up to max verbs are copied. The
verbs are copied as one byte per verb.
@ -832,8 +830,7 @@ private:
kSegmentMask_SerializationShift = 0
};
SkTDArray<SkPoint> fPts;
SkTDArray<uint8_t> fVerbs;
SkAutoTUnref<SkPathRef> fPathRef;
mutable SkRect fBounds;
int fLastMoveToIndex;
uint8_t fFillType;

View File

@ -159,6 +159,12 @@ public:
fObj = obj;
}
void swap(SkAutoTUnref* other) {
T* tmp = fObj;
fObj = other->fObj;
other->fObj = tmp;
}
/**
* Return the hosted object (which may be null), transferring ownership.
* The reference count is not modified, and the internal ptr is set to NULL

View File

@ -10,6 +10,8 @@
#include "SkPath.h"
#include "SkBuffer.h"
#include "SkMath.h"
#include "SkPathRef.h"
#include "SkThread.h"
SK_DEFINE_INST_COUNT(SkPath);
@ -109,13 +111,13 @@ private:
};
// Return true if the computed bounds are finite.
static bool compute_pt_bounds(SkRect* bounds, const SkTDArray<SkPoint>& pts) {
int count = pts.count();
static bool compute_pt_bounds(SkRect* bounds, const SkPathRef& ref) {
int count = ref.countPoints();
if (count <= 1) { // we ignore just 1 point (moveto)
bounds->setEmpty();
return count ? pts.begin()->isFinite() : true;
return count ? ref.points()->isFinite() : true;
} else {
return bounds->setBoundsCheck(pts.begin(), pts.count());
return bounds->setBoundsCheck(ref.points(), count);
}
}
@ -139,7 +141,8 @@ static bool compute_pt_bounds(SkRect* bounds, const SkTDArray<SkPoint>& pts) {
#define INITIAL_LASTMOVETOINDEX_VALUE ~0
SkPath::SkPath()
: fFillType(kWinding_FillType)
: fPathRef(SkPathRef::CreateEmpty())
, fFillType(kWinding_FillType)
, fBoundsIsDirty(true) {
fConvexity = kUnknown_Convexity;
fSegmentMask = 0;
@ -154,9 +157,17 @@ SkPath::SkPath()
SkPath::SkPath(const SkPath& src) {
SkDEBUGCODE(src.validate();)
*this = src;
src.fPathRef.get()->ref();
fPathRef.reset(src.fPathRef.get());
fBounds = src.fBounds;
fFillType = src.fFillType;
fBoundsIsDirty = src.fBoundsIsDirty;
fConvexity = src.fConvexity;
fIsFinite = src.fIsFinite;
fSegmentMask = src.fSegmentMask;
fLastMoveToIndex = src.fLastMoveToIndex;
fIsOval = src.fIsOval;
#ifdef SK_BUILD_FOR_ANDROID
// the assignment operator above increments the ID so correct for that here
fGenerationID = src.fGenerationID;
fSourcePath = NULL;
#endif
@ -170,9 +181,9 @@ SkPath& SkPath::operator=(const SkPath& src) {
SkDEBUGCODE(src.validate();)
if (this != &src) {
src.fPathRef.get()->ref();
fPathRef.reset(src.fPathRef.get());
fBounds = src.fBounds;
fPts = src.fPts;
fVerbs = src.fVerbs;
fFillType = src.fFillType;
fBoundsIsDirty = src.fBoundsIsDirty;
fConvexity = src.fConvexity;
@ -196,7 +207,7 @@ SK_API bool operator==(const SkPath& a, const SkPath& b) {
return &a == &b ||
(a.fFillType == b.fFillType && a.fSegmentMask == b.fSegmentMask &&
a.fVerbs == b.fVerbs && a.fPts == b.fPts);
*a.fPathRef.get() == *b.fPathRef.get());
}
void SkPath::swap(SkPath& other) {
@ -204,8 +215,7 @@ void SkPath::swap(SkPath& other) {
if (this != &other) {
SkTSwap<SkRect>(fBounds, other.fBounds);
fPts.swap(other.fPts);
fVerbs.swap(other.fVerbs);
fPathRef.swap(&other.fPathRef);
SkTSwap<uint8_t>(fFillType, other.fFillType);
SkTSwap<uint8_t>(fBoundsIsDirty, other.fBoundsIsDirty);
SkTSwap<uint8_t>(fConvexity, other.fConvexity);
@ -234,8 +244,7 @@ void SkPath::setSourcePath(const SkPath* path) {
void SkPath::reset() {
SkDEBUGCODE(this->validate();)
fPts.reset();
fVerbs.reset();
fPathRef.reset(SkPathRef::CreateEmpty());
GEN_ID_INC;
fBoundsIsDirty = true;
fConvexity = kUnknown_Convexity;
@ -247,8 +256,7 @@ void SkPath::reset() {
void SkPath::rewind() {
SkDEBUGCODE(this->validate();)
fPts.rewind();
fVerbs.rewind();
SkPathRef::Rewind(&fPathRef);
GEN_ID_INC;
fConvexity = kUnknown_Convexity;
fBoundsIsDirty = true;
@ -259,18 +267,18 @@ void SkPath::rewind() {
bool SkPath::isEmpty() const {
SkDEBUGCODE(this->validate();)
return 0 == fVerbs.count();
return 0 == fPathRef->countVerbs();
}
bool SkPath::isLine(SkPoint line[2]) const {
int verbCount = fVerbs.count();
int ptCount = fPts.count();
int verbCount = fPathRef->countVerbs();
int ptCount = fPathRef->countVerbs();
if (2 == verbCount && 2 == ptCount) {
const uint8_t* verbs = fVerbs.begin();
if (kMove_Verb == verbs[0] && kLine_Verb == verbs[1]) {
if (kMove_Verb == fPathRef->atVerb(0) &&
kLine_Verb == fPathRef->atVerb(1)) {
if (line) {
const SkPoint* pts = fPts.begin();
const SkPoint* pts = fPathRef->points();
line[0] = pts[0];
line[1] = pts[1];
}
@ -327,13 +335,13 @@ bool SkPath::isRect(SkRect* rect) const {
int nextDirection = 0;
bool closedOrMoved = false;
bool autoClose = false;
const uint8_t* verbs = fVerbs.begin();
const uint8_t* verbStop = fVerbs.end();
const SkPoint* pts = fPts.begin();
while (verbs != verbStop) {
switch (*verbs++) {
const SkPoint* pts = fPathRef->points();
int verbCnt = fPathRef->countVerbs();
int currVerb = 0;
while (currVerb < verbCnt) {
switch (fPathRef->atVerb(currVerb++)) {
case kClose_Verb:
pts = fPts.begin();
pts = fPathRef->points();
autoClose = true;
case kLine_Verb: {
SkScalar left = last.fX;
@ -398,39 +406,56 @@ bool SkPath::isRect(SkRect* rect) const {
return result;
}
int SkPath::countPoints() const {
return fPathRef->countPoints();
}
int SkPath::getPoints(SkPoint dst[], int max) const {
SkDEBUGCODE(this->validate();)
SkASSERT(max >= 0);
SkASSERT(!max || dst);
int count = fPts.count();
fPts.copyRange(dst, 0, max);
return count;
int count = SkMin32(max, fPathRef->countPoints());
memcpy(dst, fPathRef->points(), count * sizeof(SkPoint));
return fPathRef->countPoints();
}
SkPoint SkPath::getPoint(int index) const {
if ((unsigned)index < (unsigned)fPts.count()) {
return fPts[index];
if ((unsigned)index < (unsigned)fPathRef->countPoints()) {
return fPathRef->atPoint(index);
}
return SkPoint::Make(0, 0);
}
int SkPath::countVerbs() const {
return fPathRef->countVerbs();
}
static inline void copy_verbs_reverse(uint8_t* inorderDst,
const uint8_t* reversedSrc,
int count) {
for (int i = 0; i < count; ++i) {
inorderDst[i] = reversedSrc[~i];
}
}
int SkPath::getVerbs(uint8_t dst[], int max) const {
SkDEBUGCODE(this->validate();)
SkASSERT(max >= 0);
SkASSERT(!max || dst);
fVerbs.copyRange(dst, 0, max);
return fVerbs.count();
int count = SkMin32(max, fPathRef->countVerbs());
copy_verbs_reverse(dst, fPathRef->verbs(), count);
return fPathRef->countVerbs();
}
bool SkPath::getLastPt(SkPoint* lastPt) const {
SkDEBUGCODE(this->validate();)
int count = fPts.count();
int count = fPathRef->countPoints();
if (count > 0) {
if (lastPt) {
*lastPt = fPts[count - 1];
*lastPt = fPathRef->atPoint(count - 1);
}
return true;
}
@ -443,12 +468,13 @@ bool SkPath::getLastPt(SkPoint* lastPt) const {
void SkPath::setLastPt(SkScalar x, SkScalar y) {
SkDEBUGCODE(this->validate();)
int count = fPts.count();
int count = fPathRef->countPoints();
if (count == 0) {
this->moveTo(x, y);
} else {
fIsOval = false;
fPts[count - 1].set(x, y);
SkPathRef::Editor ed(&fPathRef);
ed.atPoint(count-1)->set(x, y);
GEN_ID_INC;
}
}
@ -457,7 +483,7 @@ void SkPath::computeBounds() const {
SkDEBUGCODE(this->validate();)
SkASSERT(fBoundsIsDirty);
fIsFinite = compute_pt_bounds(&fBounds, fPts);
fIsFinite = compute_pt_bounds(&fBounds, *fPathRef.get());
fBoundsIsDirty = false;
}
@ -485,24 +511,19 @@ void SkPath::setConvexity(Convexity c) {
void SkPath::incReserve(U16CPU inc) {
SkDEBUGCODE(this->validate();)
fVerbs.setReserve(fVerbs.count() + inc);
fPts.setReserve(fPts.count() + inc);
SkPathRef::Editor(&fPathRef, inc, inc);
SkDEBUGCODE(this->validate();)
}
void SkPath::moveTo(SkScalar x, SkScalar y) {
SkDEBUGCODE(this->validate();)
SkPoint* pt;
SkPathRef::Editor ed(&fPathRef);
// remember our index
fLastMoveToIndex = fPts.count();
fLastMoveToIndex = ed.pathRef()->countPoints();
pt = fPts.append();
*fVerbs.append() = kMove_Verb;
pt->set(x, y);
ed.growForVerb(kMove_Verb)->set(x, y);
GEN_ID_INC;
DIRTY_AFTER_EDIT_NO_CONVEXITY_CHANGE;
@ -517,10 +538,10 @@ void SkPath::rMoveTo(SkScalar x, SkScalar y) {
void SkPath::injectMoveToIfNeeded() {
if (fLastMoveToIndex < 0) {
SkScalar x, y;
if (fVerbs.count() == 0) {
if (fPathRef->countVerbs() == 0) {
x = y = 0;
} else {
const SkPoint& pt = fPts[~fLastMoveToIndex];
const SkPoint& pt = fPathRef->atPoint(~fLastMoveToIndex);
x = pt.fX;
y = pt.fY;
}
@ -533,8 +554,8 @@ void SkPath::lineTo(SkScalar x, SkScalar y) {
this->injectMoveToIfNeeded();
fPts.append()->set(x, y);
*fVerbs.append() = kLine_Verb;
SkPathRef::Editor ed(&fPathRef);
ed.growForVerb(kLine_Verb)->set(x, y);
fSegmentMask |= kLine_SegmentMask;
GEN_ID_INC;
@ -552,10 +573,10 @@ void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
this->injectMoveToIfNeeded();
SkPoint* pts = fPts.append(2);
SkPathRef::Editor ed(&fPathRef);
SkPoint* pts = ed.growForVerb(kQuad_Verb);
pts[0].set(x1, y1);
pts[1].set(x2, y2);
*fVerbs.append() = kQuad_Verb;
fSegmentMask |= kQuad_SegmentMask;
GEN_ID_INC;
@ -574,11 +595,11 @@ void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
this->injectMoveToIfNeeded();
SkPoint* pts = fPts.append(3);
SkPathRef::Editor ed(&fPathRef);
SkPoint* pts = ed.growForVerb(kCubic_Verb);
pts[0].set(x1, y1);
pts[1].set(x2, y2);
pts[2].set(x3, y3);
*fVerbs.append() = kCubic_Verb;
fSegmentMask |= kCubic_SegmentMask;
GEN_ID_INC;
@ -596,16 +617,18 @@ void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
void SkPath::close() {
SkDEBUGCODE(this->validate();)
int count = fVerbs.count();
int count = fPathRef->countVerbs();
if (count > 0) {
switch (fVerbs[count - 1]) {
switch (fPathRef->atVerb(count - 1)) {
case kLine_Verb:
case kQuad_Verb:
case kCubic_Verb:
case kMove_Verb:
*fVerbs.append() = kClose_Verb;
case kMove_Verb: {
SkPathRef::Editor ed(&fPathRef);
ed.growForVerb(kClose_Verb);
GEN_ID_INC;
break;
}
default:
// don't add a close if it's the first verb or a repeat
break;
@ -653,31 +676,34 @@ void SkPath::addPoly(const SkPoint pts[], int count, bool close) {
return;
}
fLastMoveToIndex = fPts.count();
fPts.append(count, pts);
SkPathRef::Editor ed(&fPathRef);
fLastMoveToIndex = ed.pathRef()->countPoints();
uint8_t* vb;
SkPoint* p;
// +close makes room for the extra kClose_Verb
uint8_t* vb = fVerbs.append(count + close);
vb[0] = kMove_Verb;
ed.grow(count + close, count, &vb, &p);
memcpy(p, pts, count * sizeof(SkPoint));
vb[~0] = kMove_Verb;
if (count > 1) {
// cast to unsigned, so if MIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
// be 0, the compiler will remove the test/branch entirely.
if ((unsigned)count >= MIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
memset(&vb[1], kLine_Verb, count - 1);
memset(vb - count, kLine_Verb, count - 1);
} else {
for (int i = 1; i < count; ++i) {
vb[i] = kLine_Verb;
vb[~i] = kLine_Verb;
}
}
fSegmentMask |= kLine_SegmentMask;
}
if (close) {
vb[count] = kClose_Verb;
vb[~count] = kClose_Verb;
}
GEN_ID_INC;
DIRTY_AFTER_EDIT;
SkDEBUGCODE(this->validate();)
}
#define CUBIC_ARC_FACTOR ((SK_ScalarSqrt2 - SK_Scalar1) * 4 / 3)
@ -823,9 +849,9 @@ void SkPath::addRoundRect(const SkRect& rect, const SkScalar rad[],
}
bool SkPath::hasOnlyMoveTos() const {
const uint8_t* verbs = fVerbs.begin();
const uint8_t* verbStop = fVerbs.end();
while (verbs != verbStop) {
int count = fPathRef->countVerbs();
const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbsMemBegin();
for (int i = 0; i < count; ++i) {
if (*verbs == kLine_Verb ||
*verbs == kQuad_Verb ||
*verbs == kCubic_Verb) {
@ -991,7 +1017,7 @@ void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
int count = build_arc_points(oval, startAngle, sweepAngle, pts);
SkASSERT((count & 1) == 1);
if (fVerbs.count() == 0) {
if (fPathRef->countVerbs() == 0) {
forceMoveTo = true;
}
this->incReserve(count);
@ -1103,7 +1129,7 @@ void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy) {
}
void SkPath::addPath(const SkPath& path, const SkMatrix& matrix) {
this->incReserve(path.fPts.count());
SkPathRef::Editor(&fPathRef, path.countVerbs(), path.countPoints());
fIsOval = false;
@ -1153,21 +1179,23 @@ static const uint8_t gPtsInVerb[] = {
// ignore the initial moveto, and stop when the 1st contour ends
void SkPath::pathTo(const SkPath& path) {
int i, vcount = path.fVerbs.count();
if (vcount == 0) {
int i, vcount = path.fPathRef->countVerbs();
// exit early if the path is empty, or just has a moveTo.
if (vcount < 2) {
return;
}
this->incReserve(vcount);
SkPathRef::Editor(&fPathRef, vcount, path.countPoints());
fIsOval = false;
const uint8_t* verbs = path.fVerbs.begin();
const SkPoint* pts = path.fPts.begin() + 1; // 1 for the initial moveTo
const uint8_t* verbs = path.fPathRef->verbs();
// skip the initial moveTo
const SkPoint* pts = path.fPathRef->points() + 1;
SkASSERT(verbs[0] == kMove_Verb);
SkASSERT(verbs[~0] == kMove_Verb);
for (i = 1; i < vcount; i++) {
switch (verbs[i]) {
switch (verbs[~i]) {
case kLine_Verb:
this->lineTo(pts[0].fX, pts[0].fY);
break;
@ -1175,33 +1203,33 @@ void SkPath::pathTo(const SkPath& path) {
this->quadTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY);
break;
case kCubic_Verb:
this->cubicTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY,
pts[2].fX, pts[2].fY);
this->cubicTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case kClose_Verb:
return;
}
pts += gPtsInVerb[verbs[i]];
pts += gPtsInVerb[verbs[~i]];
}
}
// ignore the last point of the 1st contour
void SkPath::reversePathTo(const SkPath& path) {
int i, vcount = path.fVerbs.count();
if (vcount == 0) {
int i, vcount = path.fPathRef->countVerbs();
// exit early if the path is empty, or just has a moveTo.
if (vcount < 2) {
return;
}
this->incReserve(vcount);
SkPathRef::Editor(&fPathRef, vcount, path.countPoints());
fIsOval = false;
const uint8_t* verbs = path.fVerbs.begin();
const SkPoint* pts = path.fPts.begin();
const uint8_t* verbs = path.fPathRef->verbs();
const SkPoint* pts = path.fPathRef->points();
SkASSERT(verbs[0] == kMove_Verb);
for (i = 1; i < vcount; i++) {
int n = gPtsInVerb[verbs[i]];
SkASSERT(verbs[~0] == kMove_Verb);
for (i = 1; i < vcount; ++i) {
int n = gPtsInVerb[verbs[~i]];
if (n == 0) {
break;
}
@ -1209,7 +1237,7 @@ void SkPath::reversePathTo(const SkPath& path) {
}
while (--i > 0) {
switch (verbs[i]) {
switch (verbs[~i]) {
case kLine_Verb:
this->lineTo(pts[-1].fX, pts[-1].fY);
break;
@ -1224,23 +1252,24 @@ void SkPath::reversePathTo(const SkPath& path) {
SkDEBUGFAIL("bad verb");
break;
}
pts -= gPtsInVerb[verbs[i]];
pts -= gPtsInVerb[verbs[~i]];
}
}
void SkPath::reverseAddPath(const SkPath& src) {
this->incReserve(src.fPts.count());
SkPathRef::Editor ed(&fPathRef, src.fPathRef->countPoints(), src.fPathRef->countVerbs());
const SkPoint* pts = src.fPts.end();
const uint8_t* startVerbs = src.fVerbs.begin();
const uint8_t* verbs = src.fVerbs.end();
const SkPoint* pts = src.fPathRef->pointsEnd();
// we will iterator through src's verbs backwards
const uint8_t* verbs = src.fPathRef->verbsMemBegin(); // points at the last verb
const uint8_t* verbsEnd = src.fPathRef->verbs(); // points just past the first verb
fIsOval = false;
bool needMove = true;
bool needClose = false;
while (verbs > startVerbs) {
uint8_t v = *--verbs;
while (verbs < verbsEnd) {
uint8_t v = *(verbs++);
int n = gPtsInVerb[v];
if (needMove) {
@ -1351,7 +1380,8 @@ void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
}
dst->swap(tmp);
matrix.mapPoints(dst->fPts.begin(), dst->fPts.count());
SkPathRef::Editor ed(&dst->fPathRef);
matrix.mapPoints(ed.points(), ed.pathRef()->countPoints());
} else {
/*
* If we're not in perspective, we can transform all of the points at
@ -1366,7 +1396,7 @@ void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
* if it is non-finite. In those cases bounds need to stay empty,
* regardless of the matrix.
*/
if (!fBoundsIsDirty && matrix.rectStaysRect() && fPts.count() > 1) {
if (!fBoundsIsDirty && matrix.rectStaysRect() && fPathRef->countPoints() > 1) {
dst->fBoundsIsDirty = false;
if (fIsFinite) {
matrix.mapRect(&dst->fBounds, fBounds);
@ -1382,21 +1412,16 @@ void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
dst->fBoundsIsDirty = true;
}
SkPathRef::CreateTransformedCopy(&dst->fPathRef, *fPathRef.get(), matrix);
if (this != dst) {
dst->fVerbs = fVerbs;
dst->fPts.setCount(fPts.count());
dst->fFillType = fFillType;
dst->fSegmentMask = fSegmentMask;
dst->fConvexity = fConvexity;
dst->fIsOval = fIsOval;
}
matrix.mapPoints(dst->fPts.begin(), fPts.begin(), fPts.count());
if (fIsOval) {
// It's an oval only if it stays a rect.
dst->fIsOval = matrix.rectStaysRect();
}
// It's an oval only if it stays a rect.
dst->fIsOval = fIsOval && matrix.rectStaysRect();
SkDEBUGCODE(dst->validate();)
}
@ -1432,9 +1457,9 @@ SkPath::Iter::Iter(const SkPath& path, bool forceClose) {
}
void SkPath::Iter::setPath(const SkPath& path, bool forceClose) {
fPts = path.fPts.begin();
fVerbs = path.fVerbs.begin();
fVerbStop = path.fVerbs.end();
fPts = path.fPathRef->points();
fVerbs = path.fPathRef->verbs();
fVerbStop = path.fPathRef->verbsMemBegin();
fLastPt.fX = fLastPt.fY = 0;
fMoveTo.fX = fMoveTo.fY = 0;
fForceClose = SkToU8(forceClose);
@ -1453,12 +1478,13 @@ bool SkPath::Iter::isClosedContour() const {
const uint8_t* verbs = fVerbs;
const uint8_t* stop = fVerbStop;
if (kMove_Verb == *verbs) {
verbs += 1; // skip the initial moveto
if (kMove_Verb == *(verbs - 1)) {
verbs -= 1; // skip the initial moveto
}
while (verbs < stop) {
unsigned v = *verbs++;
while (verbs > stop) {
// verbs points one beyond the current verb, decrement first.
unsigned v = *(--verbs);
if (kMove_Verb == v) {
break;
}
@ -1510,14 +1536,14 @@ void SkPath::Iter::consumeDegenerateSegments() {
const SkPoint* lastMovePt = 0;
SkPoint lastPt = fLastPt;
while (fVerbs != fVerbStop) {
unsigned verb = *fVerbs;
unsigned verb = *(fVerbs - 1); // fVerbs is one beyond the current verb
switch (verb) {
case kMove_Verb:
// Keep a record of this most recent move
lastMoveVerb = fVerbs;
lastMovePt = fPts;
lastPt = fPts[0];
fVerbs++;
fVerbs--;
fPts++;
break;
@ -1528,7 +1554,7 @@ void SkPath::Iter::consumeDegenerateSegments() {
return;
}
// A close at any other time must be ignored
fVerbs++;
fVerbs--;
break;
case kLine_Verb:
@ -1541,7 +1567,7 @@ void SkPath::Iter::consumeDegenerateSegments() {
return;
}
// Ignore this line and continue
fVerbs++;
fVerbs--;
fPts++;
break;
@ -1555,7 +1581,7 @@ void SkPath::Iter::consumeDegenerateSegments() {
return;
}
// Ignore this line and continue
fVerbs++;
fVerbs--;
fPts += 2;
break;
@ -1569,7 +1595,7 @@ void SkPath::Iter::consumeDegenerateSegments() {
return;
}
// Ignore this line and continue
fVerbs++;
fVerbs--;
fPts += 3;
break;
@ -1594,14 +1620,15 @@ SkPath::Verb SkPath::Iter::doNext(SkPoint ptsParam[4]) {
return kDone_Verb;
}
unsigned verb = *fVerbs++;
// fVerbs is one beyond the current verb, decrement first
unsigned verb = *(--fVerbs);
const SkPoint* SK_RESTRICT srcPts = fPts;
SkPoint* SK_RESTRICT pts = ptsParam;
switch (verb) {
case kMove_Verb:
if (fNeedClose) {
fVerbs -= 1;
fVerbs++; // move back one verb
verb = this->autoClose(pts);
if (verb == kClose_Verb) {
fNeedClose = false;
@ -1640,7 +1667,7 @@ SkPath::Verb SkPath::Iter::doNext(SkPoint ptsParam[4]) {
case kClose_Verb:
verb = this->autoClose(pts);
if (verb == kLine_Verb) {
fVerbs -= 1;
fVerbs++; // move back one verb
} else {
fNeedClose = false;
fSegmentState = kEmptyContour_SegmentState;
@ -1669,9 +1696,9 @@ SkPath::RawIter::RawIter(const SkPath& path) {
}
void SkPath::RawIter::setPath(const SkPath& path) {
fPts = path.fPts.begin();
fVerbs = path.fVerbs.begin();
fVerbStop = path.fVerbs.end();
fPts = path.fPathRef->points();
fVerbs = path.fPathRef->verbs();
fVerbStop = path.fPathRef->verbsMemBegin();
fMoveTo.fX = fMoveTo.fY = 0;
fLastPt.fX = fLastPt.fY = 0;
}
@ -1682,8 +1709,9 @@ SkPath::Verb SkPath::RawIter::next(SkPoint pts[4]) {
return kDone_Verb;
}
unsigned verb = *fVerbs++;
const SkPoint* srcPts = fPts;
// fVerbs points one beyond next verb so decrement first.
unsigned verb = *(--fVerbs);
const SkPoint* srcPts = fPts;
switch (verb) {
case kMove_Verb:
@ -1729,16 +1757,23 @@ uint32_t SkPath::writeToMemory(void* storage) const {
SkDEBUGCODE(this->validate();)
if (NULL == storage) {
const int byteCount = 3 * sizeof(int32_t)
+ sizeof(SkPoint) * fPts.count()
+ sizeof(uint8_t) * fVerbs.count()
const int byteCount = sizeof(int32_t)
#if NEW_PICTURE_FORMAT
+ fPathRef->writeSize()
#else
+ 2 * sizeof(int32_t)
+ sizeof(SkPoint) * fPathRef->countPoints()
+ sizeof(uint8_t) * fPathRef->countVerbs()
#endif
+ sizeof(SkRect);
return SkAlign4(byteCount);
}
SkWBuffer buffer(storage);
buffer.write32(fPts.count());
buffer.write32(fVerbs.count());
#if !NEW_PICTURE_FORMAT
buffer.write32(fPathRef->countPoints());
buffer.write32(fPathRef->countVerbs());
#endif
// Call getBounds() to ensure (as a side-effect) that fBounds
// and fIsFinite are computed.
@ -1753,8 +1788,7 @@ uint32_t SkPath::writeToMemory(void* storage) const {
buffer.write32(packed);
buffer.write(fPts.begin(), sizeof(SkPoint) * fPts.count());
buffer.write(fVerbs.begin(), fVerbs.count());
fPathRef->writeToBuffer(&buffer);
buffer.write(&bounds, sizeof(bounds));
@ -1764,8 +1798,10 @@ uint32_t SkPath::writeToMemory(void* storage) const {
uint32_t SkPath::readFromMemory(const void* storage) {
SkRBuffer buffer(storage);
fPts.setCount(buffer.readS32());
fVerbs.setCount(buffer.readS32());
#if !NEW_PICTURE_FORMAT
int32_t pcount = buffer.readS32();
int32_t vcount = buffer.readS32();
#endif
uint32_t packed = buffer.readS32();
fIsFinite = (packed >> kIsFinite_SerializationShift) & 1;
@ -1774,8 +1810,11 @@ uint32_t SkPath::readFromMemory(const void* storage) {
fFillType = (packed >> kFillType_SerializationShift) & 0xFF;
fSegmentMask = (packed >> kSegmentMask_SerializationShift) & 0xFF;
buffer.read(fPts.begin(), sizeof(SkPoint) * fPts.count());
buffer.read(fVerbs.begin(), fVerbs.count());
#if NEW_PICTURE_FORMAT
fPathRef.reset(SkPathRef::CreateFromBuffer(&buffer));
#else
fPathRef.reset(SkPathRef::CreateFromBuffer(vcount, pcount, &buffer));
#endif
buffer.read(&fBounds, sizeof(fBounds));
fBoundsIsDirty = false;
@ -1839,16 +1878,14 @@ void SkPath::dump() const {
void SkPath::validate() const {
SkASSERT(this != NULL);
SkASSERT((fFillType & ~3) == 0);
fPts.validate();
fVerbs.validate();
if (!fBoundsIsDirty) {
SkRect bounds;
bool isFinite = compute_pt_bounds(&bounds, fPts);
bool isFinite = compute_pt_bounds(&bounds, *fPathRef.get());
SkASSERT(SkToBool(fIsFinite) == isFinite);
if (fPts.count() <= 1) {
if (fPathRef->countPoints() <= 1) {
// if we're empty, fBounds may be empty but translated, so we can't
// necessarily compare to bounds directly
// try path.addOval(2, 2, 2, 2) which is empty, but the bounds will
@ -1867,8 +1904,9 @@ void SkPath::validate() const {
}
uint32_t mask = 0;
for (int i = 0; i < fVerbs.count(); i++) {
switch (fVerbs[i]) {
const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbs();
for (int i = 0; i < fPathRef->countVerbs(); i++) {
switch (verbs[~i]) {
case kLine_Verb:
mask |= kLine_SegmentMask;
break;
@ -1877,6 +1915,15 @@ void SkPath::validate() const {
break;
case kCubic_Verb:
mask |= kCubic_SegmentMask;
case kMove_Verb: // these verbs aren't included in the segment mask.
case kClose_Verb:
break;
case kDone_Verb:
SkDEBUGFAIL("Done verb shouldn't be recorded.");
break;
default:
SkDEBUGFAIL("Unknown Verb");
break;
}
}
SkASSERT(mask == fSegmentMask);
@ -2015,7 +2062,7 @@ SkPath::Convexity SkPath::ComputeConvexity(const SkPath& path) {
class ContourIter {
public:
ContourIter(const SkTDArray<uint8_t>& verbs, const SkTDArray<SkPoint>& pts);
ContourIter(const SkPathRef& pathRef);
bool done() const { return fDone; }
// if !done() then these may be called
@ -2032,20 +2079,18 @@ private:
SkDEBUGCODE(int fContourCounter;)
};
ContourIter::ContourIter(const SkTDArray<uint8_t>& verbs,
const SkTDArray<SkPoint>& pts) {
fStopVerbs = verbs.begin() + verbs.count();
ContourIter::ContourIter(const SkPathRef& pathRef) {
fStopVerbs = pathRef.verbsMemBegin();
fDone = false;
fCurrPt = pts.begin();
fCurrVerb = verbs.begin();
fCurrPt = pathRef.points();
fCurrVerb = pathRef.verbs();
fCurrPtCount = 0;
SkDEBUGCODE(fContourCounter = 0;)
this->next();
}
void ContourIter::next() {
if (fCurrVerb >= fStopVerbs) {
if (fCurrVerb <= fStopVerbs) {
fDone = true;
}
if (fDone) {
@ -2055,12 +2100,12 @@ void ContourIter::next() {
// skip pts of prev contour
fCurrPt += fCurrPtCount;
SkASSERT(SkPath::kMove_Verb == fCurrVerb[0]);
SkASSERT(SkPath::kMove_Verb == fCurrVerb[~0]);
int ptCount = 1; // moveTo
const uint8_t* verbs = fCurrVerb;
for (++verbs; verbs < fStopVerbs; ++verbs) {
switch (*verbs) {
for (--verbs; verbs > fStopVerbs; --verbs) {
switch (verbs[~0]) {
case SkPath::kMove_Verb:
goto CONTOUR_END;
case SkPath::kLine_Verb:
@ -2237,7 +2282,7 @@ bool SkPath::cheapComputeDirection(Direction* dir) const {
// is unknown, so we don't call isConvex()
const Convexity conv = this->getConvexityOrUnknown();
ContourIter iter(fVerbs, fPts);
ContourIter iter(*fPathRef.get());
// initialize with our logical y-min
SkScalar ymax = this->getBounds().fTop;

531
src/core/SkPathRef.h Normal file
View File

@ -0,0 +1,531 @@
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathRef_DEFINED
#define SkPathRef_DEFINED
#include "SkRefCnt.h"
#include <stddef.h> // ptrdiff_t
// When we're ready to break the picture format. Changes:
// * Write genID.
// * SkPathRef read/write counts (which will change the field order)
// * SkPathRef reads/writes verbs backwards.
#define NEW_PICTURE_FORMAT 0
/**
* Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
* modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
* SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
* copy-on-write if the SkPathRef is shared by multipls SkPaths. The caller passes the Editor's
* constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
* constructor returns.
*
* The points and verbs are stored in a single allocation. The points are at the begining of the
* allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
* and verbs both grow into the middle of the allocation until the meet. To access verb i in the
* verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
* logical verb or the last verb in memory).
*/
class SkPathRef : public ::SkRefCnt {
public:
SK_DECLARE_INST_COUNT(SkPathRef);
class Editor {
public:
Editor(SkAutoTUnref<SkPathRef>* pathRef,
int incReserveVerbs = 0,
int incReservePoints = 0) {
if (pathRef->get()->getRefCnt() > 1) {
SkPathRef* copy = SkNEW(SkPathRef);
copy->copy(*pathRef->get(), incReserveVerbs, incReservePoints);
pathRef->reset(copy);
} else {
(*pathRef)->incReserve(incReserveVerbs, incReservePoints);
}
fPathRef = pathRef->get();
fPathRef->fGenerationID = 0;
SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
}
~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
/**
* Returns the array of points.
*/
SkPoint* points() { return fPathRef->fPoints; }
/**
* Gets the ith point. Shortcut for this->points() + i
*/
SkPoint* atPoint(int i) {
SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
return this->points() + i;
};
/**
* Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written.
*/
SkPoint* growForVerb(SkPath::Verb verb) {
fPathRef->validate();
return fPathRef->growForVerb(verb);
}
/**
* Allocates space for additional verbs and points and returns pointers to the new verbs and
* points. verbs will point one beyond the first new verb (index it using [~<i>]). pts points
* at the first new point (indexed normally [<i>]).
*/
void grow(int newVerbs, int newPts, uint8_t** verbs, SkPoint** pts) {
SkASSERT(NULL != verbs);
SkASSERT(NULL != pts);
fPathRef->validate();
int oldVerbCnt = fPathRef->fVerbCnt;
int oldPointCnt = fPathRef->fPointCnt;
SkASSERT(verbs && pts);
fPathRef->grow(newVerbs, newPts);
*verbs = fPathRef->fVerbs - oldVerbCnt;
*pts = fPathRef->fPoints + oldPointCnt;
fPathRef->validate();
}
/**
* Resets the path ref to a new verb and point count. The new verbs and points are
* uninitialized.
*/
void resetToSize(int newVerbCnt, int newPointCnt) {
fPathRef->resetToSize(newVerbCnt, newPointCnt);
}
/**
* Gets the path ref that is wrapped in the Editor.
*/
SkPathRef* pathRef() { return fPathRef; }
private:
SkPathRef* fPathRef;
};
public:
/**
* Gets a path ref with no verbs or points.
*/
static SkPathRef* CreateEmpty() {
static SkAutoTUnref<SkPathRef> gEmptyPathRef(SkNEW(SkPathRef));
gEmptyPathRef.get()->ref();
return gEmptyPathRef.get();
}
/**
* Transforms a path ref by a matrix, allocating a new one only if necessary.
*/
static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix) {
src.validate();
if (matrix.isIdentity()) {
if (dst->get() != &src) {
dst->reset(const_cast<SkPathRef*>(&src));
(*dst)->validate();
src.ref();
}
return;
}
int32_t rcnt = dst->get()->getRefCnt();
if (&src == dst->get() && 1 == rcnt) {
matrix.mapPoints((*dst)->fPoints, (*dst)->fPointCnt);
return;
} else if (rcnt > 1) {
dst->reset(SkNEW(SkPathRef));
}
(*dst)->resetToSize(src.fVerbCnt, src.fPointCnt);
memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t));
matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
(*dst)->validate();
}
#if NEW_PICTURE_FORMAT
static SkPathRef* CreateFromBuffer(SkRBuffer* buffer) {
SkPathRef* ref = SkNEW(SkPathRef);
ref->fGenerationID = buffer->readU32();
int32_t verbCount = buffer->readS32();
int32_t pointCount = buffer->readS32();
ref->resetToSize(verbCount, pointCount);
SkASSERT(verbCount == ref->countVerbs());
SkASSERT(pointCount == ref->countPoints());
buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t));
buffer->read(ref->fPoints, pointCount * sizeof(SkPoint));
return ref;
}
#else
static SkPathRef* CreateFromBuffer(int verbCount, int pointCount, SkRBuffer* buffer) {
SkPathRef* ref = SkNEW(SkPathRef);
ref->resetToSize(verbCount, pointCount);
SkASSERT(verbCount == ref->countVerbs());
SkASSERT(pointCount == ref->countPoints());
buffer->read(ref->fPoints, pointCount * sizeof(SkPoint));
for (int i = 0; i < verbCount; ++i) {
ref->fVerbs[~i] = buffer->readU8();
}
return ref;
}
#endif
/**
* Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
* repopulated with approximately the same number of verbs and points. A new path ref is created
* only if necessary.
*/
static void Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
if (1 == (*pathRef)->getRefCnt()) {
(*pathRef)->validate();
(*pathRef)->fVerbCnt = 0;
(*pathRef)->fPointCnt = 0;
(*pathRef)->fFreeSpace = (*pathRef)->currSize();
(*pathRef)->fGenerationID = 0;
(*pathRef)->validate();
} else {
int oldVCnt = (*pathRef)->countVerbs();
int oldPCnt = (*pathRef)->countPoints();
pathRef->reset(SkNEW(SkPathRef));
(*pathRef)->resetToSize(0, 0, oldVCnt, oldPCnt);
}
}
virtual ~SkPathRef() {
this->validate();
sk_free(fPoints);
}
int countPoints() const { this->validate(); return fPointCnt; }
int countVerbs() const { this->validate(); return fVerbCnt; }
/**
* Returns a pointer one beyond the first logical verb (last verb in memory order).
*/
const uint8_t* verbs() const { this->validate(); return fVerbs; }
/**
* Returns a const pointer to the first verb in memory (which is the last logical verb).
*/
const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
/**
* Returns a const pointer to the first point.
*/
const SkPoint* points() const { this->validate(); return fPoints; }
/**
* Shortcut for this->points() + this->countPoints()
*/
const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
/**
* Convenience methods for getting to a verb or point by index.
*/
uint8_t atVerb(int index) {
SkASSERT((unsigned) index < (unsigned) fVerbCnt);
return this->verbs()[~index];
}
const SkPoint& atPoint(int index) const {
SkASSERT((unsigned) index < (unsigned) fPointCnt);
return this->points()[index];
}
bool operator== (const SkPathRef& ref) const {
this->validate();
ref.validate();
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
#ifdef SK_RELEASE
if (genIDMatch) {
return true;
}
#endif
if (fPointCnt != ref.fPointCnt ||
fVerbCnt != ref.fVerbCnt) {
SkASSERT(!genIDMatch);
return false;
}
if (0 != memcmp(this->verbsMemBegin(),
ref.verbsMemBegin(),
ref.fVerbCnt * sizeof(uint8_t))) {
SkASSERT(!genIDMatch);
return false;
}
if (0 != memcmp(this->points(),
ref.points(),
ref.fPointCnt * sizeof(SkPoint))) {
SkASSERT(!genIDMatch);
return false;
}
// We've done the work to determine that these are equal. If either has a zero genID, copy
// the other's. If both are 0 then genID() will compute the next ID.
if (0 == fGenerationID) {
fGenerationID = ref.genID();
} else if (0 == ref.fGenerationID) {
ref.fGenerationID = this->genID();
}
return true;
}
/**
* Writes the path points and verbs to a buffer.
*/
#if NEW_PICTURE_FORMAT
void writeToBuffer(SkWBuffer* buffer) {
this->validate();
SkDEBUGCODE(size_t beforePos = buffer->pos();)
// TODO: write gen ID here. Problem: We don't know if we're cross process or not from
// SkWBuffer. Until this is fixed we write 0.
buffer->write32(0);
buffer->write32(this->fVerbCnt);
buffer->write32(this->fPointCnt);
buffer->write(this->verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
}
/**
* Gets the number of bytes that would be written in writeBuffer()
*/
uint32_t writeSize() {
return 3 * sizeof(uint32_t) + fVerbCnt * sizeof(uint8_t) + fPointCnt * sizeof(SkPoint);
}
#else
void writeToBuffer(SkWBuffer* buffer) {
this->validate();
buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
for (int i = 0; i < fVerbCnt; ++i) {
buffer->write8(fVerbs[~i]);
}
}
#endif
private:
SkPathRef() {
fPointCnt = 0;
fVerbCnt = 0;
fVerbs = NULL;
fPoints = NULL;
fFreeSpace = 0;
fGenerationID = kEmptyGenID;
SkDEBUGCODE(fEditorsAttached = 0;)
this->validate();
}
void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) {
this->validate();
this->resetToSize(ref.fVerbCnt, ref.fPointCnt,
additionalReserveVerbs, additionalReservePoints);
memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t));
memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
// We could call genID() here to force a real ID (instead of 0). However, if we're making
// a copy then presumably we intend to make a modification immediately afterwards.
fGenerationID = ref.fGenerationID;
this->validate();
}
/** Makes additional room but does not change the counts or change the genID */
void incReserve(int additionalVerbs, int additionalPoints) {
this->validate();
size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
this->makeSpace(space);
this->validate();
}
/** Resets the path ref with verbCount verbs and pointCount points, all unitialized. Also
* allocates space for reserveVerb additional verbs and reservePoints additional points.*/
void resetToSize(int verbCount, int pointCount, int reserveVerbs = 0, int reservePoints = 0) {
this->validate();
fGenerationID = 0;
size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
size_t minSize = newSize + newReserve;
ptrdiff_t sizeDelta = this->currSize() - minSize;
if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
sk_free(fPoints);
fPoints = NULL;
fVerbs = NULL;
fFreeSpace = 0;
fVerbCnt = 0;
fPointCnt = 0;
this->makeSpace(minSize);
fVerbCnt = verbCount;
fPointCnt = pointCount;
fFreeSpace -= newSize;
} else {
fPointCnt = pointCount;
fVerbCnt = verbCount;
fFreeSpace = this->currSize() - minSize;
}
this->validate();
}
/**
* Increases the verb count by newVerbs and the point count be newPoints. New verbs and points
* are uninitialized.
*/
void grow(int newVerbs, int newPoints) {
this->validate();
size_t space = newVerbs * sizeof(uint8_t) + newPoints * sizeof (SkPoint);
this->makeSpace(space);
fVerbCnt += newVerbs;
fPointCnt += newPoints;
fFreeSpace -= space;
this->validate();
}
/**
* Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are
* uninitialized.
*/
SkPoint* growForVerb(SkPath::Verb verb) {
this->validate();
int pCnt;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = 1;
break;
case SkPath::kLine_Verb:
pCnt = 1;
break;
case SkPath::kQuad_Verb:
pCnt = 2;
break;
case SkPath::kCubic_Verb:
pCnt = 3;
break;
default:
pCnt = 0;
}
size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
this->fVerbs[~fVerbCnt] = verb;
SkPoint* ret = fPoints + fPointCnt;
fVerbCnt += 1;
fPointCnt += pCnt;
fFreeSpace -= space;
this->validate();
return ret;
}
/**
* Ensures that the free space available in the path ref is >= size. The verb and point counts
* are not changed.
*/
void makeSpace(size_t size) {
this->validate();
ptrdiff_t growSize = size - fFreeSpace;
if (growSize <= 0) {
return;
}
size_t oldSize = this->currSize();
// round to next multiple of 8 bytes
growSize = (growSize + 7) & ~static_cast<size_t>(7);
// we always at least double the allocation
if (static_cast<size_t>(growSize) < oldSize) {
growSize = oldSize;
}
if (growSize < kMinSize) {
growSize = kMinSize;
}
size_t newSize = oldSize + growSize;
// Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
// encapsulate this.
fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
void* newVerbsDst = reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
void* oldVerbsSrc = reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
fFreeSpace += growSize;
this->validate();
}
/**
* Private, non-const-ptr version of the public function verbsMemBegin().
*/
uint8_t* verbsMemWritable() {
this->validate();
return fVerbs - fVerbCnt;
}
/**
* Gets the total amount of space allocated for verbs, points, and reserve.
*/
size_t currSize() const {
return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
}
/**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
* same ID then they have the same verbs and points. However, two path refs may have the same
* contents but different genIDs. Zero is reserved and means an ID has not yet been determined
* for the path ref.
*/
int32_t genID() const {
SkDEBUGCODE(SkASSERT(!fEditorsAttached));
if (!fGenerationID) {
if (0 == fPointCnt && 0 == fVerbCnt) {
fGenerationID = kEmptyGenID;
} else {
static int32_t gPathRefGenerationID;
// do a loop in case our global wraps around, as we never want to return a 0 or the
// empty ID
do {
fGenerationID = sk_atomic_inc(&gPathRefGenerationID) + 1;
} while (fGenerationID <= kEmptyGenID);
}
}
return fGenerationID;
}
void validate() const {
SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0);
SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0);
SkASSERT((NULL == fPoints) == (NULL == fVerbs));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && fPointCnt));
SkASSERT(!(NULL == fVerbs && fVerbCnt));
SkASSERT(this->currSize() ==
fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt);
}
enum {
kMinSize = 256,
};
SkPoint* fPoints; // points to begining of the allocation
uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards)
int fVerbCnt;
int fPointCnt;
size_t fFreeSpace; // redundant but saves computation
enum {
kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
};
mutable int32_t fGenerationID;
SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
typedef SkRefCnt INHERITED;
};
SK_DEFINE_INST_COUNT(SkPathRef);
#endif