Unify some SkNx code
- one base case and one N=1 case instead of two each (or three with doubles) - use SkNx_cast instead of FromBytes/toBytes - 4-at-a-time Sk4f::ToBytes becomes a special standalone Sk4f_ToBytes If I did everything right, this'll be perf- and pixel- neutral. https://gold.skia.org/search2?issue=1526523003&unt=true&query=source_type%3Dgm&master=false BUG=skia: CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot Review URL: https://codereview.chromium.org/1526523003
This commit is contained in:
parent
4e4155df10
commit
6f37b4a475
@ -33,8 +33,8 @@ struct Sk4fBytesRoundtripBench : public Benchmark {
|
||||
for (int i = 0; i < loops; i++) {
|
||||
uint32_t color = lcg_rand(&seed),
|
||||
back;
|
||||
auto f = Sk4f::FromBytes((const uint8_t*)&color);
|
||||
f.toBytes((uint8_t*)&back);
|
||||
auto f = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&color));
|
||||
SkNx_cast<uint8_t>(f).store((uint8_t*)&back);
|
||||
junk ^= back;
|
||||
}
|
||||
blackhole ^= junk;
|
||||
@ -62,7 +62,7 @@ struct Sk4fGradientBench : public Benchmark {
|
||||
c = b + dcdx,
|
||||
d = c + dcdx;
|
||||
for (size_t i = 0; i < SK_ARRAY_COUNT(fDevice); i += 4) {
|
||||
Sk4f::ToBytes((uint8_t*)(fDevice+i), a, b, c, d);
|
||||
Sk4f_ToBytes((uint8_t*)(fDevice+i), a, b, c, d);
|
||||
a = a + dcdx4;
|
||||
b = b + dcdx4;
|
||||
c = c + dcdx4;
|
||||
|
220
src/core/SkNx.h
220
src/core/SkNx.h
@ -9,8 +9,7 @@
|
||||
#define SkNx_DEFINED
|
||||
|
||||
|
||||
#define SKNX_NO_SIMDx // Remove the x to disable SIMD for all SkNx types.
|
||||
|
||||
//#define SKNX_NO_SIMD
|
||||
|
||||
#include "SkScalar.h"
|
||||
#include "SkTypes.h"
|
||||
@ -25,7 +24,8 @@
|
||||
namespace {
|
||||
|
||||
// The default implementations just fall back on a pair of size N/2.
|
||||
|
||||
// These support the union of operations we might do to ints and floats, but
|
||||
// platform specializations might support fewer (e.g. no float <<, no int /).
|
||||
template <int N, typename T>
|
||||
class SkNx {
|
||||
public:
|
||||
@ -55,14 +55,33 @@ public:
|
||||
SkNx operator + (const SkNx& o) const { return SkNx(fLo + o.fLo, fHi + o.fHi); }
|
||||
SkNx operator - (const SkNx& o) const { return SkNx(fLo - o.fLo, fHi - o.fHi); }
|
||||
SkNx operator * (const SkNx& o) const { return SkNx(fLo * o.fLo, fHi * o.fHi); }
|
||||
SkNx operator / (const SkNx& o) const { return SkNx(fLo / o.fLo, fHi / o.fHi); }
|
||||
|
||||
SkNx operator << (int bits) const { return SkNx(fLo << bits, fHi << bits); }
|
||||
SkNx operator >> (int bits) const { return SkNx(fLo >> bits, fHi >> bits); }
|
||||
|
||||
SkNx operator == (const SkNx& o) const { return SkNx(fLo == o.fLo, fHi == o.fHi); }
|
||||
SkNx operator != (const SkNx& o) const { return SkNx(fLo != o.fLo, fHi != o.fHi); }
|
||||
SkNx operator < (const SkNx& o) const { return SkNx(fLo < o.fLo, fHi < o.fHi); }
|
||||
SkNx operator > (const SkNx& o) const { return SkNx(fLo > o.fLo, fHi > o.fHi); }
|
||||
SkNx operator <= (const SkNx& o) const { return SkNx(fLo <= o.fLo, fHi <= o.fHi); }
|
||||
SkNx operator >= (const SkNx& o) const { return SkNx(fLo >= o.fLo, fHi >= o.fHi); }
|
||||
|
||||
static SkNx Min(const SkNx& a, const SkNx& b) {
|
||||
return SkNx(SkNx<N/2, T>::Min(a.fLo, b.fLo), SkNx<N/2, T>::Min(a.fHi, b.fHi));
|
||||
}
|
||||
SkNx operator < (const SkNx& o) const { return SkNx(fLo < o.fLo, fHi < o.fHi); }
|
||||
static SkNx Max(const SkNx& a, const SkNx& b) {
|
||||
return SkNx(SkNx<N/2, T>::Max(a.fLo, b.fLo), SkNx<N/2, T>::Max(a.fHi, b.fHi));
|
||||
}
|
||||
|
||||
SkNx sqrt() const { return SkNx(fLo.sqrt(), fHi.sqrt()); }
|
||||
// Generally, increasing precision, increasing cost.
|
||||
SkNx rsqrt0() const { return SkNx(fLo.rsqrt0(), fHi.rsqrt0()); }
|
||||
SkNx rsqrt1() const { return SkNx(fLo.rsqrt1(), fHi.rsqrt1()); }
|
||||
SkNx rsqrt2() const { return SkNx(fLo.rsqrt2(), fHi.rsqrt2()); }
|
||||
|
||||
SkNx invert() const { return SkNx(fLo. invert(), fHi. invert()); }
|
||||
SkNx approxInvert() const { return SkNx(fLo.approxInvert(), fHi.approxInvert()); }
|
||||
|
||||
template <int k> T kth() const {
|
||||
SkASSERT(0 <= k && k < N);
|
||||
@ -81,97 +100,7 @@ protected:
|
||||
SkNx<N/2, T> fLo, fHi;
|
||||
};
|
||||
|
||||
template <int N>
|
||||
class SkNx<N,float> {
|
||||
public:
|
||||
SkNx() {}
|
||||
SkNx(float val) : fLo(val), fHi(val) {}
|
||||
static SkNx Load(const float vals[N]) {
|
||||
return SkNx(SkNx<N/2, float>::Load(vals), SkNx<N/2, float>::Load(vals+N/2));
|
||||
}
|
||||
// FromBytes() and toBytes() specializations may assume their argument is N-byte aligned.
|
||||
// E.g. Sk4f::FromBytes() may assume it's reading from a 4-byte-aligned pointer.
|
||||
// Converts [0,255] bytes to [0.0, 255.0] floats.
|
||||
static SkNx FromBytes(const uint8_t bytes[N]) {
|
||||
return SkNx(SkNx<N/2, float>::FromBytes(bytes), SkNx<N/2, float>::FromBytes(bytes+N/2));
|
||||
}
|
||||
|
||||
SkNx(float a, float b) : fLo(a), fHi(b) { REQUIRE(N==2); }
|
||||
SkNx(float a, float b, float c, float d) : fLo(a,b), fHi(c,d) { REQUIRE(N==4); }
|
||||
SkNx(float a, float b, float c, float d, float e, float f, float g, float h)
|
||||
: fLo(a,b,c,d)
|
||||
, fHi(e,f,g,h) { REQUIRE(N==8); }
|
||||
|
||||
void store(float vals[N]) const {
|
||||
fLo.store(vals);
|
||||
fHi.store(vals+N/2);
|
||||
}
|
||||
// Please see note on FromBytes().
|
||||
// Clamps to [0.0,255.0] floats and truncates to [0,255] bytes.
|
||||
void toBytes(uint8_t bytes[N]) const {
|
||||
fLo.toBytes(bytes);
|
||||
fHi.toBytes(bytes+N/2);
|
||||
}
|
||||
|
||||
// Some implementations can do this faster.
|
||||
static void ToBytes(uint8_t bytes[4*N],
|
||||
const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
|
||||
a.toBytes(bytes+0*N);
|
||||
b.toBytes(bytes+1*N);
|
||||
c.toBytes(bytes+2*N);
|
||||
d.toBytes(bytes+3*N);
|
||||
}
|
||||
|
||||
SkNx operator + (const SkNx& o) const { return SkNx(fLo + o.fLo, fHi + o.fHi); }
|
||||
SkNx operator - (const SkNx& o) const { return SkNx(fLo - o.fLo, fHi - o.fHi); }
|
||||
SkNx operator * (const SkNx& o) const { return SkNx(fLo * o.fLo, fHi * o.fHi); }
|
||||
SkNx operator / (const SkNx& o) const { return SkNx(fLo / o.fLo, fHi / o.fHi); }
|
||||
|
||||
SkNx operator == (const SkNx& o) const { return SkNx(fLo == o.fLo, fHi == o.fHi); }
|
||||
SkNx operator != (const SkNx& o) const { return SkNx(fLo != o.fLo, fHi != o.fHi); }
|
||||
SkNx operator < (const SkNx& o) const { return SkNx(fLo < o.fLo, fHi < o.fHi); }
|
||||
SkNx operator > (const SkNx& o) const { return SkNx(fLo > o.fLo, fHi > o.fHi); }
|
||||
SkNx operator <= (const SkNx& o) const { return SkNx(fLo <= o.fLo, fHi <= o.fHi); }
|
||||
SkNx operator >= (const SkNx& o) const { return SkNx(fLo >= o.fLo, fHi >= o.fHi); }
|
||||
|
||||
static SkNx Min(const SkNx& l, const SkNx& r) {
|
||||
return SkNx(SkNx<N/2, float>::Min(l.fLo, r.fLo), SkNx<N/2, float>::Min(l.fHi, r.fHi));
|
||||
}
|
||||
static SkNx Max(const SkNx& l, const SkNx& r) {
|
||||
return SkNx(SkNx<N/2, float>::Max(l.fLo, r.fLo), SkNx<N/2, float>::Max(l.fHi, r.fHi));
|
||||
}
|
||||
|
||||
SkNx sqrt() const { return SkNx(fLo. sqrt(), fHi. sqrt()); }
|
||||
|
||||
// Generally, increasing precision, increasing cost.
|
||||
SkNx rsqrt0() const { return SkNx(fLo.rsqrt0(), fHi.rsqrt0()); }
|
||||
SkNx rsqrt1() const { return SkNx(fLo.rsqrt1(), fHi.rsqrt1()); }
|
||||
SkNx rsqrt2() const { return SkNx(fLo.rsqrt2(), fHi.rsqrt2()); }
|
||||
|
||||
SkNx invert() const { return SkNx(fLo. invert(), fHi. invert()); }
|
||||
SkNx approxInvert() const { return SkNx(fLo.approxInvert(), fHi.approxInvert()); }
|
||||
|
||||
template <int k> float kth() const {
|
||||
SkASSERT(0 <= k && k < N);
|
||||
return k < N/2 ? fLo.template kth<k>() : fHi.template kth<k-N/2>();
|
||||
}
|
||||
|
||||
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
|
||||
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
|
||||
SkNx thenElse(const SkNx& t, const SkNx& e) const {
|
||||
return SkNx(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi));
|
||||
}
|
||||
|
||||
protected:
|
||||
REQUIRE(0 == (N & (N-1)));
|
||||
SkNx(const SkNx<N/2, float>& lo, const SkNx<N/2, float>& hi) : fLo(lo), fHi(hi) {}
|
||||
|
||||
SkNx<N/2, float> fLo, fHi;
|
||||
};
|
||||
|
||||
|
||||
// Bottom out the default implementations with scalars when nothing's been specialized.
|
||||
|
||||
template <typename T>
|
||||
class SkNx<1,T> {
|
||||
public:
|
||||
@ -190,42 +119,11 @@ public:
|
||||
SkNx operator + (const SkNx& o) const { return SkNx(fVal + o.fVal); }
|
||||
SkNx operator - (const SkNx& o) const { return SkNx(fVal - o.fVal); }
|
||||
SkNx operator * (const SkNx& o) const { return SkNx(fVal * o.fVal); }
|
||||
SkNx operator / (const SkNx& o) const { return SkNx(fVal / o.fVal); }
|
||||
|
||||
SkNx operator << (int bits) const { return SkNx(fVal << bits); }
|
||||
SkNx operator >> (int bits) const { return SkNx(fVal >> bits); }
|
||||
|
||||
static SkNx Min(const SkNx& a, const SkNx& b) { return SkNx(SkTMin(a.fVal, b.fVal)); }
|
||||
SkNx operator <(const SkNx& o) const { return SkNx(fVal < o.fVal); }
|
||||
|
||||
template <int k> T kth() const {
|
||||
SkASSERT(0 == k);
|
||||
return fVal;
|
||||
}
|
||||
|
||||
bool allTrue() const { return fVal; }
|
||||
bool anyTrue() const { return fVal; }
|
||||
SkNx thenElse(const SkNx& t, const SkNx& e) const { return fVal ? t : e; }
|
||||
|
||||
protected:
|
||||
T fVal;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<1,float> {
|
||||
public:
|
||||
SkNx() {}
|
||||
SkNx(float val) : fVal(val) {}
|
||||
static SkNx Load(const float vals[1]) { return SkNx(vals[0]); }
|
||||
static SkNx FromBytes(const uint8_t bytes[1]) { return SkNx((float)bytes[0]); }
|
||||
|
||||
void store(float vals[1]) const { vals[0] = fVal; }
|
||||
void toBytes(uint8_t bytes[1]) const { bytes[0] = (uint8_t)(SkTMin(fVal, 255.0f)); }
|
||||
|
||||
SkNx operator + (const SkNx& o) const { return SkNx(fVal + o.fVal); }
|
||||
SkNx operator - (const SkNx& o) const { return SkNx(fVal - o.fVal); }
|
||||
SkNx operator * (const SkNx& o) const { return SkNx(fVal * o.fVal); }
|
||||
SkNx operator / (const SkNx& o) const { return SkNx(fVal / o.fVal); }
|
||||
|
||||
SkNx operator == (const SkNx& o) const { return SkNx(fVal == o.fVal); }
|
||||
SkNx operator != (const SkNx& o) const { return SkNx(fVal != o.fVal); }
|
||||
SkNx operator < (const SkNx& o) const { return SkNx(fVal < o.fVal); }
|
||||
@ -233,33 +131,31 @@ public:
|
||||
SkNx operator <= (const SkNx& o) const { return SkNx(fVal <= o.fVal); }
|
||||
SkNx operator >= (const SkNx& o) const { return SkNx(fVal >= o.fVal); }
|
||||
|
||||
static SkNx Min(const SkNx& l, const SkNx& r) { return SkNx(SkTMin(l.fVal, r.fVal)); }
|
||||
static SkNx Max(const SkNx& l, const SkNx& r) { return SkNx(SkTMax(l.fVal, r.fVal)); }
|
||||
static SkNx Min(const SkNx& a, const SkNx& b) { return SkNx(SkTMin(a.fVal, b.fVal)); }
|
||||
static SkNx Max(const SkNx& a, const SkNx& b) { return SkNx(SkTMax(a.fVal, b.fVal)); }
|
||||
|
||||
SkNx sqrt() const { return SkNx(sqrtf(fVal)); }
|
||||
SkNx rsqrt0() const { return SkNx(1.0f / sqrtf(fVal)); }
|
||||
SkNx sqrt () const { return SkNx(Sqrt(fVal)); }
|
||||
SkNx rsqrt0() const { return this->sqrt().invert(); }
|
||||
SkNx rsqrt1() const { return this->rsqrt0(); }
|
||||
SkNx rsqrt2() const { return this->rsqrt1(); }
|
||||
|
||||
SkNx invert() const { return SkNx(1.0f / fVal); }
|
||||
SkNx invert() const { return SkNx(1) / SkNx(fVal); }
|
||||
SkNx approxInvert() const { return this->invert(); }
|
||||
|
||||
template <int k> float kth() const {
|
||||
SkASSERT(k == 0);
|
||||
template <int k> T kth() const {
|
||||
SkASSERT(0 == k);
|
||||
return fVal;
|
||||
}
|
||||
|
||||
bool allTrue() const { return this->pun() != 0; }
|
||||
bool anyTrue() const { return this->pun() != 0; }
|
||||
SkNx thenElse(const SkNx& t, const SkNx& e) const { return this->pun() ? t : e; }
|
||||
bool allTrue() const { return fVal != 0; }
|
||||
bool anyTrue() const { return fVal != 0; }
|
||||
SkNx thenElse(const SkNx& t, const SkNx& e) const { return fVal != 0 ? t : e; }
|
||||
|
||||
protected:
|
||||
uint32_t pun() const {
|
||||
union { float f; uint32_t i; } pun = { fVal };
|
||||
return pun.i;
|
||||
}
|
||||
static double Sqrt(double val) { return ::sqrt (val); }
|
||||
static float Sqrt(float val) { return ::sqrtf(val); }
|
||||
|
||||
float fVal;
|
||||
T fVal;
|
||||
};
|
||||
|
||||
// This default implementation can be specialized by ../opts/SkNx_foo.h
|
||||
@ -296,7 +192,7 @@ SkNx<N,D> SkNx_cast_fallback(const SkNx<N,S>& src, SkIntSequence<Ix...>) {
|
||||
|
||||
// This is a generic cast between two SkNx with the same number of elements N. E.g.
|
||||
// Sk4b bs = ...; // Load 4 bytes.
|
||||
// Sk4f fs = SkNx_cast<float>(bs); // (This will replace SkNf::FromBytes() one day.)
|
||||
// Sk4f fs = SkNx_cast<float>(bs); // Cast each byte to a float.
|
||||
// Sk4i is = SkNx_cast<int>(fs); // Cast each float to int.
|
||||
// This can be specialized in ../opts/SkNx_foo.h if there's a better platform-specific cast.
|
||||
template <typename D, typename S, int N>
|
||||
@ -306,20 +202,6 @@ SkNx<N,D> SkNx_cast(const SkNx<N,S>& src) {
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
// Include platform specific specializations if available.
|
||||
#ifndef SKNX_NO_SIMD
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
|
||||
#include "../opts/SkNx_avx.h"
|
||||
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
#include "../opts/SkNx_sse.h"
|
||||
#elif defined(SK_ARM_HAS_NEON)
|
||||
#include "../opts/SkNx_neon.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#undef REQUIRE
|
||||
|
||||
typedef SkNx<2, float> Sk2f;
|
||||
typedef SkNx<2, float> Sk2s;
|
||||
typedef SkNx<4, float> Sk4f;
|
||||
@ -327,10 +209,34 @@ typedef SkNx<4, float> Sk4s;
|
||||
typedef SkNx<8, float> Sk8f;
|
||||
typedef SkNx<8, float> Sk8s;
|
||||
|
||||
typedef SkNx<8, uint16_t> Sk8h;
|
||||
typedef SkNx< 4, uint16_t> Sk4h;
|
||||
typedef SkNx< 8, uint16_t> Sk8h;
|
||||
typedef SkNx<16, uint16_t> Sk16h;
|
||||
|
||||
typedef SkNx< 4, uint8_t> Sk4b;
|
||||
typedef SkNx< 8, uint8_t> Sk8b;
|
||||
typedef SkNx<16, uint8_t> Sk16b;
|
||||
|
||||
typedef SkNx<4, int> Sk4i;
|
||||
|
||||
// Include platform specific specializations if available.
|
||||
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
|
||||
#include "../opts/SkNx_avx.h"
|
||||
#elif !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
||||
#include "../opts/SkNx_sse.h"
|
||||
#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
|
||||
#include "../opts/SkNx_neon.h"
|
||||
#else
|
||||
static inline
|
||||
void Sk4f_ToBytes(uint8_t p[16], const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
|
||||
SkNx_cast<uint8_t>(a).store(p+ 0);
|
||||
SkNx_cast<uint8_t>(b).store(p+ 4);
|
||||
SkNx_cast<uint8_t>(c).store(p+ 8);
|
||||
SkNx_cast<uint8_t>(d).store(p+12);
|
||||
}
|
||||
#endif
|
||||
|
||||
#undef REQUIRE
|
||||
|
||||
|
||||
#endif//SkNx_DEFINED
|
||||
|
@ -258,7 +258,7 @@ static Sk4f clamp_0_1(const Sk4f& x) {
|
||||
|
||||
static SkPMColor round(const Sk4f& x) {
|
||||
SkPMColor c;
|
||||
(x * Sk4f(255) + Sk4f(0.5f)).toBytes((uint8_t*)&c);
|
||||
SkNx_cast<uint8_t>(x * Sk4f(255) + Sk4f(0.5f)).store((uint8_t*)&c);
|
||||
return c;
|
||||
}
|
||||
|
||||
@ -296,7 +296,7 @@ void SkColorMatrixFilter::filterSpan(const SkPMColor src[], int count, SkPMColor
|
||||
continue;
|
||||
}
|
||||
|
||||
Sk4f srcf = Sk4f::FromBytes((const uint8_t*)&src_c) * Sk4f(1.0f/255);
|
||||
Sk4f srcf = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&src_c)) * Sk4f(1.0f/255);
|
||||
|
||||
if (0xFF != SkGetPackedA32(src_c)) {
|
||||
srcf = unpremul(srcf);
|
||||
|
@ -150,7 +150,7 @@ SkLinearGradient::LinearGradientContext::LinearGradientContext(
|
||||
const Sk4f scale(1, 1, 1, paintAlpha);
|
||||
for (int i = 0; i < count; ++i) {
|
||||
uint32_t c = SkSwizzle_Color_to_PMColor(shader.fOrigColors[i]);
|
||||
rec[i].fColor = Sk4f::FromBytes((const uint8_t*)&c) * scale;
|
||||
rec[i].fColor = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&c)) * scale;
|
||||
if (i > 0) {
|
||||
SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
|
||||
}
|
||||
@ -162,7 +162,7 @@ SkLinearGradient::LinearGradientContext::LinearGradientContext(
|
||||
for (int i = 0; i < count; ++i) {
|
||||
SkPMColor pmc = SkPreMultiplyColor(shader.fOrigColors[i]);
|
||||
pmc = SkAlphaMulQ(pmc, alphaScale);
|
||||
rec[i].fColor = Sk4f::FromBytes((const uint8_t*)&pmc);
|
||||
rec[i].fColor = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&pmc));
|
||||
if (i > 0) {
|
||||
SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
|
||||
}
|
||||
@ -699,7 +699,7 @@ find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[], float ti
|
||||
|
||||
template <bool apply_alpha> SkPMColor trunc_from_255(const Sk4f& x) {
|
||||
SkPMColor c;
|
||||
x.toBytes((uint8_t*)&c);
|
||||
SkNx_cast<uint8_t>(x).store((uint8_t*)&c);
|
||||
if (apply_alpha) {
|
||||
c = SkPreMultiplyARGB(SkGetPackedA32(c), SkGetPackedR32(c),
|
||||
SkGetPackedG32(c), SkGetPackedB32(c));
|
||||
@ -751,7 +751,7 @@ template <bool apply_alpha> void ramp(SkPMColor dstC[], int n, const Sk4f& c, co
|
||||
Sk4f cd3 = cd1 + dc2;
|
||||
while (n >= 4) {
|
||||
if (!apply_alpha) {
|
||||
Sk4f::ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3);
|
||||
Sk4f_ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3);
|
||||
dstC += 4;
|
||||
} else {
|
||||
*dstC++ = trunc_from_255<apply_alpha>(cd0);
|
||||
|
@ -307,7 +307,7 @@ void shadeSpan_radial_clamp2(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar
|
||||
dR = dR + ddR;
|
||||
|
||||
uint8_t fi[4];
|
||||
dist.toBytes(fi);
|
||||
SkNx_cast<uint8_t>(dist).store(fi);
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
*dstC++ = cache[toggle + fi[i]];
|
||||
@ -319,7 +319,7 @@ void shadeSpan_radial_clamp2(SkScalar sfx, SkScalar sdx, SkScalar sfy, SkScalar
|
||||
Sk4f dist = Sk4f::Min(fast_sqrt(R), max);
|
||||
|
||||
uint8_t fi[4];
|
||||
dist.toBytes(fi);
|
||||
SkNx_cast<uint8_t>(dist).store(fi);
|
||||
for (int i = 0; i < count; i++) {
|
||||
*dstC++ = cache[toggle + fi[i]];
|
||||
toggle = next_dither_toggle(toggle);
|
||||
|
@ -59,10 +59,10 @@ void color_cube_filter_span(const SkPMColor src[],
|
||||
const SkColor lutColor10 = colorCube[ix + i10];
|
||||
const SkColor lutColor11 = colorCube[ix + i11];
|
||||
|
||||
Sk4f sum = Sk4f::FromBytes((const uint8_t*)&lutColor00) * g0b0;
|
||||
sum = sum + Sk4f::FromBytes((const uint8_t*)&lutColor01) * g0b1;
|
||||
sum = sum + Sk4f::FromBytes((const uint8_t*)&lutColor10) * g1b0;
|
||||
sum = sum + Sk4f::FromBytes((const uint8_t*)&lutColor11) * g1b1;
|
||||
Sk4f sum = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&lutColor00)) * g0b0;
|
||||
sum = sum + SkNx_cast<float>(Sk4b::Load((const uint8_t*)&lutColor01)) * g0b1;
|
||||
sum = sum + SkNx_cast<float>(Sk4b::Load((const uint8_t*)&lutColor10)) * g1b0;
|
||||
sum = sum + SkNx_cast<float>(Sk4b::Load((const uint8_t*)&lutColor11)) * g1b1;
|
||||
color = color + sum * Sk4f((float)colorToFactors[x][r]);
|
||||
}
|
||||
if (a != 255) {
|
||||
@ -74,7 +74,7 @@ void color_cube_filter_span(const SkPMColor src[],
|
||||
color = SkNx_shuffle<2,1,0,3>(color);
|
||||
#endif
|
||||
uint8_t* dstBytes = (uint8_t*)(dst+i);
|
||||
color.toBytes(dstBytes);
|
||||
SkNx_cast<uint8_t>(color).store(dstBytes);
|
||||
dstBytes[SK_A32_SHIFT/8] = a;
|
||||
}
|
||||
}
|
||||
|
@ -26,27 +26,10 @@ public:
|
||||
SkNx(float val) : fVec(_mm256_set1_ps(val)) {}
|
||||
static SkNx Load(const float vals[8]) { return _mm256_loadu_ps(vals); }
|
||||
|
||||
static SkNx FromBytes(const uint8_t bytes[8]) {
|
||||
__m128i fix8 = _mm_loadl_epi64((const __m128i*)bytes),
|
||||
fix16 = _mm_unpacklo_epi8 (fix8 , _mm_setzero_si128()),
|
||||
lo32 = _mm_unpacklo_epi16(fix16, _mm_setzero_si128()),
|
||||
hi32 = _mm_unpackhi_epi16(fix16, _mm_setzero_si128());
|
||||
__m256i fix32 = _mm256_insertf128_si256(_mm256_castsi128_si256(lo32), hi32, 1);
|
||||
return _mm256_cvtepi32_ps(fix32);
|
||||
}
|
||||
|
||||
SkNx(float a, float b, float c, float d,
|
||||
float e, float f, float g, float h) : fVec(_mm256_setr_ps(a,b,c,d,e,f,g,h)) {}
|
||||
|
||||
void store(float vals[8]) const { _mm256_storeu_ps(vals, fVec); }
|
||||
void toBytes(uint8_t bytes[8]) const {
|
||||
__m256i fix32 = _mm256_cvttps_epi32(fVec);
|
||||
__m128i lo32 = _mm256_extractf128_si256(fix32, 0),
|
||||
hi32 = _mm256_extractf128_si256(fix32, 1),
|
||||
fix16 = _mm_packus_epi32(lo32, hi32),
|
||||
fix8 = _mm_packus_epi16(fix16, fix16);
|
||||
_mm_storel_epi64((__m128i*)bytes, fix8);
|
||||
}
|
||||
|
||||
SkNx operator + (const SkNx& o) const { return _mm256_add_ps(fVec, o.fVec); }
|
||||
SkNx operator - (const SkNx& o) const { return _mm256_sub_ps(fVec, o.fVec); }
|
||||
@ -87,6 +70,25 @@ public:
|
||||
__m256 fVec;
|
||||
};
|
||||
|
||||
template<> inline Sk8b SkNx_cast<uint8_t, float, 8>(const Sk8f& src) {
|
||||
__m256i _32 = _mm256_cvttps_epi32(src.fVec);
|
||||
__m128i lo = _mm256_extractf128_si256(_32, 0),
|
||||
hi = _mm256_extractf128_si256(_32, 1),
|
||||
_16 = _mm_packus_epi32(lo, hi);
|
||||
return _mm_packus_epi16(_16, _16);
|
||||
}
|
||||
|
||||
template<> inline Sk8f SkNx_cast<float, uint8_t, 8>(const Sk8b& src) {
|
||||
/* TODO lo = _mm_cvtepu8_epi32(src.fVec),
|
||||
* hi = _mm_cvtepu8_epi32(_mm_srli_si128(src.fVec, 4))
|
||||
*/
|
||||
__m128i _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()),
|
||||
lo = _mm_unpacklo_epi16(_16, _mm_setzero_si128()),
|
||||
hi = _mm_unpackhi_epi16(_16, _mm_setzero_si128());
|
||||
__m256i _32 = _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);
|
||||
return _mm256_cvtepi32_ps(_32);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif//SkNx_avx_DEFINED
|
||||
|
@ -150,31 +150,9 @@ public:
|
||||
SkNx() {}
|
||||
SkNx(float val) : fVec(vdupq_n_f32(val)) {}
|
||||
static SkNx Load(const float vals[4]) { return vld1q_f32(vals); }
|
||||
static SkNx FromBytes(const uint8_t vals[4]) {
|
||||
uint8x8_t fix8 = (uint8x8_t)vld1_dup_u32((const uint32_t*)vals);
|
||||
uint16x8_t fix8_16 = vmovl_u8(fix8);
|
||||
uint32x4_t fix8_32 = vmovl_u16(vget_low_u16(fix8_16));
|
||||
return SkNx(vcvtq_f32_u32(fix8_32));
|
||||
}
|
||||
|
||||
SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
|
||||
|
||||
void store(float vals[4]) const { vst1q_f32(vals, fVec); }
|
||||
void toBytes(uint8_t bytes[4]) const {
|
||||
uint32x4_t fix8_32 = vcvtq_u32_f32(fVec);
|
||||
uint16x4_t fix8_16 = vqmovn_u32(fix8_32);
|
||||
uint8x8_t fix8 = vqmovn_u16(vcombine_u16(fix8_16, vdup_n_u16(0)));
|
||||
vst1_lane_u32((uint32_t*)bytes, (uint32x2_t)fix8, 0);
|
||||
}
|
||||
|
||||
static void ToBytes(uint8_t bytes[16],
|
||||
const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
|
||||
vst1q_u8(bytes, vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec),
|
||||
(uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0],
|
||||
vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec),
|
||||
(uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]);
|
||||
}
|
||||
|
||||
SkNx approxInvert() const {
|
||||
float32x4_t est0 = vrecpeq_f32(fVec),
|
||||
est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
|
||||
@ -287,6 +265,24 @@ public:
|
||||
uint16x8_t fVec;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<4, uint8_t> {
|
||||
public:
|
||||
SkNx(const uint8x8_t& vec) : fVec(vec) {}
|
||||
|
||||
SkNx() {}
|
||||
static SkNx Load(const uint8_t vals[4]) {
|
||||
return (uint8x8_t)vld1_dup_u32((const uint32_t*)vals);
|
||||
}
|
||||
void store(uint8_t vals[4]) const {
|
||||
return vst1_lane_u32((uint32_t*)vals, (uint32x2_t)fVec, 0);
|
||||
}
|
||||
|
||||
// TODO as needed
|
||||
|
||||
uint8x8_t fVec;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<16, uint8_t> {
|
||||
public:
|
||||
@ -329,11 +325,30 @@ public:
|
||||
#undef SHIFT16
|
||||
#undef SHIFT8
|
||||
|
||||
template<>
|
||||
inline SkNx<4, int> SkNx_cast<int, float, 4>(const SkNx<4, float>& src) {
|
||||
template<> inline Sk4i SkNx_cast<int, float, 4>(const Sk4f& src) {
|
||||
return vcvtq_s32_f32(src.fVec);
|
||||
}
|
||||
|
||||
template<> inline Sk4b SkNx_cast<uint8_t, float, 4>(const Sk4f& src) {
|
||||
uint32x4_t _32 = vcvtq_u32_f32(src.fVec);
|
||||
uint16x4_t _16 = vqmovn_u32(_32);
|
||||
return vqmovn_u16(vcombine_u16(_16, _16));
|
||||
}
|
||||
|
||||
template<> inline Sk4f SkNx_cast<float, uint8_t, 4>(const Sk4b& src) {
|
||||
uint16x8_t _16 = vmovl_u8 (src.fVec) ;
|
||||
uint32x4_t _32 = vmovl_u16(vget_low_u16(_16));
|
||||
return vcvtq_f32_u32(_32);
|
||||
}
|
||||
|
||||
static inline void Sk4f_ToBytes(uint8_t bytes[16],
|
||||
const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
|
||||
vst1q_u8(bytes, vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec),
|
||||
(uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0],
|
||||
vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec),
|
||||
(uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif//SkNx_neon_DEFINED
|
||||
|
@ -111,37 +111,9 @@ public:
|
||||
SkNx(float val) : fVec( _mm_set1_ps(val) ) {}
|
||||
static SkNx Load(const float vals[4]) { return _mm_loadu_ps(vals); }
|
||||
|
||||
static SkNx FromBytes(const uint8_t bytes[4]) {
|
||||
__m128i fix8 = _mm_cvtsi32_si128(*(const int*)bytes);
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
||||
const char _ = ~0; // Zero these bytes.
|
||||
__m128i fix8_32 = _mm_shuffle_epi8(fix8, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_));
|
||||
#else
|
||||
__m128i fix8_16 = _mm_unpacklo_epi8 (fix8, _mm_setzero_si128()),
|
||||
fix8_32 = _mm_unpacklo_epi16(fix8_16, _mm_setzero_si128());
|
||||
#endif
|
||||
return SkNx(_mm_cvtepi32_ps(fix8_32));
|
||||
// TODO: use _mm_cvtepu8_epi32 w/SSE4.1?
|
||||
}
|
||||
|
||||
SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {}
|
||||
|
||||
void store(float vals[4]) const { _mm_storeu_ps(vals, fVec); }
|
||||
void toBytes(uint8_t bytes[4]) const {
|
||||
__m128i fix8_32 = _mm_cvttps_epi32(fVec),
|
||||
fix8_16 = _mm_packus_epi16(fix8_32, fix8_32),
|
||||
fix8 = _mm_packus_epi16(fix8_16, fix8_16);
|
||||
*(int*)bytes = _mm_cvtsi128_si32(fix8);
|
||||
}
|
||||
|
||||
static void ToBytes(uint8_t bytes[16],
|
||||
const SkNx& a, const SkNx& b, const SkNx& c, const SkNx& d) {
|
||||
_mm_storeu_si128((__m128i*)bytes,
|
||||
_mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec),
|
||||
_mm_cvttps_epi32(b.fVec)),
|
||||
_mm_packus_epi16(_mm_cvttps_epi32(c.fVec),
|
||||
_mm_cvttps_epi32(d.fVec))));
|
||||
}
|
||||
|
||||
SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); }
|
||||
SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); }
|
||||
@ -252,6 +224,34 @@ public:
|
||||
__m128i fVec;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<4, uint8_t> {
|
||||
public:
|
||||
SkNx(const __m128i& vec) : fVec(vec) {}
|
||||
|
||||
SkNx() {}
|
||||
static SkNx Load(const uint8_t vals[4]) { return _mm_cvtsi32_si128(*(const int*)vals); }
|
||||
void store(uint8_t vals[4]) const { *(int*)vals = _mm_cvtsi128_si32(fVec); }
|
||||
|
||||
// TODO as needed
|
||||
|
||||
__m128i fVec;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<8, uint8_t> {
|
||||
public:
|
||||
SkNx(const __m128i& vec) : fVec(vec) {}
|
||||
|
||||
SkNx() {}
|
||||
static SkNx Load(const uint8_t vals[8]) { return _mm_loadl_epi64((const __m128i*)vals); }
|
||||
void store(uint8_t vals[8]) const { _mm_storel_epi64((__m128i*)vals, fVec); }
|
||||
|
||||
// TODO as needed
|
||||
|
||||
__m128i fVec;
|
||||
};
|
||||
|
||||
template <>
|
||||
class SkNx<16, uint8_t> {
|
||||
public:
|
||||
@ -296,11 +296,42 @@ public:
|
||||
};
|
||||
|
||||
|
||||
template<>
|
||||
inline SkNx<4, int> SkNx_cast<int, float, 4>(const SkNx<4, float>& src) {
|
||||
template<> inline Sk4i SkNx_cast<int, float, 4>(const Sk4f& src) {
|
||||
return _mm_cvttps_epi32(src.fVec);
|
||||
}
|
||||
|
||||
template<> inline Sk4b SkNx_cast<uint8_t, float, 4>(const Sk4f& src) {
|
||||
auto _32 = _mm_cvttps_epi32(src.fVec);
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
||||
const int _ = ~0;
|
||||
return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_));
|
||||
#else
|
||||
auto _16 = _mm_packus_epi16(_32, _32);
|
||||
return _mm_packus_epi16(_16, _16);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> inline Sk4f SkNx_cast<float, uint8_t, 4>(const Sk4b& src) {
|
||||
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
||||
const int _ = ~0;
|
||||
auto _32 = _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_));
|
||||
#else
|
||||
auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()),
|
||||
_32 = _mm_unpacklo_epi16(_16, _mm_setzero_si128());
|
||||
#endif
|
||||
return _mm_cvtepi32_ps(_32);
|
||||
}
|
||||
|
||||
static inline void Sk4f_ToBytes(uint8_t bytes[16],
|
||||
const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
|
||||
_mm_storeu_si128((__m128i*)bytes,
|
||||
_mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec),
|
||||
_mm_cvttps_epi32(b.fVec)),
|
||||
_mm_packus_epi16(_mm_cvttps_epi32(c.fVec),
|
||||
_mm_cvttps_epi32(d.fVec))));
|
||||
}
|
||||
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif//SkNx_sse_DEFINED
|
||||
|
@ -265,11 +265,11 @@ public:
|
||||
|
||||
private:
|
||||
static Sk4f Load(SkPMColor c) {
|
||||
return Sk4f::FromBytes((uint8_t*)&c) * Sk4f(1.0f/255);
|
||||
return SkNx_cast<float>(Sk4b::Load((uint8_t*)&c)) * Sk4f(1.0f/255);
|
||||
}
|
||||
static SkPMColor Round(const Sk4f& f) {
|
||||
SkPMColor c;
|
||||
(f * Sk4f(255) + Sk4f(0.5f)).toBytes((uint8_t*)&c);
|
||||
SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store((uint8_t*)&c);
|
||||
return c;
|
||||
}
|
||||
inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const {
|
||||
|
@ -207,21 +207,6 @@ DEF_TEST(Sk4px_widening, r) {
|
||||
REPORTER_ASSERT(r, 0 == memcmp(&wideLoHi, &wideLoHiAlt, sizeof(wideLoHi)));
|
||||
}
|
||||
|
||||
DEF_TEST(Sk4f_toBytes, r) {
|
||||
uint8_t bytes[4];
|
||||
|
||||
// toBytes truncates, not rounds.
|
||||
Sk4f(0.7f).toBytes(bytes);
|
||||
REPORTER_ASSERT(r, bytes[0] == 0);
|
||||
|
||||
// Clamping edge cases.
|
||||
Sk4f(-2.0f, -0.7f, 255.9f, 256.0f).toBytes(bytes);
|
||||
REPORTER_ASSERT(r, bytes[0] == 0);
|
||||
REPORTER_ASSERT(r, bytes[1] == 0);
|
||||
REPORTER_ASSERT(r, bytes[2] == 255);
|
||||
REPORTER_ASSERT(r, bytes[3] == 255);
|
||||
}
|
||||
|
||||
DEF_TEST(SkNx_cast, r) {
|
||||
Sk4f fs(-1.7f, -1.4f, 0.5f, 1.9f);
|
||||
Sk4i is = SkNx_cast<int>(fs);
|
||||
|
Loading…
Reference in New Issue
Block a user