Remove deprecated paths from image filter infrastructure.

Now that there are no filterImageGPUDeprecated() implementations,
we can being to rip out the deprecated infrastructure.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1888243003

Review URL: https://codereview.chromium.org/1888243003
This commit is contained in:
senorblanco 2016-04-17 14:02:04 -07:00 committed by Commit bot
parent 9d453b09d5
commit 6fb3cd7209
7 changed files with 25 additions and 303 deletions

View File

@ -280,28 +280,6 @@ protected:
*/
virtual const SkBitmap& onAccessBitmap() = 0;
/**
* Override and return true for filters that the device can handle
* intrinsically. Doing so means that SkCanvas will pass-through this
* filter to drawSprite and drawDevice (and potentially filterImage).
* Returning false means the SkCanvas will have apply the filter itself,
* and just pass the resulting image to the device.
*/
virtual bool canHandleImageFilter(const SkImageFilter*) { return false; }
/**
* Related (but not required) to canHandleImageFilter, this method returns
* true if the device could apply the filter to the src bitmap and return
* the result (and updates offset as needed).
* If the device does not recognize or support this filter,
* it just returns false and leaves result and offset unchanged.
*/
virtual bool filterImage(const SkImageFilter*, const SkBitmap&,
const SkImageFilter::Context&,
SkBitmap* /*result*/, SkIPoint* /*offset*/) {
return false;
}
protected:
virtual sk_sp<SkSurface> makeSurface(const SkImageInfo&, const SkSurfaceProps&);
virtual bool onPeekPixels(SkPixmap*) { return false; }

View File

@ -116,12 +116,6 @@ public:
virtual SkBaseDevice* createDevice(int width, int height,
TileUsage usage = kNever_TileUsage) = 0;
// Returns true if the proxy handled the filter itself. If this returns
// false then the filter's code will be called.
virtual bool filterImage(const SkImageFilter*, const SkBitmap& src,
const SkImageFilter::Context&,
SkBitmap* result, SkIPoint* offset) = 0;
};
class DeviceProxy : public Proxy {
@ -131,11 +125,6 @@ public:
SkBaseDevice* createDevice(int width, int height,
TileUsage usage = kNever_TileUsage) override;
// Returns true if the proxy handled the filter itself. If this returns
// false then the filter's code will be called.
bool filterImage(const SkImageFilter*, const SkBitmap& src, const SkImageFilter::Context&,
SkBitmap* result, SkIPoint* offset) override;
private:
SkBaseDevice* fDevice;
};
@ -175,31 +164,6 @@ public:
SkIRect filterBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection = kReverse_MapDirection) const;
/**
* Returns true if the filter can be processed on the GPU. This is most
* often used for multi-pass effects, where intermediate results must be
* rendered to textures. For single-pass effects, use asFragmentProcessor().
* The default implementation returns asFragmentProcessor(NULL, NULL, SkMatrix::I(),
* SkIRect()).
*/
virtual bool canFilterImageGPU() const { return false; }
/**
* Process this image filter on the GPU. This is most often used for
* multi-pass effects, where intermediate results must be rendered to
* textures. For single-pass effects, use asFragmentProcessor(). src is the
* source image for processing, as a texture-backed bitmap. result is
* the destination bitmap, which should contain a texture-backed pixelref
* on success. offset is the amount to translate the resulting image
* relative to the src when it is drawn. The default implementation does
* single-pass processing using asFragmentProcessor().
*/
virtual bool filterImageGPUDeprecated(Proxy*, const SkBitmap&, const Context&,
SkBitmap*, SkIPoint*) const {
SkASSERT(false);
return false;
}
#if SK_SUPPORT_GPU
static sk_sp<SkSpecialImage> DrawWithFP(GrContext* context,
sk_sp<GrFragmentProcessor> fp,
@ -298,18 +262,6 @@ public:
const Context&,
SkIPoint* offset) const;
#if SK_SUPPORT_GPU
// Helper function which invokes GPU filter processing on the
// input at the specified "index". If the input is null, it leaves
// "result" and "offset" untouched, and returns true. If the input
// has a GPU implementation, it will be invoked directly.
// Otherwise, the filter will be processed in software and
// uploaded to the GPU.
bool filterInputGPUDeprecated(int index, SkImageFilter::Proxy* proxy,
const SkBitmap& src, const Context&,
SkBitmap* result, SkIPoint* offset) const;
#endif
SK_TO_STRING_PUREVIRT()
SK_DEFINE_FLATTENABLE_TYPE(SkImageFilter)
@ -440,9 +392,6 @@ protected:
* which are not capable of processing a smaller source bitmap into a
* larger destination.
*/
bool applyCropRectDeprecated(const Context&, Proxy* proxy, const SkBitmap& src,
SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* result) const;
sk_sp<SkSpecialImage> applyCropRect(const Context&, SkSpecialImage* src, SkIPoint* srcOffset,
SkIRect* bounds) const;

View File

@ -1408,7 +1408,7 @@ void SkCanvas::internalDrawDevice(SkBaseDevice* srcDev, int x, int y,
paint = &looper.paint();
SkImageFilter* filter = paint->getImageFilter();
SkIPoint pos = { x - iter.getX(), y - iter.getY() };
if (filter && !dstDev->canHandleImageFilter(filter)) {
if (filter) {
SkImageFilter::DeviceProxy proxy(dstDev);
SkIPoint offset = SkIPoint::Make(0, 0);
const SkBitmap& srcBM = srcDev->accessBitmap(false);

View File

@ -409,33 +409,29 @@ void SkBaseDevice::drawSpriteWithFilter(const SkDraw& draw, const SkBitmap& bitm
SkImageFilter* filter = paint.getImageFilter();
SkASSERT(filter);
if (!this->canHandleImageFilter(filter)) {
SkImageFilter::DeviceProxy proxy(this);
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix = *draw.fMatrix;
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
const SkIRect clipBounds = draw.fClip->getBounds().makeOffset(-x, -y);
SkAutoTUnref<SkImageFilter::Cache> cache(this->getImageFilterCache());
SkImageFilter::Context ctx(matrix, clipBounds, cache.get());
SkImageFilter::DeviceProxy proxy(this);
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix = *draw.fMatrix;
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
const SkIRect clipBounds = draw.fClip->getBounds().makeOffset(-x, -y);
SkAutoTUnref<SkImageFilter::Cache> cache(this->getImageFilterCache());
SkImageFilter::Context ctx(matrix, clipBounds, cache.get());
sk_sp<SkSpecialImage> srcImg(SkSpecialImage::internal_fromBM(&proxy, bitmap,
&this->surfaceProps()));
if (!srcImg) {
return; // something disastrous happened
}
sk_sp<SkSpecialImage> srcImg(SkSpecialImage::internal_fromBM(&proxy, bitmap,
&this->surfaceProps()));
if (!srcImg) {
return; // something disastrous happened
}
sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg.get(), ctx, &offset));
if (resultImg) {
SkPaint tmpUnfiltered(paint);
tmpUnfiltered.setImageFilter(nullptr);
SkBitmap resultBM;
if (resultImg->internal_getBM(&resultBM)) {
// TODO: add drawSprite(SkSpecialImage) to SkDevice? (see skbug.com/5073)
this->drawSprite(draw, resultBM, x + offset.x(), y + offset.y(), tmpUnfiltered);
}
sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg.get(), ctx, &offset));
if (resultImg) {
SkPaint tmpUnfiltered(paint);
tmpUnfiltered.setImageFilter(nullptr);
SkBitmap resultBM;
if (resultImg->internal_getBM(&resultBM)) {
// TODO: add drawSprite(SkSpecialImage) to SkDevice? (see skbug.com/5073)
this->drawSprite(draw, resultBM, x + offset.x(), y + offset.y(), tmpUnfiltered);
}
} else {
this->drawSprite(draw, bitmap, x, y, paint);
}
}

View File

@ -256,12 +256,7 @@ bool SkImageFilter::filterImageDeprecated(Proxy* proxy, const SkBitmap& src,
return true;
}
}
/*
* Give the proxy first shot at the filter. If it returns false, ask
* the filter to do it.
*/
if ((proxy && proxy->filterImage(this, src, context, result, offset)) ||
this->onFilterImageDeprecated(proxy, src, context, result, offset)) {
if (this->onFilterImageDeprecated(proxy, src, context, result, offset)) {
if (context.cache()) {
context.cache()->set(key, *result, *offset);
SkAutoMutexAcquire mutex(fMutex);
@ -428,35 +423,6 @@ bool SkImageFilter::applyCropRect(const Context& ctx, const SkIRect& srcBounds,
return dstBounds->intersect(ctx.clipBounds());
}
bool SkImageFilter::applyCropRectDeprecated(const Context& ctx, Proxy* proxy, const SkBitmap& src,
SkIPoint* srcOffset, SkIRect* bounds,
SkBitmap* dst) const {
SkIRect srcBounds;
src.getBounds(&srcBounds);
srcBounds.offset(*srcOffset);
SkIRect dstBounds = this->onFilterNodeBounds(srcBounds, ctx.ctm(), kForward_MapDirection);
fCropRect.applyTo(dstBounds, ctx.ctm(), this->affectsTransparentBlack(), bounds);
if (!bounds->intersect(ctx.clipBounds())) {
return false;
}
if (srcBounds.contains(*bounds)) {
*dst = src;
return true;
} else {
SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds->width(), bounds->height()));
if (!device) {
return false;
}
SkCanvas canvas(device);
canvas.clear(0x00000000);
canvas.drawBitmap(src, srcOffset->x() - bounds->x(), srcOffset->y() - bounds->y());
*srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
*dst = device->accessBitmap(false);
return true;
}
}
// Return a larger (newWidth x newHeight) copy of 'src' with black padding
// around it.
static sk_sp<SkSpecialImage> pad_image(SkSpecialImage* src,
@ -564,52 +530,6 @@ sk_sp<SkSpecialImage> SkImageFilter::filterInput(int index,
return result;
}
#if SK_SUPPORT_GPU
bool SkImageFilter::filterInputGPUDeprecated(int index, SkImageFilter::Proxy* proxy,
const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
SkImageFilter* input = this->getInput(index);
if (!input) {
return true;
}
// SRGBTODO: Don't handle sRGB here, in anticipation of this code path being deleted.
sk_sp<SkSpecialImage> specialSrc(SkSpecialImage::internal_fromBM(proxy, src, nullptr));
if (!specialSrc) {
return false;
}
sk_sp<SkSpecialImage> tmp(input->onFilterImage(specialSrc.get(),
this->mapContext(ctx),
offset));
if (!tmp) {
return false;
}
if (!tmp->internal_getBM(result)) {
return false;
}
if (!result->getTexture()) {
GrContext* context = src.getTexture()->getContext();
const SkImageInfo info = result->info();
if (kUnknown_SkColorType == info.colorType()) {
return false;
}
SkAutoTUnref<GrTexture> resultTex(
GrRefCachedBitmapTexture(context, *result, GrTextureParams::ClampNoFilter()));
if (!resultTex) {
return false;
}
result->setPixelRef(new SkGrPixelRef(info, resultTex))->unref();
}
return true;
}
#endif
namespace {
class CacheImpl : public SkImageFilter::Cache {
@ -777,9 +697,3 @@ SkBaseDevice* SkImageFilter::DeviceProxy::createDevice(int w, int h, TileUsage u
}
return dev;
}
bool SkImageFilter::DeviceProxy::filterImage(const SkImageFilter* filter, const SkBitmap& src,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
return fDevice->filterImage(filter, src, ctx, result, offset);
}

View File

@ -1159,25 +1159,6 @@ void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap,
}
}
bool SkGpuDevice::filterTexture(GrContext* context, GrTexture* texture,
int width, int height,
const SkImageFilter* filter,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
ASSERT_SINGLE_OWNER
SkASSERT(filter);
SkImageFilter::DeviceProxy proxy(this);
if (filter->canFilterImageGPU()) {
SkBitmap bm;
GrWrapTextureInBitmap(texture, width, height, false, &bm);
return filter->filterImageGPUDeprecated(&proxy, bm, ctx, result, offset);
} else {
return false;
}
}
void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
int left, int top, const SkPaint& paint) {
ASSERT_SINGLE_OWNER
@ -1203,34 +1184,7 @@ void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
bool alphaOnly = kAlpha_8_SkColorType == bitmap.colorType();
SkImageFilter* filter = paint.getImageFilter();
// This bitmap will own the filtered result as a texture.
SkBitmap filteredBitmap;
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix(*draw.fMatrix);
matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top));
SkIRect clipBounds = draw.fClip->getBounds().makeOffset(-left, -top);
SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache());
// This cache is transient, and is freed (along with all its contained
// textures) when it goes out of scope.
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (this->filterTexture(fContext, texture, w, h, filter, ctx, &filteredBitmap,
&offset)) {
texture = (GrTexture*) filteredBitmap.getTexture();
offX = filteredBitmap.pixelRefOrigin().fX;
offY = filteredBitmap.pixelRefOrigin().fY;
w = filteredBitmap.width();
h = filteredBitmap.height();
left += offset.x();
top += offset.y();
} else {
return;
}
SkASSERT(!GrPixelConfigIsAlphaOnly(texture->config()));
alphaOnly = false;
}
SkASSERT(!paint.getImageFilter());
GrPaint grPaint;
SkAutoTUnref<const GrFragmentProcessor> fp(
@ -1366,30 +1320,7 @@ void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
int w = ii.width();
int h = ii.height();
SkImageFilter* filter = paint.getImageFilter();
// This bitmap will own the filtered result as a texture.
SkBitmap filteredBitmap;
if (filter) {
SkIPoint offset = SkIPoint::Make(0, 0);
SkMatrix matrix(*draw.fMatrix);
matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
SkIRect clipBounds = draw.fClip->getBounds().makeOffset(-x, -y);
// This cache is transient, and is freed (along with all its contained
// textures) when it goes out of scope.
SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache());
SkImageFilter::Context ctx(matrix, clipBounds, cache);
if (this->filterTexture(fContext, devTex, device->width(), device->height(),
filter, ctx, &filteredBitmap, &offset)) {
devTex = filteredBitmap.getTexture();
w = filteredBitmap.width();
h = filteredBitmap.height();
x += offset.fX;
y += offset.fY;
} else {
return;
}
}
SkASSERT(!paint.getImageFilter());
GrPaint grPaint;
SkAutoTUnref<const GrFragmentProcessor> fp(
@ -1419,37 +1350,6 @@ void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
fDrawContext->fillRectToRect(fClip, grPaint, SkMatrix::I(), dstRect, srcRect);
}
bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) {
ASSERT_SINGLE_OWNER
return filter->canFilterImageGPU();
}
bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src,
const SkImageFilter::Context& ctx,
SkBitmap* result, SkIPoint* offset) {
ASSERT_SINGLE_OWNER
// want explicitly our impl, so guard against a subclass of us overriding it
if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
return false;
}
SkAutoLockPixels alp(src, !src.getTexture());
if (!src.getTexture() && !src.readyToDraw()) {
return false;
}
GrTexture* texture;
// We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup
// must be pushed upstack.
AutoBitmapTexture abt(fContext, src, GrTextureParams::ClampNoFilter(), &texture);
if (!texture) {
return false;
}
return this->filterTexture(fContext, texture, src.width(), src.height(),
filter, ctx, result, offset);
}
void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y,
const SkPaint& paint) {
ASSERT_SINGLE_OWNER
@ -1936,15 +1836,11 @@ bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture
#endif
}
SkImageFilter::Cache* SkGpuDevice::NewImageFilterCache() {
return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize);
}
SkImageFilter::Cache* SkGpuDevice::getImageFilterCache() {
ASSERT_SINGLE_OWNER
// We always return a transient cache, so it is freed after each
// filter traversal.
return SkGpuDevice::NewImageFilterCache();
return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize);
}
#endif

View File

@ -130,17 +130,6 @@ public:
const SkBitmap& onAccessBitmap() override;
bool onAccessPixels(SkPixmap*) override;
bool canHandleImageFilter(const SkImageFilter*) override;
virtual bool filterImage(const SkImageFilter*, const SkBitmap&,
const SkImageFilter::Context&,
SkBitmap*, SkIPoint*) override;
bool filterTexture(GrContext*, GrTexture*, int width, int height, const SkImageFilter*,
const SkImageFilter::Context&,
SkBitmap* result, SkIPoint* offset);
static SkImageFilter::Cache* NewImageFilterCache();
// for debugging purposes only
void drawTexture(GrTexture*, const SkRect& dst, const SkPaint&);