Fix indenting on InlineCandidateAnalyzer.
No code changes in this CL, only hundreds of lines of indentation fixes. Change-Id: I780a0f93a61e567c4dca0e8b8d7066350569dc55 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/321795 Commit-Queue: John Stiles <johnstiles@google.com> Auto-Submit: John Stiles <johnstiles@google.com> Reviewed-by: Brian Osman <brianosman@google.com>
This commit is contained in:
parent
a6ca9757d3
commit
70957c8bc8
@ -787,295 +787,293 @@ struct InlineCandidateList {
|
||||
};
|
||||
|
||||
class InlineCandidateAnalyzer {
|
||||
public:
|
||||
// A list of all the inlining candidates we found during analysis.
|
||||
InlineCandidateList* fCandidateList;
|
||||
public:
|
||||
// A list of all the inlining candidates we found during analysis.
|
||||
InlineCandidateList* fCandidateList;
|
||||
|
||||
// A stack of the symbol tables; since most nodes don't have one, expected to be shallower
|
||||
// than the enclosing-statement stack.
|
||||
std::vector<SymbolTable*> fSymbolTableStack;
|
||||
// A stack of "enclosing" statements--these would be suitable for the inliner to use for
|
||||
// adding new instructions. Not all statements are suitable (e.g. a for-loop's initializer).
|
||||
// The inliner might replace a statement with a block containing the statement.
|
||||
std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
|
||||
// The function that we're currently processing (i.e. inlining into).
|
||||
FunctionDefinition* fEnclosingFunction = nullptr;
|
||||
// A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
|
||||
// the enclosing-statement stack.
|
||||
std::vector<SymbolTable*> fSymbolTableStack;
|
||||
// A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
|
||||
// new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
|
||||
// inliner might replace a statement with a block containing the statement.
|
||||
std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
|
||||
// The function that we're currently processing (i.e. inlining into).
|
||||
FunctionDefinition* fEnclosingFunction = nullptr;
|
||||
|
||||
void visit(Program& program, InlineCandidateList* candidateList) {
|
||||
fCandidateList = candidateList;
|
||||
fSymbolTableStack.push_back(program.fSymbols.get());
|
||||
void visit(Program& program, InlineCandidateList* candidateList) {
|
||||
fCandidateList = candidateList;
|
||||
fSymbolTableStack.push_back(program.fSymbols.get());
|
||||
|
||||
for (ProgramElement& pe : program) {
|
||||
this->visitProgramElement(&pe);
|
||||
}
|
||||
|
||||
fSymbolTableStack.pop_back();
|
||||
fCandidateList = nullptr;
|
||||
for (ProgramElement& pe : program) {
|
||||
this->visitProgramElement(&pe);
|
||||
}
|
||||
|
||||
void visitProgramElement(ProgramElement* pe) {
|
||||
switch (pe->kind()) {
|
||||
case ProgramElement::Kind::kFunction: {
|
||||
FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
|
||||
fEnclosingFunction = &funcDef;
|
||||
this->visitStatement(&funcDef.fBody);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
// The inliner can't operate outside of a function's scope.
|
||||
break;
|
||||
fSymbolTableStack.pop_back();
|
||||
fCandidateList = nullptr;
|
||||
}
|
||||
|
||||
void visitProgramElement(ProgramElement* pe) {
|
||||
switch (pe->kind()) {
|
||||
case ProgramElement::Kind::kFunction: {
|
||||
FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
|
||||
fEnclosingFunction = &funcDef;
|
||||
this->visitStatement(&funcDef.fBody);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
// The inliner can't operate outside of a function's scope.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void visitStatement(std::unique_ptr<Statement>* stmt,
|
||||
bool isViableAsEnclosingStatement = true) {
|
||||
if (!*stmt) {
|
||||
return;
|
||||
}
|
||||
|
||||
void visitStatement(std::unique_ptr<Statement>* stmt,
|
||||
bool isViableAsEnclosingStatement = true) {
|
||||
if (!*stmt) {
|
||||
return;
|
||||
}
|
||||
size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
|
||||
size_t oldSymbolStackSize = fSymbolTableStack.size();
|
||||
|
||||
size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
|
||||
size_t oldSymbolStackSize = fSymbolTableStack.size();
|
||||
|
||||
if (isViableAsEnclosingStatement) {
|
||||
fEnclosingStmtStack.push_back(stmt);
|
||||
}
|
||||
|
||||
switch ((*stmt)->kind()) {
|
||||
case Statement::Kind::kBreak:
|
||||
case Statement::Kind::kContinue:
|
||||
case Statement::Kind::kDiscard:
|
||||
case Statement::Kind::kInlineMarker:
|
||||
case Statement::Kind::kNop:
|
||||
break;
|
||||
|
||||
case Statement::Kind::kBlock: {
|
||||
Block& block = (*stmt)->as<Block>();
|
||||
if (block.symbolTable()) {
|
||||
fSymbolTableStack.push_back(block.symbolTable().get());
|
||||
}
|
||||
|
||||
for (std::unique_ptr<Statement>& stmt : block.children()) {
|
||||
this->visitStatement(&stmt);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kDo: {
|
||||
DoStatement& doStmt = (*stmt)->as<DoStatement>();
|
||||
// The loop body is a candidate for inlining.
|
||||
this->visitStatement(&doStmt.statement());
|
||||
// The inliner isn't smart enough to inline the test-expression for a do-while
|
||||
// loop at this time. There are two limitations:
|
||||
// - We would need to insert the inlined-body block at the very end of the do-
|
||||
// statement's inner fStatement. We don't support that today, but it's doable.
|
||||
// - We cannot inline the test expression if the loop uses `continue` anywhere;
|
||||
// that would skip over the inlined block that evaluates the test expression.
|
||||
// There isn't a good fix for this--any workaround would be more complex than
|
||||
// the cost of a function call. However, loops that don't use `continue` would
|
||||
// still be viable candidates for inlining.
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kExpression: {
|
||||
ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
|
||||
this->visitExpression(&expr.expression());
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kFor: {
|
||||
ForStatement& forStmt = (*stmt)->as<ForStatement>();
|
||||
if (forStmt.fSymbols) {
|
||||
fSymbolTableStack.push_back(forStmt.fSymbols.get());
|
||||
}
|
||||
|
||||
// The initializer and loop body are candidates for inlining.
|
||||
this->visitStatement(&forStmt.fInitializer,
|
||||
/*isViableAsEnclosingStatement=*/false);
|
||||
this->visitStatement(&forStmt.fStatement);
|
||||
|
||||
// The inliner isn't smart enough to inline the test- or increment-expressions
|
||||
// of a for loop loop at this time. There are a handful of limitations:
|
||||
// - We would need to insert the test-expression block at the very beginning of
|
||||
// the for-loop's inner fStatement, and the increment-expression block at the
|
||||
// very end. We don't support that today, but it's doable.
|
||||
// - The for-loop's built-in test-expression would need to be dropped entirely,
|
||||
// and the loop would be halted via a break statement at the end of the
|
||||
// inlined test-expression. This is again something we don't support today,
|
||||
// but it could be implemented.
|
||||
// - We cannot inline the increment-expression if the loop uses `continue`
|
||||
// anywhere; that would skip over the inlined block that evaluates the
|
||||
// increment expression. There isn't a good fix for this--any workaround would
|
||||
// be more complex than the cost of a function call. However, loops that don't
|
||||
// use `continue` would still be viable candidates for increment-expression
|
||||
// inlining.
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kIf: {
|
||||
IfStatement& ifStmt = (*stmt)->as<IfStatement>();
|
||||
this->visitExpression(&ifStmt.fTest);
|
||||
this->visitStatement(&ifStmt.fIfTrue);
|
||||
this->visitStatement(&ifStmt.fIfFalse);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kReturn: {
|
||||
ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
|
||||
this->visitExpression(&returnStmt.fExpression);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kSwitch: {
|
||||
SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
|
||||
if (switchStmt.fSymbols) {
|
||||
fSymbolTableStack.push_back(switchStmt.fSymbols.get());
|
||||
}
|
||||
|
||||
this->visitExpression(&switchStmt.fValue);
|
||||
for (std::unique_ptr<SwitchCase>& switchCase : switchStmt.fCases) {
|
||||
// The switch-case's fValue cannot be a FunctionCall; skip it.
|
||||
for (std::unique_ptr<Statement>& caseBlock : switchCase->fStatements) {
|
||||
this->visitStatement(&caseBlock);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kVarDeclaration: {
|
||||
VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
|
||||
// Don't need to scan the declaration's sizes; those are always IntLiterals.
|
||||
this->visitExpression(&varDeclStmt.fValue);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kVarDeclarations: {
|
||||
VarDeclarationsStatement& varDecls = (*stmt)->as<VarDeclarationsStatement>();
|
||||
for (std::unique_ptr<Statement>& varDecl : varDecls.fDeclaration->fVars) {
|
||||
this->visitStatement(&varDecl, /*isViableAsEnclosingStatement=*/false);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kWhile: {
|
||||
WhileStatement& whileStmt = (*stmt)->as<WhileStatement>();
|
||||
// The loop body is a candidate for inlining.
|
||||
this->visitStatement(&whileStmt.fStatement);
|
||||
// The inliner isn't smart enough to inline the test-expression for a while
|
||||
// loop at this time. There are two limitations:
|
||||
// - We would need to insert the inlined-body block at the very beginning of the
|
||||
// while loop's inner fStatement. We don't support that today, but it's
|
||||
// doable.
|
||||
// - The while-loop's built-in test-expression would need to be replaced with a
|
||||
// `true` BoolLiteral, and the loop would be halted via a break statement at
|
||||
// the end of the inlined test-expression. This is again something we don't
|
||||
// support today, but it could be implemented.
|
||||
break;
|
||||
}
|
||||
default:
|
||||
SkUNREACHABLE;
|
||||
}
|
||||
|
||||
// Pop our symbol and enclosing-statement stacks.
|
||||
fSymbolTableStack.resize(oldSymbolStackSize);
|
||||
fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
|
||||
if (isViableAsEnclosingStatement) {
|
||||
fEnclosingStmtStack.push_back(stmt);
|
||||
}
|
||||
|
||||
void visitExpression(std::unique_ptr<Expression>* expr) {
|
||||
if (!*expr) {
|
||||
return;
|
||||
switch ((*stmt)->kind()) {
|
||||
case Statement::Kind::kBreak:
|
||||
case Statement::Kind::kContinue:
|
||||
case Statement::Kind::kDiscard:
|
||||
case Statement::Kind::kInlineMarker:
|
||||
case Statement::Kind::kNop:
|
||||
break;
|
||||
|
||||
case Statement::Kind::kBlock: {
|
||||
Block& block = (*stmt)->as<Block>();
|
||||
if (block.symbolTable()) {
|
||||
fSymbolTableStack.push_back(block.symbolTable().get());
|
||||
}
|
||||
|
||||
for (std::unique_ptr<Statement>& stmt : block.children()) {
|
||||
this->visitStatement(&stmt);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
switch ((*expr)->kind()) {
|
||||
case Expression::Kind::kBoolLiteral:
|
||||
case Expression::Kind::kDefined:
|
||||
case Expression::Kind::kExternalValue:
|
||||
case Expression::Kind::kFieldAccess:
|
||||
case Expression::Kind::kFloatLiteral:
|
||||
case Expression::Kind::kFunctionReference:
|
||||
case Expression::Kind::kIntLiteral:
|
||||
case Expression::Kind::kNullLiteral:
|
||||
case Expression::Kind::kSetting:
|
||||
case Expression::Kind::kTypeReference:
|
||||
case Expression::Kind::kVariableReference:
|
||||
// Nothing to scan here.
|
||||
break;
|
||||
|
||||
case Expression::Kind::kBinary: {
|
||||
BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
|
||||
this->visitExpression(&binaryExpr.leftPointer());
|
||||
|
||||
// Logical-and and logical-or binary expressions do not inline the right side,
|
||||
// because that would invalidate short-circuiting. That is, when evaluating
|
||||
// expressions like these:
|
||||
// (false && x()) // always false
|
||||
// (true || y()) // always true
|
||||
// It is illegal for side-effects from x() or y() to occur. The simplest way to
|
||||
// enforce that rule is to avoid inlining the right side entirely. However, it
|
||||
// is safe for other types of binary expression to inline both sides.
|
||||
Token::Kind op = binaryExpr.getOperator();
|
||||
bool shortCircuitable = (op == Token::Kind::TK_LOGICALAND ||
|
||||
op == Token::Kind::TK_LOGICALOR);
|
||||
if (!shortCircuitable) {
|
||||
this->visitExpression(&binaryExpr.rightPointer());
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kConstructor: {
|
||||
Constructor& constructorExpr = (*expr)->as<Constructor>();
|
||||
for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kExternalFunctionCall: {
|
||||
ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
|
||||
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kFunctionCall: {
|
||||
FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
|
||||
for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
this->addInlineCandidate(expr);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kIndex:{
|
||||
IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
|
||||
this->visitExpression(&indexExpr.fBase);
|
||||
this->visitExpression(&indexExpr.fIndex);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kPostfix: {
|
||||
PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
|
||||
this->visitExpression(&postfixExpr.fOperand);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kPrefix: {
|
||||
PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
|
||||
this->visitExpression(&prefixExpr.fOperand);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kSwizzle: {
|
||||
Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
|
||||
this->visitExpression(&swizzleExpr.fBase);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kTernary: {
|
||||
TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
|
||||
// The test expression is a candidate for inlining.
|
||||
this->visitExpression(&ternaryExpr.fTest);
|
||||
// The true- and false-expressions cannot be inlined, because we are only
|
||||
// allowed to evaluate one side.
|
||||
break;
|
||||
}
|
||||
default:
|
||||
SkUNREACHABLE;
|
||||
case Statement::Kind::kDo: {
|
||||
DoStatement& doStmt = (*stmt)->as<DoStatement>();
|
||||
// The loop body is a candidate for inlining.
|
||||
this->visitStatement(&doStmt.statement());
|
||||
// The inliner isn't smart enough to inline the test-expression for a do-while
|
||||
// loop at this time. There are two limitations:
|
||||
// - We would need to insert the inlined-body block at the very end of the do-
|
||||
// statement's inner fStatement. We don't support that today, but it's doable.
|
||||
// - We cannot inline the test expression if the loop uses `continue` anywhere; that
|
||||
// would skip over the inlined block that evaluates the test expression. There
|
||||
// isn't a good fix for this--any workaround would be more complex than the cost
|
||||
// of a function call. However, loops that don't use `continue` would still be
|
||||
// viable candidates for inlining.
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kExpression: {
|
||||
ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
|
||||
this->visitExpression(&expr.expression());
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kFor: {
|
||||
ForStatement& forStmt = (*stmt)->as<ForStatement>();
|
||||
if (forStmt.fSymbols) {
|
||||
fSymbolTableStack.push_back(forStmt.fSymbols.get());
|
||||
}
|
||||
|
||||
// The initializer and loop body are candidates for inlining.
|
||||
this->visitStatement(&forStmt.fInitializer,
|
||||
/*isViableAsEnclosingStatement=*/false);
|
||||
this->visitStatement(&forStmt.fStatement);
|
||||
|
||||
// The inliner isn't smart enough to inline the test- or increment-expressions
|
||||
// of a for loop loop at this time. There are a handful of limitations:
|
||||
// - We would need to insert the test-expression block at the very beginning of the
|
||||
// for-loop's inner fStatement, and the increment-expression block at the very
|
||||
// end. We don't support that today, but it's doable.
|
||||
// - The for-loop's built-in test-expression would need to be dropped entirely,
|
||||
// and the loop would be halted via a break statement at the end of the inlined
|
||||
// test-expression. This is again something we don't support today, but it could
|
||||
// be implemented.
|
||||
// - We cannot inline the increment-expression if the loop uses `continue` anywhere;
|
||||
// that would skip over the inlined block that evaluates the increment expression.
|
||||
// There isn't a good fix for this--any workaround would be more complex than the
|
||||
// cost of a function call. However, loops that don't use `continue` would still
|
||||
// be viable candidates for increment-expression inlining.
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kIf: {
|
||||
IfStatement& ifStmt = (*stmt)->as<IfStatement>();
|
||||
this->visitExpression(&ifStmt.fTest);
|
||||
this->visitStatement(&ifStmt.fIfTrue);
|
||||
this->visitStatement(&ifStmt.fIfFalse);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kReturn: {
|
||||
ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
|
||||
this->visitExpression(&returnStmt.fExpression);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kSwitch: {
|
||||
SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
|
||||
if (switchStmt.fSymbols) {
|
||||
fSymbolTableStack.push_back(switchStmt.fSymbols.get());
|
||||
}
|
||||
|
||||
this->visitExpression(&switchStmt.fValue);
|
||||
for (std::unique_ptr<SwitchCase>& switchCase : switchStmt.fCases) {
|
||||
// The switch-case's fValue cannot be a FunctionCall; skip it.
|
||||
for (std::unique_ptr<Statement>& caseBlock : switchCase->fStatements) {
|
||||
this->visitStatement(&caseBlock);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kVarDeclaration: {
|
||||
VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
|
||||
// Don't need to scan the declaration's sizes; those are always IntLiterals.
|
||||
this->visitExpression(&varDeclStmt.fValue);
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kVarDeclarations: {
|
||||
VarDeclarationsStatement& varDecls = (*stmt)->as<VarDeclarationsStatement>();
|
||||
for (std::unique_ptr<Statement>& varDecl : varDecls.fDeclaration->fVars) {
|
||||
this->visitStatement(&varDecl, /*isViableAsEnclosingStatement=*/false);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Statement::Kind::kWhile: {
|
||||
WhileStatement& whileStmt = (*stmt)->as<WhileStatement>();
|
||||
// The loop body is a candidate for inlining.
|
||||
this->visitStatement(&whileStmt.fStatement);
|
||||
// The inliner isn't smart enough to inline the test-expression for a while loop at
|
||||
// this time. There are two limitations:
|
||||
// - We would need to insert the inlined-body block at the very beginning of the
|
||||
// while loop's inner fStatement. We don't support that today, but it's doable.
|
||||
// - The while-loop's built-in test-expression would need to be replaced with a
|
||||
// `true` BoolLiteral, and the loop would be halted via a break statement at the
|
||||
// end of the inlined test-expression. This is again something we don't support
|
||||
// today, but it could be implemented.
|
||||
break;
|
||||
}
|
||||
default:
|
||||
SkUNREACHABLE;
|
||||
}
|
||||
|
||||
void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
|
||||
fCandidateList->fCandidates.push_back(
|
||||
InlineCandidate{fSymbolTableStack.back(),
|
||||
find_parent_statement(fEnclosingStmtStack),
|
||||
fEnclosingStmtStack.back(),
|
||||
candidate,
|
||||
fEnclosingFunction,
|
||||
/*isLargeFunction=*/false});
|
||||
// Pop our symbol and enclosing-statement stacks.
|
||||
fSymbolTableStack.resize(oldSymbolStackSize);
|
||||
fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
|
||||
}
|
||||
|
||||
void visitExpression(std::unique_ptr<Expression>* expr) {
|
||||
if (!*expr) {
|
||||
return;
|
||||
}
|
||||
|
||||
switch ((*expr)->kind()) {
|
||||
case Expression::Kind::kBoolLiteral:
|
||||
case Expression::Kind::kDefined:
|
||||
case Expression::Kind::kExternalValue:
|
||||
case Expression::Kind::kFieldAccess:
|
||||
case Expression::Kind::kFloatLiteral:
|
||||
case Expression::Kind::kFunctionReference:
|
||||
case Expression::Kind::kIntLiteral:
|
||||
case Expression::Kind::kNullLiteral:
|
||||
case Expression::Kind::kSetting:
|
||||
case Expression::Kind::kTypeReference:
|
||||
case Expression::Kind::kVariableReference:
|
||||
// Nothing to scan here.
|
||||
break;
|
||||
|
||||
case Expression::Kind::kBinary: {
|
||||
BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
|
||||
this->visitExpression(&binaryExpr.leftPointer());
|
||||
|
||||
// Logical-and and logical-or binary expressions do not inline the right side,
|
||||
// because that would invalidate short-circuiting. That is, when evaluating
|
||||
// expressions like these:
|
||||
// (false && x()) // always false
|
||||
// (true || y()) // always true
|
||||
// It is illegal for side-effects from x() or y() to occur. The simplest way to
|
||||
// enforce that rule is to avoid inlining the right side entirely. However, it is
|
||||
// safe for other types of binary expression to inline both sides.
|
||||
Token::Kind op = binaryExpr.getOperator();
|
||||
bool shortCircuitable = (op == Token::Kind::TK_LOGICALAND ||
|
||||
op == Token::Kind::TK_LOGICALOR);
|
||||
if (!shortCircuitable) {
|
||||
this->visitExpression(&binaryExpr.rightPointer());
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kConstructor: {
|
||||
Constructor& constructorExpr = (*expr)->as<Constructor>();
|
||||
for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kExternalFunctionCall: {
|
||||
ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
|
||||
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kFunctionCall: {
|
||||
FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
|
||||
for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
|
||||
this->visitExpression(&arg);
|
||||
}
|
||||
this->addInlineCandidate(expr);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kIndex:{
|
||||
IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
|
||||
this->visitExpression(&indexExpr.fBase);
|
||||
this->visitExpression(&indexExpr.fIndex);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kPostfix: {
|
||||
PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
|
||||
this->visitExpression(&postfixExpr.fOperand);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kPrefix: {
|
||||
PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
|
||||
this->visitExpression(&prefixExpr.fOperand);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kSwizzle: {
|
||||
Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
|
||||
this->visitExpression(&swizzleExpr.fBase);
|
||||
break;
|
||||
}
|
||||
case Expression::Kind::kTernary: {
|
||||
TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
|
||||
// The test expression is a candidate for inlining.
|
||||
this->visitExpression(&ternaryExpr.fTest);
|
||||
// The true- and false-expressions cannot be inlined, because we are only allowed to
|
||||
// evaluate one side.
|
||||
break;
|
||||
}
|
||||
default:
|
||||
SkUNREACHABLE;
|
||||
}
|
||||
}
|
||||
|
||||
void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
|
||||
fCandidateList->fCandidates.push_back(
|
||||
InlineCandidate{fSymbolTableStack.back(),
|
||||
find_parent_statement(fEnclosingStmtStack),
|
||||
fEnclosingStmtStack.back(),
|
||||
candidate,
|
||||
fEnclosingFunction,
|
||||
/*isLargeFunction=*/false});
|
||||
}
|
||||
};
|
||||
|
||||
bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate, InlinabilityCache* cache) {
|
||||
|
Loading…
Reference in New Issue
Block a user