jumper, to_2dot2 and from_2dot2

Nothing too tricky here.

Change-Id: I2a10548efc75a6fd875fcb242790880d9b9a28fd
Reviewed-on: https://skia-review.googlesource.com/11388
Commit-Queue: Mike Klein <mtklein@chromium.org>
Reviewed-by: Matt Sarett <msarett@google.com>
This commit is contained in:
Mike Klein 2017-04-05 15:27:22 -04:00 committed by Skia Commit-Bot
parent d9836f44fb
commit 7125ac6036
4 changed files with 1532 additions and 414 deletions

View File

@ -78,6 +78,8 @@ static K kConstants = {
M(unpremul) \ M(unpremul) \
M(from_srgb) \ M(from_srgb) \
M(to_srgb) \ M(to_srgb) \
M(from_2dot2) \
M(to_2dot2) \
M(scale_1_float) \ M(scale_1_float) \
M(scale_u8) \ M(scale_u8) \
M(lerp_1_float) \ M(lerp_1_float) \

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -484,6 +484,35 @@ STAGE(to_srgb) {
b = fn(b); b = fn(b);
} }
STAGE(from_2dot2) {
auto fn = [](F x) {
// x^(141/64) = x^(2.20312) is a great approximation of the true value, x^(2.2).
// (note: x^(35/16) = x^(2.1875) is an okay one as well and would be quicker)
F x16 = rsqrt(rsqrt(rsqrt(rsqrt(x)))), // x^(1/16) = x^(4/64);
x64 = rsqrt(rsqrt(x16)); // x^(1/64)
// 141/64 = 128/64 + 12/64 + 1/64
return max((x*x) * (x16*x16*x16) * x64, 0);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(to_2dot2) {
auto fn = [](F x) {
// x^(29/64) is a very good approximation of the true value, x^(1/2.2).
F x2 = rsqrt(x), // x^(-1/2)
x32 = rsqrt(rsqrt(rsqrt(rsqrt(x2)))), // x^(-1/32)
x64 = rsqrt(x32); // x^(+1/64)
// 29/64 = 32/64 - 2/64 - 1/64
return max(rcp(x2) * x32 * rcp(x64), 0);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(scale_1_float) { STAGE(scale_1_float) {
auto c = *(const float*)ctx; auto c = *(const float*)ctx;