Allow SkLazyPixelRef to use SkScaledImageCache

-   SkScaledImageCache:
    -   Add new FindAndLock/AddAndLock variants that work well with
        SkLazyPixelRefs (take width, height, generation_id).
    -   Add static versions of these new variants.

-   SkLazyPixelRef:
    -   If NULL passed in as SkImageCache* in the constructor, it will
        now default to using the static SkScaledImageCache methods to
        cache decoded images.
    -   If (fImageCache==NULL), the default allocator can be changed
        with the setAllocator method.  If (fImageCache!=NULL), the
        SkImageCache handles allocation.

-   CachedDecodingPixelRefTest to test the new functionality.

BUG=
R=scroggo@google.com, mtklein@google.com, reed@google.com

Author: halcanary@google.com

Review URL: https://codereview.chromium.org/37343002

git-svn-id: http://skia.googlecode.com/svn/trunk@12006 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2013-10-29 19:55:00 +00:00
parent f9a2759d94
commit 7585479202
6 changed files with 525 additions and 95 deletions

View File

@ -10,6 +10,7 @@
'include_dirs' : [ 'include_dirs' : [
'../src/core', '../src/core',
'../src/effects', '../src/effects',
'../src/image',
'../src/lazy', '../src/lazy',
'../src/pathops', '../src/pathops',
'../src/pdf', '../src/pdf',
@ -34,6 +35,7 @@
'../tests/BitSetTest.cpp', '../tests/BitSetTest.cpp',
'../tests/BlitRowTest.cpp', '../tests/BlitRowTest.cpp',
'../tests/BlurTest.cpp', '../tests/BlurTest.cpp',
'../tests/CachedDecodingPixelRefTest.cpp',
'../tests/CanvasTest.cpp', '../tests/CanvasTest.cpp',
'../tests/CanvasStateTest.cpp', '../tests/CanvasStateTest.cpp',
'../tests/ChecksumTest.cpp', '../tests/ChecksumTest.cpp',

View File

@ -7,6 +7,7 @@
#include "SkScaledImageCache.h" #include "SkScaledImageCache.h"
#include "SkMipMap.h" #include "SkMipMap.h"
#include "SkOnce.h"
#include "SkPixelRef.h" #include "SkPixelRef.h"
#include "SkRect.h" #include "SkRect.h"
@ -14,6 +15,13 @@
#define SK_DEFAULT_IMAGE_CACHE_LIMIT (2 * 1024 * 1024) #define SK_DEFAULT_IMAGE_CACHE_LIMIT (2 * 1024 * 1024)
#endif #endif
static inline SkScaledImageCache::ID* rec_to_id(SkScaledImageCache::Rec* rec) {
return reinterpret_cast<SkScaledImageCache::ID*>(rec);
}
static inline SkScaledImageCache::Rec* id_to_rec(SkScaledImageCache::ID* id) {
return reinterpret_cast<SkScaledImageCache::Rec*>(id);
}
// Implemented from en.wikipedia.org/wiki/MurmurHash. // Implemented from en.wikipedia.org/wiki/MurmurHash.
static uint32_t compute_hash(const uint32_t data[], int count) { static uint32_t compute_hash(const uint32_t data[], int count) {
@ -42,23 +50,15 @@ static uint32_t compute_hash(const uint32_t data[], int count) {
} }
struct Key { struct Key {
bool init(const SkBitmap& bm, SkScalar scaleX, SkScalar scaleY) { Key(uint32_t genID,
SkPixelRef* pr = bm.pixelRef(); SkScalar scaleX,
if (!pr) { SkScalar scaleY,
return false; SkIRect bounds)
} : fGenID(genID)
, fScaleX(scaleX)
size_t x, y; , fScaleY(scaleY)
SkTDivMod(bm.pixelRefOffset(), bm.rowBytes(), &y, &x); , fBounds(bounds) {
x >>= 2;
fGenID = pr->getGenerationID();
fBounds.set(x, y, x + bm.width(), y + bm.height());
fScaleX = scaleX;
fScaleY = scaleY;
fHash = compute_hash(&fGenID, 7); fHash = compute_hash(&fGenID, 7);
return true;
} }
bool operator<(const Key& other) const { bool operator<(const Key& other) const {
@ -151,6 +151,17 @@ class SkScaledImageCache::Hash : public SkTDynamicHash<SkScaledImageCache::Rec,
// experimental hash to speed things up // experimental hash to speed things up
#define USE_HASH #define USE_HASH
#if !defined(USE_HASH)
static inline SkScaledImageCache::Rec* find_rec_in_list(
SkScaledImageCache::Rec* head, const Key & key) {
SkScaledImageCache::Rec* rec = head;
while ((rec != NULL) && (rec->fKey != key)) {
rec = rec->fNext;
}
return rec;
}
#endif
SkScaledImageCache::SkScaledImageCache(size_t byteLimit) { SkScaledImageCache::SkScaledImageCache(size_t byteLimit) {
fHead = NULL; fHead = NULL;
fTail = NULL; fTail = NULL;
@ -174,26 +185,24 @@ SkScaledImageCache::~SkScaledImageCache() {
delete fHash; delete fHash;
} }
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(const SkBitmap& orig, ////////////////////////////////////////////////////////////////////////////////
/**
This private method is the fully general record finder. All other
record finders should call this funtion. */
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(uint32_t genID,
SkScalar scaleX, SkScalar scaleX,
SkScalar scaleY) { SkScalar scaleY,
Key key; const SkIRect& bounds) {
if (!key.init(orig, scaleX, scaleY)) { if (bounds.isEmpty()) {
return NULL; return NULL;
} }
Key key(genID, scaleX, scaleY, bounds);
#ifdef USE_HASH #ifdef USE_HASH
Rec* rec = fHash->find(key); Rec* rec = fHash->find(key);
#else #else
Rec* rec = fHead; Rec* rec = find_rec_in_list(fHead, key);
while (rec != NULL) {
if (rec->fKey == key) {
break;
}
rec = rec->fNext;
}
#endif #endif
if (rec) { if (rec) {
this->moveToHead(rec); // for our LRU this->moveToHead(rec); // for our LRU
rec->fLockCount += 1; rec->fLockCount += 1;
@ -201,6 +210,36 @@ SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(const SkBitmap& orig,
return rec; return rec;
} }
/**
This function finds the bounds of the bitmap *within its pixelRef*.
If the bitmap lacks a pixelRef, it will return an empty rect, since
that doesn't make sense. This may be a useful enough function that
it should be somewhere else (in SkBitmap?). */
static SkIRect get_bounds_from_bitmap(const SkBitmap& bm) {
if (!(bm.pixelRef())) {
return SkIRect::MakeEmpty();
}
size_t x, y;
SkTDivMod(bm.pixelRefOffset(), bm.rowBytes(), &y, &x);
x >>= bm.shiftPerPixel();
return SkIRect::MakeXYWH(x, y, bm.width(), bm.height());
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLock(uint32_t genID,
int32_t width,
int32_t height,
SkBitmap* bitmap) {
Rec* rec = this->findAndLock(genID, SK_Scalar1, SK_Scalar1,
SkIRect::MakeWH(width, height));
if (rec) {
SkASSERT(NULL == rec->fMip);
SkASSERT(rec->fBitmap.pixelRef());
*bitmap = rec->fBitmap;
}
return rec_to_id(rec);
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig, SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig,
SkScalar scaleX, SkScalar scaleX,
SkScalar scaleY, SkScalar scaleY,
@ -209,25 +248,53 @@ SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig,
// degenerate, and the key we use for mipmaps // degenerate, and the key we use for mipmaps
return NULL; return NULL;
} }
Rec* rec = this->findAndLock(orig.getGenerationID(), scaleX,
Rec* rec = this->findAndLock(orig, scaleX, scaleY); scaleY, get_bounds_from_bitmap(orig));
if (rec) { if (rec) {
SkASSERT(NULL == rec->fMip); SkASSERT(NULL == rec->fMip);
SkASSERT(rec->fBitmap.pixelRef()); SkASSERT(rec->fBitmap.pixelRef());
*scaled = rec->fBitmap; *scaled = rec->fBitmap;
} }
return (ID*)rec; return rec_to_id(rec);
} }
SkScaledImageCache::ID* SkScaledImageCache::findAndLockMip(const SkBitmap& orig, SkScaledImageCache::ID* SkScaledImageCache::findAndLockMip(const SkBitmap& orig,
SkMipMap const ** mip) { SkMipMap const ** mip) {
Rec* rec = this->findAndLock(orig, 0, 0); Rec* rec = this->findAndLock(orig.getGenerationID(), 0, 0,
get_bounds_from_bitmap(orig));
if (rec) { if (rec) {
SkASSERT(rec->fMip); SkASSERT(rec->fMip);
SkASSERT(NULL == rec->fBitmap.pixelRef()); SkASSERT(NULL == rec->fBitmap.pixelRef());
*mip = rec->fMip; *mip = rec->fMip;
} }
return (ID*)rec; return rec_to_id(rec);
}
////////////////////////////////////////////////////////////////////////////////
/**
This private method is the fully general record adder. All other
record adders should call this funtion. */
void SkScaledImageCache::addAndLock(SkScaledImageCache::Rec* rec) {
SkASSERT(rec);
this->addToHead(rec);
SkASSERT(1 == rec->fLockCount);
#ifdef USE_HASH
SkASSERT(fHash);
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(uint32_t genID,
int32_t width,
int32_t height,
const SkBitmap& bitmap) {
Key key(genID, SK_Scalar1, SK_Scalar1, SkIRect::MakeWH(width, height));
Rec* rec = SkNEW_ARGS(Rec, (key, bitmap));
this->addAndLock(rec);
return rec_to_id(rec);
} }
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig, SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig,
@ -238,43 +305,26 @@ SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig,
// degenerate, and the key we use for mipmaps // degenerate, and the key we use for mipmaps
return NULL; return NULL;
} }
SkIRect bounds = get_bounds_from_bitmap(orig);
Key key; if (bounds.isEmpty()) {
if (!key.init(orig, scaleX, scaleY)) {
return NULL; return NULL;
} }
Key key(orig.getGenerationID(), scaleX, scaleY, bounds);
Rec* rec = SkNEW_ARGS(Rec, (key, scaled)); Rec* rec = SkNEW_ARGS(Rec, (key, scaled));
this->addToHead(rec); this->addAndLock(rec);
SkASSERT(1 == rec->fLockCount); return rec_to_id(rec);
#ifdef USE_HASH
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
return (ID*)rec;
} }
SkScaledImageCache::ID* SkScaledImageCache::addAndLockMip(const SkBitmap& orig, SkScaledImageCache::ID* SkScaledImageCache::addAndLockMip(const SkBitmap& orig,
const SkMipMap* mip) { const SkMipMap* mip) {
Key key; SkIRect bounds = get_bounds_from_bitmap(orig);
if (!key.init(orig, 0, 0)) { if (bounds.isEmpty()) {
return NULL; return NULL;
} }
Key key(orig.getGenerationID(), 0, 0, bounds);
Rec* rec = SkNEW_ARGS(Rec, (key, mip)); Rec* rec = SkNEW_ARGS(Rec, (key, mip));
this->addToHead(rec); this->addAndLock(rec);
SkASSERT(1 == rec->fLockCount); return rec_to_id(rec);
#ifdef USE_HASH
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
return (ID*)rec;
} }
void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) { void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
@ -285,7 +335,7 @@ void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
bool found = false; bool found = false;
Rec* rec = fHead; Rec* rec = fHead;
while (rec != NULL) { while (rec != NULL) {
if ((ID*)rec == id) { if (rec == id_to_rec(id)) {
found = true; found = true;
break; break;
} }
@ -294,7 +344,7 @@ void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
SkASSERT(found); SkASSERT(found);
} }
#endif #endif
Rec* rec = (Rec*)id; Rec* rec = id_to_rec(id);
SkASSERT(rec->fLockCount > 0); SkASSERT(rec->fLockCount > 0);
rec->fLockCount -= 1; rec->fLockCount -= 1;
@ -451,14 +501,38 @@ void SkScaledImageCache::validate() const {
SK_DECLARE_STATIC_MUTEX(gMutex); SK_DECLARE_STATIC_MUTEX(gMutex);
static void create_cache(SkScaledImageCache** cache) {
*cache = SkNEW_ARGS(SkScaledImageCache, (SK_DEFAULT_IMAGE_CACHE_LIMIT));
}
static SkScaledImageCache* get_cache() { static SkScaledImageCache* get_cache() {
static SkScaledImageCache* gCache; static SkScaledImageCache* gCache(NULL);
if (!gCache) { SK_DECLARE_STATIC_ONCE(create_cache_once);
gCache = SkNEW_ARGS(SkScaledImageCache, (SK_DEFAULT_IMAGE_CACHE_LIMIT)); SkOnce<SkScaledImageCache**>(&create_cache_once, create_cache, &gCache);
} SkASSERT(NULL != gCache);
return gCache; return gCache;
} }
SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(
uint32_t pixelGenerationID,
int32_t width,
int32_t height,
SkBitmap* scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLock(pixelGenerationID, width, height, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(
uint32_t pixelGenerationID,
int32_t width,
int32_t height,
const SkBitmap& scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLock(pixelGenerationID, width, height, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(const SkBitmap& orig, SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(const SkBitmap& orig,
SkScalar scaleX, SkScalar scaleX,
SkScalar scaleY, SkScalar scaleY,

View File

@ -31,13 +31,25 @@ public:
* instance of this cache. * instance of this cache.
*/ */
static ID* FindAndLock(uint32_t pixelGenerationID,
int32_t width,
int32_t height,
SkBitmap* returnedBitmap);
static ID* FindAndLock(const SkBitmap& original, SkScalar scaleX, static ID* FindAndLock(const SkBitmap& original, SkScalar scaleX,
SkScalar scaleY, SkBitmap* scaled); SkScalar scaleY, SkBitmap* returnedBitmap);
static ID* FindAndLockMip(const SkBitmap& original, SkMipMap const**); static ID* FindAndLockMip(const SkBitmap& original,
SkMipMap const** returnedMipMap);
static ID* AddAndLock(uint32_t pixelGenerationID,
int32_t width,
int32_t height,
const SkBitmap& bitmap);
static ID* AddAndLock(const SkBitmap& original, SkScalar scaleX, static ID* AddAndLock(const SkBitmap& original, SkScalar scaleX,
SkScalar scaleY, const SkBitmap& scaled); SkScalar scaleY, const SkBitmap& bitmap);
static ID* AddAndLockMip(const SkBitmap& original, const SkMipMap*); static ID* AddAndLockMip(const SkBitmap& original, const SkMipMap* mipMap);
static void Unlock(ID*); static void Unlock(ID*);
@ -51,24 +63,48 @@ public:
~SkScaledImageCache(); ~SkScaledImageCache();
/** /**
* Search the cache for a scaled version of original. If found, return it * Search the cache for a matching bitmap (using generationID,
* in scaled, and return its ID pointer. Use the returned ptr to unlock * width, and height as a search key). If found, return it in
* the cache when you are done using scaled. * returnedBitmap, and return its ID pointer. Use the returned
* ptr to unlock the cache when you are done using
* returnedBitmap.
* *
* If a match is not found, scaled will be unmodifed, and NULL will be * If a match is not found, returnedBitmap will be unmodifed, and
* returned. * NULL will be returned.
*
* This is used if there is no scaling or subsetting, for example
* by SkLazyPixelRef.
*/ */
ID* findAndLock(const SkBitmap& original, SkScalar scaleX, ID* findAndLock(uint32_t pixelGenerationID, int32_t width, int32_t height,
SkScalar scaleY, SkBitmap* scaled); SkBitmap* returnedBitmap);
ID* findAndLockMip(const SkBitmap& original, SkMipMap const**);
/** /**
* To add a new (scaled) bitmap to the cache, call AddAndLock. Use the * Search the cache for a scaled version of original. If found,
* returned ptr to unlock the cache when you are done using scaled. * return it in returnedBitmap, and return its ID pointer. Use
* the returned ptr to unlock the cache when you are done using
* returnedBitmap.
*
* If a match is not found, returnedBitmap will be unmodifed, and
* NULL will be returned.
*/ */
ID* findAndLock(const SkBitmap& original, SkScalar scaleX,
SkScalar scaleY, SkBitmap* returnedBitmap);
ID* findAndLockMip(const SkBitmap& original,
SkMipMap const** returnedMipMap);
/**
* To add a new bitmap (or mipMap) to the cache, call
* AddAndLock. Use the returned ptr to unlock the cache when you
* are done using scaled.
*
* Use (generationID, width, and height) or (original, scaleX,
* scaleY) or (original) as a search key
*/
ID* addAndLock(uint32_t pixelGenerationID, int32_t width, int32_t height,
const SkBitmap& bitmap);
ID* addAndLock(const SkBitmap& original, SkScalar scaleX, ID* addAndLock(const SkBitmap& original, SkScalar scaleX,
SkScalar scaleY, const SkBitmap& scaled); SkScalar scaleY, const SkBitmap& bitmap);
ID* addAndLockMip(const SkBitmap& original, const SkMipMap*); ID* addAndLockMip(const SkBitmap& original, const SkMipMap* mipMap);
/** /**
* Given a non-null ID ptr returned by either findAndLock or addAndLock, * Given a non-null ID ptr returned by either findAndLock or addAndLock,
@ -101,7 +137,9 @@ private:
size_t fByteLimit; size_t fByteLimit;
int fCount; int fCount;
Rec* findAndLock(const SkBitmap& original, SkScalar sx, SkScalar sy); Rec* findAndLock(uint32_t generationID, SkScalar sx, SkScalar sy,
const SkIRect& bounds);
void addAndLock(Rec* rec);
void purgeAsNeeded(); void purgeAsNeeded();
@ -115,5 +153,4 @@ private:
void validate() const {} void validate() const {}
#endif #endif
}; };
#endif #endif

View File

@ -11,6 +11,7 @@
#include "SkData.h" #include "SkData.h"
#include "SkImageCache.h" #include "SkImageCache.h"
#include "SkImagePriv.h" #include "SkImagePriv.h"
#include "SkScaledImageCache.h"
#if LAZY_CACHE_STATS #if LAZY_CACHE_STATS
#include "SkThread.h" #include "SkThread.h"
@ -22,9 +23,9 @@ int32_t SkLazyPixelRef::gCacheMisses;
SkLazyPixelRef::SkLazyPixelRef(SkData* data, SkBitmapFactory::DecodeProc proc, SkImageCache* cache) SkLazyPixelRef::SkLazyPixelRef(SkData* data, SkBitmapFactory::DecodeProc proc, SkImageCache* cache)
// Pass NULL for the Mutex so that the default (ring buffer) will be used. // Pass NULL for the Mutex so that the default (ring buffer) will be used.
: INHERITED(NULL) : INHERITED(NULL)
, fErrorInDecoding(false)
, fDecodeProc(proc) , fDecodeProc(proc)
, fImageCache(cache) , fImageCache(cache)
, fCacheId(SkImageCache::UNINITIALIZED_ID)
, fRowBytes(0) { , fRowBytes(0) {
SkASSERT(fDecodeProc != NULL); SkASSERT(fDecodeProc != NULL);
if (NULL == data) { if (NULL == data) {
@ -35,8 +36,12 @@ SkLazyPixelRef::SkLazyPixelRef(SkData* data, SkBitmapFactory::DecodeProc proc, S
fData->ref(); fData->ref();
fErrorInDecoding = data->size() == 0; fErrorInDecoding = data->size() == 0;
} }
SkASSERT(cache != NULL); if (fImageCache != NULL) {
cache->ref(); fImageCache->ref();
fCacheId = SkImageCache::UNINITIALIZED_ID;
} else {
fScaledCacheId = NULL;
}
// mark as uninitialized -- all fields are -1 // mark as uninitialized -- all fields are -1
memset(&fLazilyCachedInfo, 0xFF, sizeof(fLazilyCachedInfo)); memset(&fLazilyCachedInfo, 0xFF, sizeof(fLazilyCachedInfo));
@ -48,6 +53,14 @@ SkLazyPixelRef::SkLazyPixelRef(SkData* data, SkBitmapFactory::DecodeProc proc, S
SkLazyPixelRef::~SkLazyPixelRef() { SkLazyPixelRef::~SkLazyPixelRef() {
SkASSERT(fData != NULL); SkASSERT(fData != NULL);
fData->unref(); fData->unref();
if (NULL == fImageCache) {
if (fScaledCacheId != NULL) {
SkScaledImageCache::Unlock(fScaledCacheId);
// TODO(halcanary): SkScaledImageCache needs a
// throwAwayCache(id) method.
}
return;
}
SkASSERT(fImageCache); SkASSERT(fImageCache);
if (fCacheId != SkImageCache::UNINITIALIZED_ID) { if (fCacheId != SkImageCache::UNINITIALIZED_ID) {
fImageCache->throwAwayCache(fCacheId); fImageCache->throwAwayCache(fCacheId);
@ -79,10 +92,91 @@ const SkImage::Info* SkLazyPixelRef::getCachedInfo() {
return &fLazilyCachedInfo; return &fLazilyCachedInfo;
} }
/**
Returns bitmap->getPixels() on success; NULL on failure */
static void* decode_into_bitmap(SkImage::Info* info,
SkBitmapFactory::DecodeProc decodeProc,
size_t* rowBytes,
SkData* data,
SkBitmap* bm) {
SkASSERT(info && decodeProc && rowBytes && data && bm);
if (!(bm->setConfig(SkImageInfoToBitmapConfig(*info), info->fWidth,
info->fHeight, *rowBytes, info->fAlphaType)
&& bm->allocPixels(NULL, NULL))) {
// Use the default allocator. It may be necessary for the
// SkLazyPixelRef to have a allocator field which is passed
// into allocPixels().
return NULL;
}
SkBitmapFactory::Target target;
target.fAddr = bm->getPixels();
target.fRowBytes = bm->rowBytes();
*rowBytes = target.fRowBytes;
if (!decodeProc(data->data(), data->size(), info, &target)) {
return NULL;
}
return target.fAddr;
}
void* SkLazyPixelRef::lockScaledImageCachePixels() {
SkASSERT(!fErrorInDecoding);
SkASSERT(NULL == fImageCache);
SkBitmap bitmap;
const SkImage::Info* info = this->getCachedInfo();
if (info == NULL) {
return NULL;
}
// If this is the first time though, this is guaranteed to fail.
// Maybe we should have a flag that says "don't even bother looking"
fScaledCacheId = SkScaledImageCache::FindAndLock(this->getGenerationID(),
info->fWidth,
info->fHeight,
&bitmap);
if (fScaledCacheId != NULL) {
SkAutoLockPixels autoLockPixels(bitmap);
void* pixels = bitmap.getPixels();
SkASSERT(NULL != pixels);
// At this point, the autoLockPixels will unlockPixels()
// to remove bitmap's lock on the pixels. We will then
// destroy bitmap. The *only* guarantee that this pointer
// remains valid is the guarantee made by
// SkScaledImageCache that it will not destroy the *other*
// bitmap (SkScaledImageCache::Rec.fBitmap) that holds a
// reference to the concrete PixelRef while this record is
// locked.
return pixels;
} else {
// Cache has been purged, must re-decode.
void* pixels = decode_into_bitmap(const_cast<SkImage::Info*>(info),
fDecodeProc, &fRowBytes, fData,
&bitmap);
if (NULL == pixels) {
fErrorInDecoding = true;
return NULL;
}
fScaledCacheId = SkScaledImageCache::AddAndLock(this->getGenerationID(),
info->fWidth,
info->fHeight,
bitmap);
SkASSERT(fScaledCacheId != NULL);
return pixels;
}
}
void* SkLazyPixelRef::onLockPixels(SkColorTable**) { void* SkLazyPixelRef::onLockPixels(SkColorTable**) {
if (fErrorInDecoding) { if (fErrorInDecoding) {
return NULL; return NULL;
} }
if (NULL == fImageCache) {
return this->lockScaledImageCachePixels();
} else {
return this->lockImageCachePixels();
}
}
void* SkLazyPixelRef::lockImageCachePixels() {
SkASSERT(fImageCache != NULL);
SkASSERT(!fErrorInDecoding);
SkBitmapFactory::Target target; SkBitmapFactory::Target target;
// Check to see if the pixels still exist in the cache. // Check to see if the pixels still exist in the cache.
if (SkImageCache::UNINITIALIZED_ID == fCacheId) { if (SkImageCache::UNINITIALIZED_ID == fCacheId) {
@ -147,8 +241,19 @@ void SkLazyPixelRef::onUnlockPixels() {
if (fErrorInDecoding) { if (fErrorInDecoding) {
return; return;
} }
if (fCacheId != SkImageCache::UNINITIALIZED_ID) { if (NULL == fImageCache) {
fImageCache->releaseCache(fCacheId); // onUnlockPixels() should never be called a second time from
// PixelRef::Unlock() without calling onLockPixels() first.
SkASSERT(NULL != fScaledCacheId);
if (NULL != fScaledCacheId) {
SkScaledImageCache::Unlock(fScaledCacheId);
fScaledCacheId = NULL;
}
} else { // use fImageCache
SkASSERT(SkImageCache::UNINITIALIZED_ID != fCacheId);
if (SkImageCache::UNINITIALIZED_ID != fCacheId) {
fImageCache->releaseCache(fCacheId);
}
} }
} }
@ -157,8 +262,6 @@ SkData* SkLazyPixelRef::onRefEncodedData() {
return fData; return fData;
} }
#include "SkImagePriv.h"
static bool init_from_info(SkBitmap* bm, const SkImage::Info& info, static bool init_from_info(SkBitmap* bm, const SkImage::Info& info,
size_t rowBytes) { size_t rowBytes) {
SkBitmap::Config config = SkImageInfoToBitmapConfig(info); SkBitmap::Config config = SkImageInfoToBitmapConfig(info);
@ -206,3 +309,4 @@ bool SkLazyPixelRef::onDecodeInto(int pow2, SkBitmap* bitmap) {
*bitmap = tmp; *bitmap = tmp;
return true; return true;
} }

View File

@ -10,8 +10,10 @@
#include "SkBitmapFactory.h" #include "SkBitmapFactory.h"
#include "SkImage.h" #include "SkImage.h"
#include "SkImageCache.h"
#include "SkPixelRef.h" #include "SkPixelRef.h"
#include "SkFlattenable.h" #include "SkFlattenable.h"
#include "SkScaledImageCache.h"
class SkColorTable; class SkColorTable;
class SkData; class SkData;
@ -33,8 +35,9 @@ public:
* Create a new SkLazyPixelRef. * Create a new SkLazyPixelRef.
* @param SkData Encoded data representing the pixels. * @param SkData Encoded data representing the pixels.
* @param DecodeProc Called to decode the pixels when needed. Must be non-NULL. * @param DecodeProc Called to decode the pixels when needed. Must be non-NULL.
* @param SkImageCache Object that handles allocating and freeing the pixel memory, as needed. * @param SkImageCache Object that handles allocating and freeing
* Must not be NULL. * the pixel memory, as needed. If NULL, use the global
* SkScaledImageCache.
*/ */
SkLazyPixelRef(SkData*, SkBitmapFactory::DecodeProc, SkImageCache*); SkLazyPixelRef(SkData*, SkBitmapFactory::DecodeProc, SkImageCache*);
@ -69,7 +72,10 @@ private:
SkData* fData; SkData* fData;
SkBitmapFactory::DecodeProc fDecodeProc; SkBitmapFactory::DecodeProc fDecodeProc;
SkImageCache* fImageCache; SkImageCache* fImageCache;
intptr_t fCacheId; union {
SkImageCache::ID fCacheId;
SkScaledImageCache::ID* fScaledCacheId;
};
size_t fRowBytes; size_t fRowBytes;
SkImage::Info fLazilyCachedInfo; SkImage::Info fLazilyCachedInfo;
@ -80,6 +86,9 @@ private:
// lazily initialized our cached info. Returns NULL on failure. // lazily initialized our cached info. Returns NULL on failure.
const SkImage::Info* getCachedInfo(); const SkImage::Info* getCachedInfo();
void* lockScaledImageCachePixels();
void* lockImageCachePixels();
typedef SkPixelRef INHERITED; typedef SkPixelRef INHERITED;
}; };

View File

@ -0,0 +1,204 @@
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkForceLinking.h"
#include "SkImageDecoder.h"
#include "SkImagePriv.h"
#include "SkLazyPixelRef.h"
#include "SkScaledImageCache.h"
#include "SkStream.h"
#include "Test.h"
__SK_FORCE_IMAGE_DECODER_LINKING;
/**
* Fill this bitmap with some color.
*/
static void make_test_image(SkBitmap* bm) {
static const int W = 50, H = 50;
static const SkBitmap::Config config = SkBitmap::kARGB_8888_Config;
bm->setConfig(config, W, H);
bm->allocPixels();
bm->eraseColor(SK_ColorBLACK);
SkCanvas canvas(*bm);
SkPaint paint;
paint.setColor(SK_ColorBLUE);
canvas.drawRectCoords(0, 0, SkIntToScalar(W/2),
SkIntToScalar(H/2), paint);
paint.setColor(SK_ColorWHITE);
canvas.drawRectCoords(SkIntToScalar(W/2), SkIntToScalar(H/2),
SkIntToScalar(W), SkIntToScalar(H), paint);
}
/**
* encode this bitmap into some data via SkImageEncoder
*/
static SkData* create_data_from_bitmap(const SkBitmap& bm,
SkImageEncoder::Type type) {
SkDynamicMemoryWStream stream;
if (SkImageEncoder::EncodeStream(&stream, bm, type, 100)) {
return stream.copyToData();
}
return NULL;
}
/**
* A simplified version of SkBitmapFactory
*/
static bool simple_bitmap_factory(SkBitmapFactory::DecodeProc proc,
SkData* data,
SkBitmap* dst) {
SkImage::Info info;
if (!proc(data->data(), data->size(), &info, NULL)) {
return false;
}
dst->setConfig(SkImageInfoToBitmapConfig(info), info.fWidth,
info.fHeight, 0, info.fAlphaType);
SkAutoTUnref<SkLazyPixelRef> ref(SkNEW_ARGS(SkLazyPixelRef,
(data, proc, NULL)));
dst->setPixelRef(ref);
return true;
}
static void compare_bitmaps(skiatest::Reporter* reporter,
const SkBitmap& b1, const SkBitmap& b2,
bool pixelPerfect = true) {
REPORTER_ASSERT(reporter, b1.empty() == b2.empty());
REPORTER_ASSERT(reporter, b1.width() == b2.width());
REPORTER_ASSERT(reporter, b1.height() == b2.height());
REPORTER_ASSERT(reporter, b1.isNull() == b2.isNull());
SkAutoLockPixels autoLockPixels1(b1);
SkAutoLockPixels autoLockPixels2(b2);
REPORTER_ASSERT(reporter, b1.isNull() == b2.isNull());
if (b1.isNull() || b1.empty()) {
return;
}
REPORTER_ASSERT(reporter, NULL != b1.getPixels());
REPORTER_ASSERT(reporter, NULL != b2.getPixels());
if ((!(b1.getPixels())) || (!(b2.getPixels()))) {
return;
}
if ((b1.width() != b2.width()) ||
(b1.height() != b2.height())) {
return;
}
if (!pixelPerfect) {
return;
}
int pixelErrors = 0;
for (int y = 0; y < b2.height(); ++y) {
for (int x = 0; x < b2.width(); ++x) {
if (b1.getColor(x, y) != b2.getColor(x, y)) {
++pixelErrors;
}
}
}
REPORTER_ASSERT(reporter, 0 == pixelErrors);
}
/**
* This checks to see that a SkLazyPixelRef works as advertized.
*/
#include "TestClassDef.h"
DEF_TEST(CachedDecodingPixelRefTest, reporter) {
SkBitmap original;
make_test_image(&original);
const size_t bitmapSize = original.getSize();
const size_t oldByteLimit = SkScaledImageCache::GetByteLimit();
REPORTER_ASSERT(reporter, (!(original.empty())) && (!(original.isNull())));
static const SkImageEncoder::Type types[] = {
SkImageEncoder::kPNG_Type,
SkImageEncoder::kJPEG_Type,
SkImageEncoder::kWEBP_Type
};
for (size_t i = 0; i < SK_ARRAY_COUNT(types); i++) {
SkImageEncoder::Type type = types[i];
SkAutoDataUnref encoded(create_data_from_bitmap(original, type));
REPORTER_ASSERT(reporter, encoded.get() != NULL);
if (NULL == encoded.get()) {
continue;
}
SkBitmap lazy;
static const SkBitmapFactory::DecodeProc decoder =
&(SkImageDecoder::DecodeMemoryToTarget);
bool success = simple_bitmap_factory(decoder, encoded.get(), &lazy);
REPORTER_ASSERT(reporter, success);
size_t bytesUsed = SkScaledImageCache::GetBytesUsed();
if (oldByteLimit < bitmapSize) {
SkScaledImageCache::SetByteLimit(bitmapSize + oldByteLimit);
}
void* lazyPixels = NULL;
// Since this is lazy, it shouldn't have fPixels yet!
REPORTER_ASSERT(reporter, NULL == lazy.getPixels());
{
SkAutoLockPixels autoLockPixels(lazy); // now pixels are good.
lazyPixels = lazy.getPixels();
REPORTER_ASSERT(reporter, NULL != lazy.getPixels());
// first time we lock pixels, we should get bump in the size
// of the cache by exactly bitmapSize.
REPORTER_ASSERT(reporter, bytesUsed + bitmapSize
== SkScaledImageCache::GetBytesUsed());
bytesUsed = SkScaledImageCache::GetBytesUsed();
}
// pixels should be gone!
REPORTER_ASSERT(reporter, NULL == lazy.getPixels());
{
SkAutoLockPixels autoLockPixels(lazy); // now pixels are good.
REPORTER_ASSERT(reporter, NULL != lazy.getPixels());
// verify that the same pixels are used this time.
REPORTER_ASSERT(reporter, lazy.getPixels() == lazyPixels);
}
bool comparePixels = (SkImageEncoder::kPNG_Type == type);
// Only PNG is pixel-perfect.
compare_bitmaps(reporter, original, lazy, comparePixels);
// force the cache to clear by making it too small.
SkScaledImageCache::SetByteLimit(bitmapSize / 2);
compare_bitmaps(reporter, original, lazy, comparePixels);
// I'm pretty sure that the logic of the cache should mean
// that it will clear to zero, regardless of where it started.
REPORTER_ASSERT(reporter, SkScaledImageCache::GetBytesUsed() == 0);
// TODO(someone) - write a custom allocator that can verify
// that the memory where those pixels were cached really did
// get freed.
////////////////////////////////////////////////////////////////////////
// The following commented-out code happens to work on my
// machine, and indicates to me that the SkLazyPixelRef is
// behaving as designed. But I don't know an easy way to
// guarantee that a second allocation of the same size will
// give a different address.
////////////////////////////////////////////////////////////////////////
// {
// // confuse the heap allocation system
// SkAutoMalloc autoMalloc(bitmapSize);
// REPORTER_ASSERT(reporter, autoMalloc.get() == lazyPixels);
// {
// SkAutoLockPixels autoLockPixels(lazy);
// // verify that *different* pixels are used this time.
// REPORTER_ASSERT(reporter, lazy.getPixels() != lazyPixels);
// compare_bitmaps(reporter, original, lazy, comparePixels);
// }
// }
// restore cache size
SkScaledImageCache::SetByteLimit(oldByteLimit);
}
}