Remove SkCurve and SkColorCurve

This was only being used in one effect (and for no good reason). SkSL is
plenty powerful to re-implement something similar if required, at no
real performance cost.

Re-implemented the one effect that used it with simpler math in the
script, updated the copy of that effect in the gallery.

Docs-Preview: https://skia.org/?cl=247040
Change-Id: I68c86d6550dd4f003f6ba5ecd0febab37b86540b
Bug: skia:9513
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/247040
Reviewed-by: Kevin Lubick <kjlubick@google.com>
Reviewed-by: Brian Osman <brianosman@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
This commit is contained in:
Brian Osman 2019-10-08 11:07:59 -04:00 committed by Skia Commit-Bot
parent 82e1145cd0
commit 7edfb69406
11 changed files with 33 additions and 559 deletions

View File

@ -1,4 +1,4 @@
<!DOCTYPE html>
<!DOCTYPE html>
<title>CanvasKit Extra features (Skia via Web Assembly)</title>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge">
@ -183,8 +183,9 @@
}
const context = CanvasKit.currentContext();
const canvas = surface.getCanvas();
canvas.translate(250, 450);
const particles = CanvasKit.MakeParticles(JSON.stringify(snowfall));
const particles = CanvasKit.MakeParticles(JSON.stringify(curves));
particles.start(Date.now() / 1000.0, true);
function drawFrame(canvas) {
@ -197,58 +198,35 @@
surface.requestAnimationFrame(drawFrame);
}
const snowfall = {
"MaxCount": 4096,
const curves = {
"MaxCount": 1000,
"Drawable": {
"Type": "SkCircleDrawable",
"Radius": 1
"Radius": 2
},
"EffectCode": [
"void effectSpawn(inout Effect effect) {",
" effect.rate = 30;",
"}",
"",
"void effectUpdate(inout Effect effect) {",
" effect.rate = 200;",
" effect.color = float4(1, 0, 0, 1);",
"}",
""
],
"Code": [
"void spawn(inout Particle p) {",
" p.lifetime = 10;",
" p.vel.y = 10 + rand * 20;",
" p.vel.x = -5 + 10 * rand;",
" p.pos.x = rand * 500;",
" p.lifetime = 3 + rand;",
" p.vel.y = -50;",
"}",
"",
"void update(inout Particle p) {",
" p.scale = size(p.age);",
" float w = mix(15, 3, p.age);",
" p.pos.x = sin(radians(p.age * 320)) * mix(25, 10, p.age) + mix(-w, w, rand);",
" if (rand < 0.5) { p.pos.x = -p.pos.x; }",
"",
" p.color.g = (mix(75, 220, p.age) + mix(-30, 30, rand)) / 255;",
"}",
""
],
"Bindings": [
{
"Type": "SkCurveBinding",
"Name": "size",
"Curve": {
"XValues": [],
"Segments": [
{
"Type": "Cubic",
"Ranged": true,
"Bidirectional": false,
"A0": 10,
"B0": 10,
"C0": 10,
"D0": 0,
"A1": 10,
"B1": 0,
"C1": 0,
"D1": 0
}
]
}
}
]
"Bindings": []
};
function SurfaceAPI1(CanvasKit) {

View File

@ -1,124 +0,0 @@
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkCurve_DEFINED
#define SkCurve_DEFINED
#include "include/core/SkColor.h"
#include "include/private/SkTArray.h"
class SkFieldVisitor;
class SkRandom;
/**
* SkCurve implements a keyframed 1D function, useful for animating values over time. This pattern
* is common in digital content creation tools. An SkCurve might represent rotation, scale, opacity,
* or any other scalar quantity.
*
* An SkCurve has a logical domain of [0, 1], and is made of one or more SkCurveSegments.
* Each segment describes the behavior of the curve in some sub-domain. For an SkCurve with N
* segments, there are (N - 1) intermediate x-values that subdivide the domain. The first and last
* x-values are implicitly 0 and 1:
*
* 0 ... x[0] ... x[1] ... ... 1
* Segment_0 Segment_1 ... Segment_N-1
*
* Each segment describes a function over [0, 1] - x-values are re-normalized to the segment's
* domain when being evaluated. The segments are cubic polynomials, defined by four values (fMin).
* These are the values at x=0 and x=1, as well as control points at x=1/3 and x=2/3.
*
* For segments with fConstant == true, only the first value is used (fMin[0]).
*
* Each segment has two additional features for creating interesting (and varied) animation:
* - A segment can be ranged. Ranged segments have two sets of coefficients, and a random value
* taken from the particle's SkRandom is used to lerp betwen them. Typically, the SkRandom is
* in the same state at each call, so this value is stable. That causes a ranged SkCurve to
* produce a single smooth cubic function somewhere within the range defined by fMin and fMax.
* - A segment can be bidirectional. In that case, after a value is computed, it will be negated
* 50% of the time.
*/
enum SkCurveSegmentType {
kConstant_SegmentType,
kLinear_SegmentType,
kCubic_SegmentType,
};
struct SkCurveSegment {
float eval(float x, float t, bool negate) const;
void visitFields(SkFieldVisitor* v);
void setConstant(float c) {
fType = kConstant_SegmentType;
fRanged = false;
fMin[0] = c;
}
float fMin[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
float fMax[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
int fType = kConstant_SegmentType;
bool fRanged = false;
bool fBidirectional = false;
};
struct SkCurve {
SkCurve(float c = 0.0f) {
fSegments.push_back().setConstant(c);
}
float eval(float x, SkRandom& random) const;
void visitFields(SkFieldVisitor* v);
// It should always be true that (fXValues.count() + 1) == fSegments.count()
SkTArray<float, true> fXValues;
SkTArray<SkCurveSegment, true> fSegments;
};
/**
* SkColorCurve is similar to SkCurve, but keyframes 4D values - specifically colors. Because
* negative colors rarely make sense, SkColorCurves do not support bidirectional segments, but
* support all other features (including cubic interpolation).
*/
struct SkColorCurveSegment {
SkColorCurveSegment() {
for (int i = 0; i < 4; ++i) {
fMin[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
fMax[i] = { 1.0f, 1.0f, 1.0f, 1.0f };
}
}
SkColor4f eval(float x, float t) const;
void visitFields(SkFieldVisitor* v);
void setConstant(SkColor4f c) {
fType = kConstant_SegmentType;
fRanged = false;
fMin[0] = c;
}
SkColor4f fMin[4];
SkColor4f fMax[4];
int fType = kConstant_SegmentType;
bool fRanged = false;
};
struct SkColorCurve {
SkColorCurve(SkColor4f c = { 1.0f, 1.0f, 1.0f, 1.0f }) {
fSegments.push_back().setConstant(c);
}
SkColor4f eval(float x, SkRandom& random) const;
void visitFields(SkFieldVisitor* v);
SkTArray<float, true> fXValues;
SkTArray<SkColorCurveSegment, true> fSegments;
};
#endif // SkCurve_DEFINED

View File

@ -14,8 +14,6 @@
#include <memory>
struct SkCurve;
struct SkColorCurve;
class SkParticleEffect;
class SkParticleEffectParams;
class SkRandom;
@ -60,14 +58,6 @@ public:
* each kind of binding is described below.
*/
// Binds an SkCurve to an effect's SkSL. The curve is a one-dimensional function, described
// in SkCurve.h. It is called in the SkSL as 'name(t)', and returns a single float value.
static sk_sp<SkParticleBinding> MakeCurve(const char* name, const SkCurve& curve);
// Binds an SkColorCurve to an effect's SkSL. The curve is a one-dimensional, function,
// described in SkCurve.h. It is called in the SkSL as 'name(t)', and returns a float4 value.
static sk_sp<SkParticleBinding> MakeColorCurve(const char* name, const SkColorCurve& curve);
// Binds an SkPath to an effect's SkSL. The path is specified using SVG syntax. It is called
// in the SkSL as 'name(t)'. 't' is a normalized distance along the path. This returns a float4
// value, containing the position in .xy, and the normal in .zw.

View File

@ -15,7 +15,6 @@
#include <functional> // std::function
#include <string.h>
struct SkCurve;
class SkFieldVisitor;
struct SkPoint;
class SkString;
@ -163,9 +162,6 @@ public:
};
virtual void visit(const char*, int&, const EnumStringMapping*, int count) = 0;
// Specific virtual signature for SkCurve, to allow for heavily customized UI in SkGuiVisitor.
virtual void visit(const char* name, SkCurve& c);
// Default visit function for structs with no special behavior. It is assumed that any such
// struct implements visitFields(SkFieldVisitor*) to recursively visit each of its fields.
template <typename T>

View File

@ -7,7 +7,6 @@
_src = get_path_info("src", "abspath")
skia_particle_sources = [
"$_src/SkCurve.cpp",
"$_src/SkParticleBinding.cpp",
"$_src/SkParticleDrawable.cpp",
"$_src/SkParticleEffect.cpp",

View File

@ -1,182 +0,0 @@
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/utils/SkRandom.h"
#include "modules/particles/include/SkCurve.h"
#include "modules/particles/include/SkReflected.h"
constexpr SkFieldVisitor::EnumStringMapping gCurveSegmentTypeMapping[] = {
{ kConstant_SegmentType, "Constant" },
{ kLinear_SegmentType, "Linear" },
{ kCubic_SegmentType, "Cubic" },
};
static SkColor4f operator+(SkColor4f c1, SkColor4f c2) {
return { c1.fR + c2.fR, c1.fG + c2.fG, c1.fB + c2.fB, c1.fA + c2.fA };
}
static SkColor4f operator-(SkColor4f c1, SkColor4f c2) {
return { c1.fR - c2.fR, c1.fG - c2.fG, c1.fB - c2.fB, c1.fA - c2.fA };
}
template <typename T>
static T eval_cubic(const T* pts, float x) {
float ix = (1 - x);
return pts[0]*(ix*ix*ix) + pts[1]*(3*ix*ix*x) + pts[2]*(3*ix*x*x) + pts[3]*(x*x*x);
}
template <typename T>
static T eval_segment(const T* pts, float x, int type) {
switch (type) {
case kLinear_SegmentType:
return pts[0] + (pts[3] - pts[0]) * x;
case kCubic_SegmentType:
return eval_cubic(pts, x);
case kConstant_SegmentType:
default:
return pts[0];
}
}
float SkCurveSegment::eval(float x, float t, bool negate) const {
float result = eval_segment(fMin, x, fType);
if (fRanged) {
result += (eval_segment(fMax, x, fType) - result) * t;
}
if (fBidirectional && negate) {
result = -result;
}
return result;
}
void SkCurveSegment::visitFields(SkFieldVisitor* v) {
v->visit("Type", fType, gCurveSegmentTypeMapping, SK_ARRAY_COUNT(gCurveSegmentTypeMapping));
v->visit("Ranged", fRanged);
v->visit("Bidirectional", fBidirectional);
v->visit("A0", fMin[0]);
if (fType == kCubic_SegmentType) {
v->visit("B0", fMin[1]);
v->visit("C0", fMin[2]);
}
if (fType != kConstant_SegmentType) {
v->visit("D0", fMin[3]);
}
if (fRanged) {
v->visit("A1", fMax[0]);
if (fType == kCubic_SegmentType) {
v->visit("B1", fMax[1]);
v->visit("C1", fMax[2]);
}
if (fType != kConstant_SegmentType) {
v->visit("D1", fMax[3]);
}
}
}
float SkCurve::eval(float x, SkRandom& random) const {
SkASSERT(fSegments.count() == fXValues.count() + 1);
int i = 0;
for (; i < fXValues.count(); ++i) {
if (x <= fXValues[i]) {
break;
}
}
float rangeMin = (i == 0) ? 0.0f : fXValues[i - 1];
float rangeMax = (i == fXValues.count()) ? 1.0f : fXValues[i];
float segmentX = (x - rangeMin) / (rangeMax - rangeMin);
if (!sk_float_isfinite(segmentX)) {
segmentX = rangeMin;
}
SkASSERT(0.0f <= segmentX && segmentX <= 1.0f);
// Always pull t and negate here, so that the stable generator behaves consistently, even if
// our segments use an inconsistent feature-set.
float t = random.nextF();
bool negate = random.nextBool();
return fSegments[i].eval(segmentX, t, negate);
}
void SkCurve::visitFields(SkFieldVisitor* v) {
v->visit("XValues", fXValues);
v->visit("Segments", fSegments);
// Validate and fixup
if (fSegments.empty()) {
fSegments.push_back().setConstant(0.0f);
}
fXValues.resize_back(fSegments.count() - 1);
for (int i = 0; i < fXValues.count(); ++i) {
fXValues[i] = SkTPin(fXValues[i], i > 0 ? fXValues[i - 1] : 0.0f, 1.0f);
}
}
SkColor4f SkColorCurveSegment::eval(float x, float t) const {
SkColor4f result = eval_segment(fMin, x, fType);
if (fRanged) {
result = result + (eval_segment(fMax, x, fType) - result) * t;
}
return result;
}
void SkColorCurveSegment::visitFields(SkFieldVisitor* v) {
v->visit("Type", fType, gCurveSegmentTypeMapping, SK_ARRAY_COUNT(gCurveSegmentTypeMapping));
v->visit("Ranged", fRanged);
v->visit("A0", fMin[0]);
if (fType == kCubic_SegmentType) {
v->visit("B0", fMin[1]);
v->visit("C0", fMin[2]);
}
if (fType != kConstant_SegmentType) {
v->visit("D0", fMin[3]);
}
if (fRanged) {
v->visit("A1", fMax[0]);
if (fType == kCubic_SegmentType) {
v->visit("B1", fMax[1]);
v->visit("C1", fMax[2]);
}
if (fType != kConstant_SegmentType) {
v->visit("D1", fMax[3]);
}
}
}
SkColor4f SkColorCurve::eval(float x, SkRandom& random) const {
SkASSERT(fSegments.count() == fXValues.count() + 1);
int i = 0;
for (; i < fXValues.count(); ++i) {
if (x <= fXValues[i]) {
break;
}
}
float rangeMin = (i == 0) ? 0.0f : fXValues[i - 1];
float rangeMax = (i == fXValues.count()) ? 1.0f : fXValues[i];
float segmentX = (x - rangeMin) / (rangeMax - rangeMin);
if (!sk_float_isfinite(segmentX)) {
segmentX = rangeMin;
}
SkASSERT(0.0f <= segmentX && segmentX <= 1.0f);
return fSegments[i].eval(segmentX, random.nextF());
}
void SkColorCurve::visitFields(SkFieldVisitor* v) {
v->visit("XValues", fXValues);
v->visit("Segments", fSegments);
// Validate and fixup
if (fSegments.empty()) {
fSegments.push_back().setConstant(SkColor4f{ 1.0f, 1.0f, 1.0f, 1.0f });
}
fXValues.resize_back(fSegments.count() - 1);
for (int i = 0; i < fXValues.count(); ++i) {
fXValues[i] = SkTPin(fXValues[i], i > 0 ? fXValues[i - 1] : 0.0f, 1.0f);
}
}

View File

@ -12,7 +12,6 @@
#include "include/utils/SkParsePath.h"
#include "include/utils/SkRandom.h"
#include "include/utils/SkTextUtils.h"
#include "modules/particles/include/SkCurve.h"
#include "modules/particles/include/SkParticleEffect.h"
#include "modules/particles/include/SkReflected.h"
#include "src/sksl/SkSLCompiler.h"
@ -21,96 +20,6 @@ void SkParticleBinding::visitFields(SkFieldVisitor* v) {
v->visit("Name", fName);
}
// Exposes an SkCurve as an external, callable value. c(x) returns a float.
class SkCurveExternalValue : public SkParticleExternalValue {
public:
SkCurveExternalValue(const char* name, SkSL::Compiler& compiler, const SkCurve& curve)
: SkParticleExternalValue(name, compiler, *compiler.context().fFloat_Type)
, fCurve(curve) { }
bool canCall() const override { return true; }
int callParameterCount() const override { return 1; }
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fFloat_Type.get();
}
void call(int index, float* arguments, float* outReturn) override {
*outReturn = fCurve.eval(*arguments, fRandom[index]);
}
private:
SkCurve fCurve;
};
class SkCurveBinding : public SkParticleBinding {
public:
SkCurveBinding(const char* name = "", const SkCurve& curve = 0.0f)
: SkParticleBinding(name)
, fCurve(curve) {}
REFLECTED(SkCurveBinding, SkParticleBinding)
void visitFields(SkFieldVisitor* v) override {
SkParticleBinding::visitFields(v);
v->visit("Curve", fCurve);
}
std::unique_ptr<SkParticleExternalValue> toValue(SkSL::Compiler& compiler) override {
return std::unique_ptr<SkParticleExternalValue>(
new SkCurveExternalValue(fName.c_str(), compiler, fCurve));
}
private:
SkCurve fCurve;
};
// Exposes an SkColorCurve as an external, callable value. c(x) returns a float4.
class SkColorCurveExternalValue : public SkParticleExternalValue {
public:
SkColorCurveExternalValue(const char* name, SkSL::Compiler& compiler, const SkColorCurve& curve)
: SkParticleExternalValue(name, compiler, *compiler.context().fFloat4_Type)
, fCurve(curve) {
}
bool canCall() const override { return true; }
int callParameterCount() const override { return 1; }
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fFloat_Type.get();
}
void call(int index, float* arguments, float* outReturn) override {
SkColor4f color = fCurve.eval(*arguments, fRandom[index]);
memcpy(outReturn, color.vec(), 4 * sizeof(float));
}
private:
SkColorCurve fCurve;
};
class SkColorCurveBinding : public SkParticleBinding {
public:
SkColorCurveBinding(const char* name = "",
const SkColorCurve& curve = SkColor4f{ 1.0f, 1.0f, 1.0f, 1.0f })
: SkParticleBinding(name)
, fCurve(curve) {
}
REFLECTED(SkColorCurveBinding, SkParticleBinding)
void visitFields(SkFieldVisitor* v) override {
SkParticleBinding::visitFields(v);
v->visit("Curve", fCurve);
}
std::unique_ptr<SkParticleExternalValue> toValue(SkSL::Compiler& compiler) override {
return std::unique_ptr<SkParticleExternalValue>(
new SkColorCurveExternalValue(fName.c_str(), compiler, fCurve));
}
private:
SkColorCurve fCurve;
};
class SkEffectExternalValue : public SkParticleExternalValue {
public:
SkEffectExternalValue(const char* name, SkSL::Compiler& compiler,
@ -295,15 +204,6 @@ private:
SkPathContours fContours;
};
sk_sp<SkParticleBinding> SkParticleBinding::MakeCurve(const char* name, const SkCurve& curve) {
return sk_sp<SkParticleBinding>(new SkCurveBinding(name, curve));
}
sk_sp<SkParticleBinding> SkParticleBinding::MakeColorCurve(const char* name,
const SkColorCurve& curve) {
return sk_sp<SkParticleBinding>(new SkColorCurveBinding(name, curve));
}
sk_sp<SkParticleBinding> SkParticleBinding::MakeEffectBinding(
const char* name, sk_sp<SkParticleEffectParams> params) {
return sk_sp<SkParticleBinding>(new SkEffectBinding(name, params));
@ -315,8 +215,6 @@ sk_sp<SkParticleBinding> SkParticleBinding::MakePathBinding(const char* name, co
void SkParticleBinding::RegisterBindingTypes() {
REGISTER_REFLECTED(SkParticleBinding);
REGISTER_REFLECTED(SkCurveBinding);
REGISTER_REFLECTED(SkColorCurveBinding);
REGISTER_REFLECTED(SkEffectBinding);
REGISTER_REFLECTED(SkPathBinding);
REGISTER_REFLECTED(SkTextBinding);

View File

@ -8,7 +8,6 @@
#include "modules/particles/include/SkParticleEffect.h"
#include "include/core/SkPaint.h"
#include "modules/particles/include/SkCurve.h"
#include "modules/particles/include/SkParticleBinding.h"
#include "modules/particles/include/SkParticleDrawable.h"
#include "modules/particles/include/SkReflected.h"

View File

@ -7,8 +7,6 @@
#include "modules/particles/include/SkReflected.h"
#include "modules/particles/include/SkCurve.h"
SkSTArray<16, const SkReflected::Type*, true> SkReflected::gTypes;
void SkReflected::VisitTypes(std::function<void(const Type*)> visitor) {
@ -16,9 +14,3 @@ void SkReflected::VisitTypes(std::function<void(const Type*)> visitor) {
visitor(type);
}
}
void SkFieldVisitor::visit(const char* name, SkCurve& c) {
this->enterObject(name);
c.visitFields(this);
this->exitObject();
}

View File

@ -7,6 +7,7 @@
"EffectCode": [
"void effectSpawn(inout Effect effect) {",
" effect.rate = 200;",
" effect.color = float4(1, 0, 0, 1);",
"}",
""
],
@ -17,50 +18,13 @@
"}",
"",
"void update(inout Particle p) {",
" p.pos.x = wave(p.age);",
" p.color = color(p.age);",
" float w = mix(15, 3, p.age);",
" p.pos.x = sin(radians(p.age * 320)) * mix(25, 10, p.age) + mix(-w, w, rand);",
" if (rand < 0.5) { p.pos.x = -p.pos.x; }",
"",
" p.color.g = (mix(75, 220, p.age) + mix(-30, 30, rand)) / 255;",
"}",
""
],
"Bindings": [
{
"Type": "SkCurveBinding",
"Name": "wave",
"Curve": {
"XValues": [],
"Segments": [
{
"Type": "Cubic",
"Ranged": true,
"Bidirectional": true,
"A0": -20,
"B0": 50,
"C0": -30,
"D0": -10,
"A1": 20,
"B1": 60,
"C1": -20,
"D1": 0
}
]
}
},
{
"Type": "SkColorCurveBinding",
"Name": "color",
"Curve": {
"XValues": [],
"Segments": [
{
"Type": "Linear",
"Ranged": true,
"A0": [ 1, 0, 0, 1 ],
"D0": [ 1, 0.735294, 0, 1 ],
"A1": [ 1, 0.588235, 0, 1 ],
"D1": [ 0.941177, 1, 0, 1 ]
}
]
}
}
]
"Bindings": []
}

View File

@ -38,7 +38,7 @@ Samples
<figure>
<canvas id=curves width=400 height=400></canvas>
<figcaption>
<a href="https://particles.skia.org/e1b1b1f5e3d31b9fae57bf90dce729a8"
<a href="https://particles.skia.org/63b1970cc212740e5a44870691c49307"
target=_blank rel=noopener>Curves</a>
</figcaption>
</figure>
@ -87,7 +87,7 @@ Samples
}).ready().then((CK) => {
CanvasKit = CK;
ParticleExample(CanvasKit, 'confetti', confetti, 200, 200);
ParticleExample(CanvasKit, 'curves', curves, 200, 200);
ParticleExample(CanvasKit, 'curves', curves, 200, 300);
ParticleExample(CanvasKit, 'fireworks', fireworks, 200, 300);
ParticleExample(CanvasKit, 'raincloud', raincloud, 200, 100);
ParticleExample(CanvasKit, 'text', text, 75, 250);
@ -178,7 +178,8 @@ const curves = {
},
"EffectCode": [
"void effectSpawn(inout Effect effect) {",
" effect.rate = 200; effect.pos.y = 100;",
" effect.rate = 200;",
" effect.color = float4(1, 0, 0, 1);",
"}",
""
],
@ -189,52 +190,15 @@ const curves = {
"}",
"",
"void update(inout Particle p) {",
" p.pos.x = wave(p.age);",
" p.color = color(p.age);",
" float w = mix(15, 3, p.age);",
" p.pos.x = sin(radians(p.age * 320)) * mix(25, 10, p.age) + mix(-w, w, rand);",
" if (rand < 0.5) { p.pos.x = -p.pos.x; }",
"",
" p.color.g = (mix(75, 220, p.age) + mix(-30, 30, rand)) / 255;",
"}",
""
],
"Bindings": [
{
"Type": "SkCurveBinding",
"Name": "wave",
"Curve": {
"XValues": [],
"Segments": [
{
"Type": "Cubic",
"Ranged": true,
"Bidirectional": true,
"A0": -20,
"B0": 50,
"C0": -30,
"D0": -10,
"A1": 20,
"B1": 60,
"C1": -20,
"D1": 0
}
]
}
},
{
"Type": "SkColorCurveBinding",
"Name": "color",
"Curve": {
"XValues": [],
"Segments": [
{
"Type": "Linear",
"Ranged": true,
"A0": [ 1, 0, 0, 1 ],
"D0": [ 1, 0.735294, 0, 0.2 ],
"A1": [ 1, 0.588235, 0, 1 ],
"D1": [ 0.941177, 1, 0, 0.2 ]
}
]
}
}
]
"Bindings": []
};
const fireworks = {