Delete KTX tests to fix Android build

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1707053002

Review URL: https://codereview.chromium.org/1707053002
This commit is contained in:
msarett 2016-02-17 13:10:14 -08:00 committed by Commit bot
parent 68af68a0ef
commit 82709da122
3 changed files with 0 additions and 373 deletions

View File

@ -1,238 +0,0 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "Resources.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkImageGenerator.h"
#include "SkImageDecoder.h"
#include "SkOSFile.h"
#include "SkPixelRef.h"
#ifndef SK_IGNORE_ETC1_SUPPORT
#include "etc1.h"
// This takes the etc1 data pointed to by orig, and copies it `factor` times in each
// dimension. The return value is the new data or nullptr on error.
static etc1_byte* create_expanded_etc1_bitmap(const uint8_t* orig, int factor) {
SkASSERT(orig);
SkASSERT(factor > 1);
const etc1_byte* origData = reinterpret_cast<const etc1_byte*>(orig);
if (!etc1_pkm_is_valid(orig)) {
return nullptr;
}
etc1_uint32 origWidth = etc1_pkm_get_width(origData);
etc1_uint32 origHeight = etc1_pkm_get_height(origData);
// The width and height must be aligned along block boundaries
static const etc1_uint32 kETC1BlockWidth = 4;
static const etc1_uint32 kETC1BlockHeight = 4;
if ((origWidth % kETC1BlockWidth) != 0 ||
(origHeight % kETC1BlockHeight) != 0) {
return nullptr;
}
// The picture must be at least as large as a block.
if (origWidth <= kETC1BlockWidth || origHeight <= kETC1BlockHeight) {
return nullptr;
}
etc1_uint32 newWidth = origWidth * factor;
etc1_uint32 newHeight = origHeight * factor;
etc1_uint32 newDataSz = etc1_get_encoded_data_size(newWidth, newHeight);
etc1_byte* newData = reinterpret_cast<etc1_byte *>(
sk_malloc_throw(newDataSz + ETC_PKM_HEADER_SIZE));
etc1_pkm_format_header(newData, newWidth, newHeight);
etc1_byte* copyInto = newData;
copyInto += ETC_PKM_HEADER_SIZE;
origData += ETC_PKM_HEADER_SIZE;
etc1_uint32 origBlocksX = (origWidth >> 2);
etc1_uint32 origBlocksY = (origHeight >> 2);
etc1_uint32 newBlocksY = (newHeight >> 2);
etc1_uint32 origRowSzInBytes = origBlocksX * ETC1_ENCODED_BLOCK_SIZE;
for (etc1_uint32 j = 0; j < newBlocksY; ++j) {
const etc1_byte* rowStart = origData + ((j % origBlocksY) * origRowSzInBytes);
for(etc1_uint32 i = 0; i < newWidth; i += origWidth) {
memcpy(copyInto, rowStart, origRowSzInBytes);
copyInto += origRowSzInBytes;
}
}
return newData;
}
// Defined in SkImageDecoder_ktx.cpp
extern SkImageGenerator* decoder_image_generator(SkData*);
// This is the base class for all of the benches in this file. In general
// the ETC1 benches should all be working on the same data. Due to the
// simplicity of the PKM file, that data is the 128x128 mandrill etc1
// compressed texture repeated by some factor (currently 8 -> 1024x1024)
class ETCBitmapBenchBase : public Benchmark {
public:
ETCBitmapBenchBase() : fPKMData(loadPKM()) {
if (nullptr == fPKMData) {
SkDebugf("Could not load PKM data!\n");
}
}
protected:
SkAutoDataUnref fPKMData;
private:
SkData* loadPKM() {
SkString pkmFilename = GetResourcePath("mandrill_128.pkm");
// Expand the data
SkAutoDataUnref fileData(SkData::NewFromFileName(pkmFilename.c_str()));
if (nullptr == fileData) {
SkDebugf("Could not open the file. Did you forget to set the resourcePath?\n");
return nullptr;
}
const etc1_uint32 kExpansionFactor = 8;
etc1_byte* expandedETC1 =
create_expanded_etc1_bitmap(fileData->bytes(), kExpansionFactor);
if (nullptr == expandedETC1) {
SkDebugf("Error expanding ETC1 data by factor of %d\n", kExpansionFactor);
return nullptr;
}
etc1_uint32 width = etc1_pkm_get_width(expandedETC1);
etc1_uint32 height = etc1_pkm_get_width(expandedETC1);
etc1_uint32 dataSz = ETC_PKM_HEADER_SIZE + etc1_get_encoded_data_size(width, height);
return SkData::NewFromMalloc(expandedETC1, dataSz);
}
typedef Benchmark INHERITED;
};
// This is the rendering benchmark. Prior to rendering the data, create a
// bitmap using the etc1 data.
class ETCBitmapBench : public ETCBitmapBenchBase {
public:
ETCBitmapBench(bool decompress, Backend backend)
: fDecompress(decompress), fBackend(backend) { }
bool isSuitableFor(Backend backend) override {
return SkToBool(fImage) && backend == this->fBackend;
}
protected:
const char* onGetName() override {
if (kGPU_Backend == this->fBackend) {
if (this->fDecompress) {
return "etc1bitmap_render_gpu_decompressed";
} else {
return "etc1bitmap_render_gpu_compressed";
}
} else {
SkASSERT(kRaster_Backend == this->fBackend);
if (this->fDecompress) {
return "etc1bitmap_render_raster_decompressed";
} else {
return "etc1bitmap_render_raster_compressed";
}
}
}
void onDelayedSetup() override {
if (nullptr == fPKMData) {
SkDebugf("Failed to load PKM data!\n");
return;
}
if (fDecompress) {
SkAutoTDelete<SkImageGenerator> gen(decoder_image_generator(fPKMData));
gen->generateBitmap(&fBitmap);
} else {
fImage.reset(SkImage::NewFromGenerator(decoder_image_generator(fPKMData)));
}
}
void onDraw(int loops, SkCanvas* canvas) override {
for (int i = 0; i < loops; ++i) {
if (fDecompress) {
canvas->drawBitmap(this->fBitmap, 0, 0, nullptr);
} else {
canvas->drawImage(fImage, 0, 0, nullptr);
}
}
}
protected:
SkBitmap fBitmap;
SkAutoTUnref<SkImage> fImage;
bool decompress() const { return fDecompress; }
Backend backend() const { return fBackend; }
private:
const bool fDecompress;
const Backend fBackend;
typedef ETCBitmapBenchBase INHERITED;
};
// This benchmark is identical to the previous benchmark, but it explicitly forces
// an upload to the GPU before each draw call. We do this by notifying the bitmap
// that the pixels have changed (even though they haven't).
class ETCBitmapUploadBench : public ETCBitmapBench {
public:
ETCBitmapUploadBench(bool decompress, Backend backend)
: ETCBitmapBench(decompress, backend) { }
protected:
const char* onGetName() override {
if (kGPU_Backend == this->backend()) {
if (this->decompress()) {
return "etc1bitmap_upload_gpu_decompressed";
} else {
return "etc1bitmap_upload_gpu_compressed";
}
} else {
SkASSERT(kRaster_Backend == this->backend());
if (this->decompress()) {
return "etc1bitmap_upload_raster_decompressed";
} else {
return "etc1bitmap_upload_raster_compressed";
}
}
}
void onDraw(int loops, SkCanvas* canvas) override {
SkPixelRef* pr = fBitmap.pixelRef();
for (int i = 0; i < loops; ++i) {
if (pr) {
pr->notifyPixelsChanged();
}
canvas->drawBitmap(this->fBitmap, 0, 0, nullptr);
}
}
private:
typedef ETCBitmapBench INHERITED;
};
DEF_BENCH(return new ETCBitmapBench(false, Benchmark::kRaster_Backend);)
DEF_BENCH(return new ETCBitmapBench(true, Benchmark::kRaster_Backend);)
DEF_BENCH(return new ETCBitmapBench(false, Benchmark::kGPU_Backend);)
DEF_BENCH(return new ETCBitmapBench(true, Benchmark::kGPU_Backend);)
DEF_BENCH(return new ETCBitmapUploadBench(false, Benchmark::kRaster_Backend);)
DEF_BENCH(return new ETCBitmapUploadBench(true, Benchmark::kRaster_Backend);)
DEF_BENCH(return new ETCBitmapUploadBench(false, Benchmark::kGPU_Backend);)
DEF_BENCH(return new ETCBitmapUploadBench(true, Benchmark::kGPU_Backend);)
#endif // SK_IGNORE_ETC1_SUPPORT

View File

@ -329,101 +329,3 @@ SkImageEncoder* sk_libktx_efactory(SkImageEncoder::Type t) {
static SkImageDecoder_DecodeReg gReg(sk_libktx_dfactory);
static SkImageDecoder_FormatReg gFormatReg(get_format_ktx);
static SkImageEncoder_EncodeReg gEReg(sk_libktx_efactory);
/////////////////////////////////////////////////////////////////////////////////////////
// Old implementation of SkImageGenerator::NewFromEncoded which uses SkImageDecoder.
// Here because it is only needed by DM and tests for Ktx.
class BareMemoryAllocator : public SkBitmap::Allocator {
const SkImageInfo fInfo;
void* const fMemory;
const size_t fRowBytes;
public:
BareMemoryAllocator(const SkImageInfo& info, void* memory, size_t rowBytes)
: fInfo(info), fMemory(memory), fRowBytes(rowBytes)
{}
protected:
bool allocPixelRef(SkBitmap* bm, SkColorTable* ctable) override {
const SkImageInfo bmi = bm->info();
if (bmi.width() != fInfo.width() || bmi.height() != fInfo.height() ||
bmi.colorType() != fInfo.colorType())
{
return false;
}
return bm->installPixels(bmi, fMemory, fRowBytes, ctable, nullptr, nullptr);
}
};
class SkImageDecoderGenerator : public SkImageGenerator {
const SkImageInfo fInfo;
SkAutoTDelete<SkImageDecoder> fDecoder;
SkAutoTUnref<SkData> fData;
public:
SkImageDecoderGenerator(const SkImageInfo& info, SkImageDecoder* decoder, SkData* data)
: INHERITED(info), fInfo(info), fDecoder(decoder), fData(SkRef(data))
{}
protected:
SkData* onRefEncodedData(SK_REFENCODEDDATA_CTXPARAM) override {
return SkRef(fData.get());
}
bool onGetPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
SkPMColor ctableEntries[], int* ctableCount) override {
SkMemoryStream stream(fData->data(), fData->size(), false);
SkAutoTUnref<BareMemoryAllocator> allocator(
new BareMemoryAllocator(info, pixels, rowBytes));
fDecoder->setAllocator(allocator);
fDecoder->setRequireUnpremultipliedColors(kUnpremul_SkAlphaType == info.alphaType());
SkBitmap bm;
const SkImageDecoder::Result result = fDecoder->decode(&stream, &bm, info.colorType(),
SkImageDecoder::kDecodePixels_Mode);
if (SkImageDecoder::kFailure == result) {
return false;
}
SkASSERT(info.colorType() == bm.info().colorType());
if (kIndex_8_SkColorType == info.colorType()) {
SkASSERT(ctableEntries);
SkColorTable* ctable = bm.getColorTable();
if (nullptr == ctable) {
return false;
}
const int count = ctable->count();
memcpy(ctableEntries, ctable->readColors(), count * sizeof(SkPMColor));
*ctableCount = count;
}
return true;
}
bool onGetYUV8Planes(SkISize sizes[3], void* planes[3], size_t rowBytes[3],
SkYUVColorSpace* colorSpace) override {
SkMemoryStream stream(fData->data(), fData->size(), false);
return fDecoder->decodeYUV8Planes(&stream, sizes, planes, rowBytes, colorSpace);
}
private:
typedef SkImageGenerator INHERITED;
};
SkImageGenerator* decoder_image_generator(SkData* data) {
SkMemoryStream stream(data->data(), data->size(), false);
SkImageDecoder* decoder = SkImageDecoder::Factory(&stream);
if (nullptr == decoder) {
return nullptr;
}
SkBitmap bm;
stream.rewind();
if (!decoder->decode(&stream, &bm, kUnknown_SkColorType, SkImageDecoder::kDecodeBounds_Mode)) {
delete decoder;
return nullptr;
}
return new SkImageDecoderGenerator(bm.info(), decoder, data);
}

View File

@ -142,40 +142,3 @@ DEF_TEST(KtxReadUnpremul, reporter) {
row += decodedBitmap.rowBytes();
}
}
// For KtxReexportPKM, below. Defined in SkImageDecoder_ktx.cpp
extern SkImageGenerator* decoder_image_generator(SkData*);
/**
* Finally, make sure that if we get ETC1 data from a PKM file that we can then
* accurately write it out into a KTX file (i.e. transferring the ETC1 data from
* the PKM to the KTX should produce an identical KTX to the one we have on file)
*/
DEF_TEST(KtxReexportPKM, reporter) {
SkString pkmFilename = GetResourcePath("mandrill_128.pkm");
// Load PKM file into a bitmap
SkBitmap etcBitmap;
SkAutoTUnref<SkData> fileData(SkData::NewFromFileName(pkmFilename.c_str()));
if (nullptr == fileData) {
SkDebugf("KtxReexportPKM: can't load test file %s\n", pkmFilename.c_str());
return;
}
bool installDiscardablePixelRefSuccess =
SkDEPRECATED_InstallDiscardablePixelRef(decoder_image_generator(fileData), &etcBitmap);
if (!installDiscardablePixelRefSuccess) {
ERRORF(reporter, "failed to create discardable pixelRef from KTX file");
return;
}
// Write the bitmap out to a KTX file.
SkData *ktxDataPtr = SkImageEncoder::EncodeData(etcBitmap, SkImageEncoder::kKTX_Type, 0);
SkAutoDataUnref newKtxData(ktxDataPtr);
REPORTER_ASSERT(reporter, ktxDataPtr);
// See is this data is identical to data in existing ktx file.
SkString ktxFilename = GetResourcePath("mandrill_128.ktx");
SkAutoDataUnref oldKtxData(SkData::NewFromFileName(ktxFilename.c_str()));
REPORTER_ASSERT(reporter, oldKtxData->equals(newKtxData));
}