Add GrAAConvexTessellator class
This CL adds a GrAAConvexTessellator class. It does not connect it to the GrAAConvexPathRenderer. Review URL: https://codereview.chromium.org/1084943003
This commit is contained in:
parent
91d06bcc6c
commit
84b008873b
@ -55,6 +55,8 @@
|
||||
'<(skia_src_path)/gpu/GrAAHairLinePathRenderer.h',
|
||||
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.cpp',
|
||||
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.h',
|
||||
'<(skia_src_path)/gpu/GrAAConvexTessellator.cpp',
|
||||
'<(skia_src_path)/gpu/GrAAConvexTessellator.h',
|
||||
'<(skia_src_path)/gpu/GrAADistanceFieldPathRenderer.cpp',
|
||||
'<(skia_src_path)/gpu/GrAADistanceFieldPathRenderer.h',
|
||||
'<(skia_src_path)/gpu/GrAARectRenderer.cpp',
|
||||
|
874
src/gpu/GrAAConvexTessellator.cpp
Normal file
874
src/gpu/GrAAConvexTessellator.cpp
Normal file
@ -0,0 +1,874 @@
|
||||
/*
|
||||
* Copyright 2015 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include "GrAAConvexTessellator.h"
|
||||
#include "SkCanvas.h"
|
||||
#include "SkPath.h"
|
||||
#include "SkPoint.h"
|
||||
#include "SkString.h"
|
||||
|
||||
// Next steps:
|
||||
// use in AAConvexPathRenderer
|
||||
// add an interactive sample app slide
|
||||
// add debug check that all points are suitably far apart
|
||||
// test more degenerate cases
|
||||
|
||||
// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
|
||||
static const SkScalar kClose = (SK_Scalar1 / 16);
|
||||
static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
|
||||
|
||||
static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
|
||||
const SkPoint& p1, const SkPoint& n1) {
|
||||
const SkPoint v = p1 - p0;
|
||||
|
||||
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
|
||||
return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
|
||||
}
|
||||
|
||||
// This is a special case version of intersect where we have the vector
|
||||
// perpendicular to the second line rather than the vector parallel to it.
|
||||
static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
|
||||
const SkPoint& p1, const SkPoint& perp) {
|
||||
const SkPoint v = p1 - p0;
|
||||
SkScalar perpDot = n0.dot(perp);
|
||||
return v.dot(perp) / perpDot;
|
||||
}
|
||||
|
||||
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
|
||||
SkScalar distSq = p0.distanceToSqd(p1);
|
||||
return distSq < kCloseSqd;
|
||||
}
|
||||
|
||||
static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
|
||||
SkPoint testV = test - p0;
|
||||
SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
|
||||
return SkScalarAbs(dist);
|
||||
}
|
||||
|
||||
int GrAAConvexTessellator::addPt(const SkPoint& pt,
|
||||
SkScalar depth,
|
||||
bool movable) {
|
||||
this->validate();
|
||||
|
||||
int index = fPts.count();
|
||||
*fPts.push() = pt;
|
||||
*fDepths.push() = depth;
|
||||
*fMovable.push() = movable;
|
||||
|
||||
this->validate();
|
||||
return index;
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::popLastPt() {
|
||||
this->validate();
|
||||
|
||||
fPts.pop();
|
||||
fDepths.pop();
|
||||
fMovable.pop();
|
||||
|
||||
this->validate();
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::popFirstPtShuffle() {
|
||||
this->validate();
|
||||
|
||||
fPts.removeShuffle(0);
|
||||
fDepths.removeShuffle(0);
|
||||
fMovable.removeShuffle(0);
|
||||
|
||||
this->validate();
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::updatePt(int index,
|
||||
const SkPoint& pt,
|
||||
SkScalar depth) {
|
||||
this->validate();
|
||||
SkASSERT(fMovable[index]);
|
||||
|
||||
fPts[index] = pt;
|
||||
fDepths[index] = depth;
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
|
||||
if (i0 == i1 || i1 == i2 || i2 == i0) {
|
||||
return;
|
||||
}
|
||||
|
||||
*fIndices.push() = i0;
|
||||
*fIndices.push() = i1;
|
||||
*fIndices.push() = i2;
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::rewind() {
|
||||
fPts.rewind();
|
||||
fDepths.rewind();
|
||||
fMovable.rewind();
|
||||
fIndices.rewind();
|
||||
fNorms.rewind();
|
||||
fInitialRing.rewind();
|
||||
fCandidateVerts.rewind();
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
fRings.rewind(); // TODO: leak in this case!
|
||||
#else
|
||||
fRings[0].rewind();
|
||||
fRings[1].rewind();
|
||||
#endif
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::computeBisectors() {
|
||||
fBisectors.setCount(fNorms.count());
|
||||
|
||||
int prev = fBisectors.count() - 1;
|
||||
for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
|
||||
fBisectors[cur] = fNorms[cur] + fNorms[prev];
|
||||
fBisectors[cur].normalize();
|
||||
fBisectors[cur].negate(); // make the bisector face in
|
||||
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
|
||||
}
|
||||
}
|
||||
|
||||
// The general idea here is to, conceptually, start with the original polygon and slide
|
||||
// the vertices along the bisectors until the first intersection. At that
|
||||
// point two of the edges collapse and the process repeats on the new polygon.
|
||||
// The polygon state is captured in the Ring class while the GrAAConvexTessellator
|
||||
// controls the iteration. The CandidateVerts holds the formative points for the
|
||||
// next ring.
|
||||
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
|
||||
static const int kMaxNumRings = 8;
|
||||
|
||||
SkDEBUGCODE(fShouldCheckDepths = true;)
|
||||
|
||||
if (!this->extractFromPath(m, path)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
this->createOuterRing();
|
||||
|
||||
// the bisectors are only needed for the computation of the outer ring
|
||||
fBisectors.rewind();
|
||||
|
||||
Ring* lastRing = &fInitialRing;
|
||||
int i;
|
||||
for (i = 0; i < kMaxNumRings; ++i) {
|
||||
Ring* nextRing = this->getNextRing(lastRing);
|
||||
|
||||
if (this->createInsetRing(*lastRing, nextRing)) {
|
||||
break;
|
||||
}
|
||||
|
||||
nextRing->init(*this);
|
||||
lastRing = nextRing;
|
||||
}
|
||||
|
||||
if (kMaxNumRings == i) {
|
||||
// If we've exceeded the amount of time we want to throw at this, set
|
||||
// the depth of all points in the final ring to 'fTargetDepth' and
|
||||
// create a fan.
|
||||
this->terminate(*lastRing);
|
||||
SkDEBUGCODE(fShouldCheckDepths = false;)
|
||||
}
|
||||
|
||||
#ifdef SK_DEBUG
|
||||
this->validate();
|
||||
if (fShouldCheckDepths) {
|
||||
SkDEBUGCODE(this->checkAllDepths();)
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
|
||||
SkASSERT(edgeIdx < fNorms.count());
|
||||
|
||||
SkPoint v = p - fPts[edgeIdx];
|
||||
SkScalar depth = -fNorms[edgeIdx].dot(v);
|
||||
SkASSERT(depth >= 0.0f);
|
||||
return depth;
|
||||
}
|
||||
|
||||
// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
|
||||
// along the 'bisector' from the 'startIdx'-th point.
|
||||
bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
|
||||
const SkVector& bisector,
|
||||
int edgeIdx,
|
||||
SkScalar desiredDepth,
|
||||
SkPoint* result) const {
|
||||
const SkPoint& norm = fNorms[edgeIdx];
|
||||
|
||||
// First find the point where the edge and the bisector intersect
|
||||
SkPoint newP;
|
||||
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
|
||||
if (SkScalarNearlyEqual(t, 0.0f)) {
|
||||
// the start point was one of the original ring points
|
||||
SkASSERT(startIdx < fNorms.count());
|
||||
newP = fPts[startIdx];
|
||||
} else if (t > 0.0f) {
|
||||
SkASSERT(t < 0.0f);
|
||||
newP = bisector;
|
||||
newP.scale(t);
|
||||
newP += fPts[startIdx];
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Then offset along the bisector from that point the correct distance
|
||||
t = -desiredDepth / bisector.dot(norm);
|
||||
SkASSERT(t > 0.0f);
|
||||
*result = bisector;
|
||||
result->scale(t);
|
||||
*result += newP;
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
|
||||
SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
|
||||
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
|
||||
|
||||
// Outer ring: 3*numPts
|
||||
// Middle ring: numPts
|
||||
// Presumptive inner ring: numPts
|
||||
this->reservePts(5*path.countPoints());
|
||||
// Outer ring: 12*numPts
|
||||
// Middle ring: 0
|
||||
// Presumptive inner ring: 6*numPts + 6
|
||||
fIndices.setReserve(18*path.countPoints() + 6);
|
||||
|
||||
fNorms.setReserve(path.countPoints());
|
||||
|
||||
SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
|
||||
|
||||
// TODO: is there a faster way to extract the points from the path? Perhaps
|
||||
// get all the points via a new entry point, transform them all in bulk
|
||||
// and then walk them to find duplicates?
|
||||
SkPath::Iter iter(path, true);
|
||||
SkPoint pts[4];
|
||||
SkPath::Verb verb;
|
||||
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
||||
switch (verb) {
|
||||
case SkPath::kLine_Verb:
|
||||
m.mapPoints(&pts[1], 1);
|
||||
if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
|
||||
continue;
|
||||
}
|
||||
|
||||
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
|
||||
if (this->numPts() >= 2 &&
|
||||
abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) {
|
||||
// The old last point is on the line from the second to last to the new point
|
||||
this->popLastPt();
|
||||
fNorms.pop();
|
||||
}
|
||||
|
||||
this->addPt(pts[1], 0.0f, false);
|
||||
if (this->numPts() > 1) {
|
||||
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
|
||||
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
||||
SkASSERT(len > 0.0f);
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
|
||||
}
|
||||
|
||||
if (this->numPts() >= 3) {
|
||||
int cur = this->numPts()-1;
|
||||
SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
|
||||
maxCross = SkTMax(maxCross, cross);
|
||||
minCross = SkTMin(minCross, cross);
|
||||
}
|
||||
break;
|
||||
case SkPath::kQuad_Verb:
|
||||
case SkPath::kConic_Verb:
|
||||
case SkPath::kCubic_Verb:
|
||||
SkASSERT(false);
|
||||
break;
|
||||
case SkPath::kMove_Verb:
|
||||
case SkPath::kClose_Verb:
|
||||
case SkPath::kDone_Verb:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (this->numPts() < 3) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if last point is a duplicate of the first point. If so, remove it.
|
||||
if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
|
||||
this->popLastPt();
|
||||
fNorms.pop();
|
||||
}
|
||||
|
||||
SkASSERT(fPts.count() == fNorms.count()+1);
|
||||
if (this->numPts() >= 3 &&
|
||||
abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
|
||||
// The last point is on the line from the second to last to the first point.
|
||||
this->popLastPt();
|
||||
fNorms.pop();
|
||||
}
|
||||
|
||||
if (this->numPts() < 3) {
|
||||
return false;
|
||||
}
|
||||
|
||||
*fNorms.push() = fPts[0] - fPts.top();
|
||||
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
||||
SkASSERT(len > 0.0f);
|
||||
SkASSERT(fPts.count() == fNorms.count());
|
||||
|
||||
if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
|
||||
// The first point is on the line from the last to the second.
|
||||
this->popFirstPtShuffle();
|
||||
fNorms.removeShuffle(0);
|
||||
fNorms[0] = fPts[1] - fPts[0];
|
||||
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
|
||||
SkASSERT(len > 0.0f);
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
|
||||
}
|
||||
|
||||
if (this->numPts() < 3) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check the cross produce of the final trio
|
||||
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
|
||||
maxCross = SkTMax(maxCross, cross);
|
||||
minCross = SkTMin(minCross, cross);
|
||||
|
||||
if (maxCross > 0.0f) {
|
||||
SkASSERT(minCross >= 0.0f);
|
||||
fSide = SkPoint::kRight_Side;
|
||||
} else {
|
||||
SkASSERT(minCross <= 0.0f);
|
||||
fSide = SkPoint::kLeft_Side;
|
||||
}
|
||||
|
||||
// Make all the normals face outwards rather than along the edge
|
||||
for (int cur = 0; cur < fNorms.count(); ++cur) {
|
||||
fNorms[cur].setOrthog(fNorms[cur], fSide);
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
||||
}
|
||||
|
||||
this->computeBisectors();
|
||||
|
||||
fCandidateVerts.setReserve(this->numPts());
|
||||
fInitialRing.setReserve(this->numPts());
|
||||
for (int i = 0; i < this->numPts(); ++i) {
|
||||
fInitialRing.addIdx(i, i);
|
||||
}
|
||||
fInitialRing.init(fNorms, fBisectors);
|
||||
|
||||
this->validate();
|
||||
return true;
|
||||
}
|
||||
|
||||
GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
Ring* ring = *fRings.push() = SkNEW(Ring);
|
||||
ring->setReserve(fInitialRing.numPts());
|
||||
ring->rewind();
|
||||
return ring;
|
||||
#else
|
||||
// Flip flop back and forth between fRings[0] & fRings[1]
|
||||
int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
|
||||
fRings[nextRing].setReserve(fInitialRing.numPts());
|
||||
fRings[nextRing].rewind();
|
||||
return &fRings[nextRing];
|
||||
#endif
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::fanRing(const Ring& ring) {
|
||||
// fan out from point 0
|
||||
for (int cur = 1; cur < ring.numPts()-1; ++cur) {
|
||||
this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
|
||||
}
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::createOuterRing() {
|
||||
// For now, we're only generating one outer ring (at the start). This
|
||||
// could be relaxed for stroking use cases.
|
||||
SkASSERT(0 == fIndices.count());
|
||||
SkASSERT(fPts.count() == fNorms.count());
|
||||
|
||||
const int numPts = fPts.count();
|
||||
|
||||
// For each vertex of the original polygon we add three points to the
|
||||
// outset polygon - one extending perpendicular to each impinging edge
|
||||
// and one along the bisector. Two triangles are added for each corner
|
||||
// and two are added along each edge.
|
||||
int prev = numPts - 1;
|
||||
int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
|
||||
for (int cur = 0; cur < numPts; ++cur) {
|
||||
// The perpendicular point for the last edge
|
||||
SkPoint temp = fNorms[prev];
|
||||
temp.scale(fTargetDepth);
|
||||
temp += fPts[cur];
|
||||
|
||||
// We know it isn't a duplicate of the prior point (since it and this
|
||||
// one are just perpendicular offsets from the non-merged polygon points)
|
||||
newIdx0 = this->addPt(temp, -fTargetDepth, false);
|
||||
|
||||
// The bisector outset point
|
||||
temp = fBisectors[cur];
|
||||
temp.scale(-fTargetDepth); // the bisectors point in
|
||||
temp += fPts[cur];
|
||||
|
||||
// For very shallow angles all the corner points could fuse
|
||||
if (duplicate_pt(temp, this->point(newIdx0))) {
|
||||
newIdx1 = newIdx0;
|
||||
} else {
|
||||
newIdx1 = this->addPt(temp, -fTargetDepth, false);
|
||||
}
|
||||
|
||||
// The perpendicular point for the next edge.
|
||||
temp = fNorms[cur];
|
||||
temp.scale(fTargetDepth);
|
||||
temp += fPts[cur];
|
||||
|
||||
// For very shallow angles all the corner points could fuse.
|
||||
if (duplicate_pt(temp, this->point(newIdx1))) {
|
||||
newIdx2 = newIdx1;
|
||||
} else {
|
||||
newIdx2 = this->addPt(temp, -fTargetDepth, false);
|
||||
}
|
||||
|
||||
if (0 == cur) {
|
||||
// Store the index of the first perpendicular point to finish up
|
||||
firstPerpIdx = newIdx0;
|
||||
SkASSERT(-1 == lastPerpIdx);
|
||||
} else {
|
||||
// The triangles for the previous edge
|
||||
this->addTri(prev, newIdx0, cur);
|
||||
this->addTri(prev, lastPerpIdx, newIdx0);
|
||||
}
|
||||
|
||||
// The two triangles for the corner
|
||||
this->addTri(cur, newIdx0, newIdx1);
|
||||
this->addTri(cur, newIdx1, newIdx2);
|
||||
|
||||
prev = cur;
|
||||
// Track the last perpendicular outset point so we can construct the
|
||||
// trailing edge triangles.
|
||||
lastPerpIdx = newIdx2;
|
||||
}
|
||||
|
||||
// pick up the final edge rect
|
||||
this->addTri(numPts-1, firstPerpIdx, 0);
|
||||
this->addTri(numPts-1, lastPerpIdx, firstPerpIdx);
|
||||
|
||||
this->validate();
|
||||
}
|
||||
|
||||
// Something went wrong in the creation of the next ring. Mark the last good
|
||||
// ring as being at the desired depth and fan it.
|
||||
void GrAAConvexTessellator::terminate(const Ring& ring) {
|
||||
for (int i = 0; i < ring.numPts(); ++i) {
|
||||
fDepths[ring.index(i)] = fTargetDepth;
|
||||
}
|
||||
|
||||
this->fanRing(ring);
|
||||
}
|
||||
|
||||
// return true when processing is complete
|
||||
bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
|
||||
bool done = false;
|
||||
|
||||
fCandidateVerts.rewind();
|
||||
|
||||
// Loop through all the points in the ring and find the intersection with the smallest depth
|
||||
SkScalar minDist = SK_ScalarMax, minT = 0.0f;
|
||||
int minEdgeIdx = -1;
|
||||
|
||||
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
||||
int next = (cur + 1) % lastRing.numPts();
|
||||
|
||||
SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
|
||||
this->point(lastRing.index(next)), lastRing.bisector(next));
|
||||
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
|
||||
|
||||
if (minDist > dist) {
|
||||
minDist = dist;
|
||||
minT = t;
|
||||
minEdgeIdx = cur;
|
||||
}
|
||||
}
|
||||
|
||||
SkPoint newPt = lastRing.bisector(minEdgeIdx);
|
||||
newPt.scale(minT);
|
||||
newPt += this->point(lastRing.index(minEdgeIdx));
|
||||
|
||||
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
|
||||
if (depth >= fTargetDepth) {
|
||||
// None of the bisectors intersect before reaching the desired depth.
|
||||
// Just step them all to the desired depth
|
||||
depth = fTargetDepth;
|
||||
done = true;
|
||||
}
|
||||
|
||||
// 'dst' stores where each point in the last ring maps to/transforms into
|
||||
// in the next ring.
|
||||
SkTDArray<int> dst;
|
||||
dst.setCount(lastRing.numPts());
|
||||
|
||||
// Create the first point (who compares with no one)
|
||||
if (!this->computePtAlongBisector(lastRing.index(0),
|
||||
lastRing.bisector(0),
|
||||
lastRing.origEdgeID(0),
|
||||
depth, &newPt)) {
|
||||
this->terminate(lastRing);
|
||||
SkDEBUGCODE(fShouldCheckDepths = false;)
|
||||
return true;
|
||||
}
|
||||
dst[0] = fCandidateVerts.addNewPt(newPt,
|
||||
lastRing.index(0), lastRing.origEdgeID(0),
|
||||
!this->movable(lastRing.index(0)));
|
||||
|
||||
// Handle the middle points (who only compare with the prior point)
|
||||
for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
|
||||
if (!this->computePtAlongBisector(lastRing.index(cur),
|
||||
lastRing.bisector(cur),
|
||||
lastRing.origEdgeID(cur),
|
||||
depth, &newPt)) {
|
||||
this->terminate(lastRing);
|
||||
SkDEBUGCODE(fShouldCheckDepths = false;)
|
||||
return true;
|
||||
}
|
||||
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
|
||||
dst[cur] = fCandidateVerts.addNewPt(newPt,
|
||||
lastRing.index(cur), lastRing.origEdgeID(cur),
|
||||
!this->movable(lastRing.index(cur)));
|
||||
} else {
|
||||
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
||||
}
|
||||
}
|
||||
|
||||
// Check on the last point (handling the wrap around)
|
||||
int cur = lastRing.numPts()-1;
|
||||
if (!this->computePtAlongBisector(lastRing.index(cur),
|
||||
lastRing.bisector(cur),
|
||||
lastRing.origEdgeID(cur),
|
||||
depth, &newPt)) {
|
||||
this->terminate(lastRing);
|
||||
SkDEBUGCODE(fShouldCheckDepths = false;)
|
||||
return true;
|
||||
}
|
||||
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
|
||||
bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
|
||||
|
||||
if (!dupPrev && !dupNext) {
|
||||
dst[cur] = fCandidateVerts.addNewPt(newPt,
|
||||
lastRing.index(cur), lastRing.origEdgeID(cur),
|
||||
!this->movable(lastRing.index(cur)));
|
||||
} else if (dupPrev && !dupNext) {
|
||||
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
||||
} else if (!dupPrev && dupNext) {
|
||||
dst[cur] = fCandidateVerts.fuseWithNext();
|
||||
} else {
|
||||
bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
|
||||
|
||||
if (!dupPrevVsNext) {
|
||||
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
|
||||
} else {
|
||||
dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth();
|
||||
}
|
||||
}
|
||||
|
||||
// Fold the new ring's points into the global pool
|
||||
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
|
||||
int newIdx;
|
||||
if (fCandidateVerts.needsToBeNew(i)) {
|
||||
// if the originating index is still valid then this point wasn't
|
||||
// fused (and is thus movable)
|
||||
newIdx = this->addPt(fCandidateVerts.point(i), depth,
|
||||
fCandidateVerts.originatingIdx(i) != -1);
|
||||
} else {
|
||||
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
|
||||
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
|
||||
newIdx = fCandidateVerts.originatingIdx(i);
|
||||
}
|
||||
|
||||
nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
|
||||
}
|
||||
|
||||
// 'dst' currently has indices into the ring. Remap these to be indices
|
||||
// into the global pool since the triangulation operates in that space.
|
||||
for (int i = 0; i < dst.count(); ++i) {
|
||||
dst[i] = nextRing->index(dst[i]);
|
||||
}
|
||||
|
||||
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
||||
int next = (cur + 1) % lastRing.numPts();
|
||||
|
||||
this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
|
||||
this->addTri(lastRing.index(cur), dst[next], dst[cur]);
|
||||
}
|
||||
|
||||
if (done) {
|
||||
this->fanRing(*nextRing);
|
||||
}
|
||||
|
||||
if (nextRing->numPts() < 3) {
|
||||
done = true;
|
||||
}
|
||||
|
||||
return done;
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::validate() const {
|
||||
SkASSERT(fPts.count() == fDepths.count());
|
||||
SkASSERT(fPts.count() == fMovable.count());
|
||||
SkASSERT(0 == (fIndices.count() % 3));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
|
||||
this->computeNormals(tess);
|
||||
this->computeBisectors();
|
||||
SkASSERT(this->isConvex(tess));
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
|
||||
const SkTDArray<SkVector>& bisectors) {
|
||||
for (int i = 0; i < fPts.count(); ++i) {
|
||||
fPts[i].fNorm = norms[i];
|
||||
fPts[i].fBisector = bisectors[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the outward facing normal at each vertex.
|
||||
void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
|
||||
for (int cur = 0; cur < fPts.count(); ++cur) {
|
||||
int next = (cur + 1) % fPts.count();
|
||||
|
||||
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
|
||||
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
|
||||
SkASSERT(len > 0.0f);
|
||||
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
|
||||
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
|
||||
}
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::Ring::computeBisectors() {
|
||||
int prev = fPts.count() - 1;
|
||||
for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
|
||||
fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
|
||||
fPts[cur].fBisector.normalize();
|
||||
fPts[cur].fBisector.negate(); // make the bisector face in
|
||||
|
||||
SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef SK_DEBUG
|
||||
// Is this ring convex?
|
||||
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
|
||||
if (fPts.count() < 3) {
|
||||
return false;
|
||||
}
|
||||
|
||||
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
|
||||
SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
|
||||
SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
|
||||
SkScalar maxDot = minDot;
|
||||
|
||||
prev = cur;
|
||||
for (int i = 1; i < fPts.count(); ++i) {
|
||||
int next = (i + 1) % fPts.count();
|
||||
|
||||
cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
|
||||
SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
|
||||
|
||||
minDot = SkMinScalar(minDot, dot);
|
||||
maxDot = SkMaxScalar(maxDot, dot);
|
||||
|
||||
prev = cur;
|
||||
}
|
||||
|
||||
return (maxDot > 0.0f) == (minDot >= 0.0f);
|
||||
}
|
||||
|
||||
static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
|
||||
const SkPoint& test, SkPoint::Side side,
|
||||
int* sign) {
|
||||
*sign = -1;
|
||||
SkPoint edge = p1 - p0;
|
||||
SkScalar len = SkPoint::Normalize(&edge);
|
||||
|
||||
SkPoint testVec = test - p0;
|
||||
|
||||
SkScalar d0 = edge.dot(testVec);
|
||||
if (d0 < 0.0f) {
|
||||
return SkPoint::Distance(p0, test);
|
||||
}
|
||||
if (d0 > len) {
|
||||
return SkPoint::Distance(p1, test);
|
||||
}
|
||||
|
||||
SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
|
||||
if (SkPoint::kRight_Side == side) {
|
||||
perpDist = -perpDist;
|
||||
}
|
||||
|
||||
if (perpDist < 0.0f) {
|
||||
perpDist = -perpDist;
|
||||
} else {
|
||||
*sign = 1;
|
||||
}
|
||||
return perpDist;
|
||||
}
|
||||
|
||||
SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
|
||||
SkScalar minDist = SK_ScalarMax;
|
||||
int closestSign, sign;
|
||||
|
||||
for (int edge = 0; edge < fNorms.count(); ++edge) {
|
||||
SkScalar dist = capsule_depth(this->point(edge),
|
||||
this->point((edge+1) % fNorms.count()),
|
||||
p, fSide, &sign);
|
||||
SkASSERT(dist >= 0.0f);
|
||||
|
||||
if (minDist > dist) {
|
||||
minDist = dist;
|
||||
closestSign = sign;
|
||||
}
|
||||
}
|
||||
|
||||
return closestSign * minDist;
|
||||
}
|
||||
|
||||
// Verify that the incrementally computed depths are close to the actual depths.
|
||||
void GrAAConvexTessellator::checkAllDepths() const {
|
||||
for (int cur = 0; cur < this->numPts(); ++cur) {
|
||||
SkScalar realDepth = this->computeRealDepth(this->point(cur));
|
||||
SkScalar computedDepth = this->depth(cur);
|
||||
SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
static const SkScalar kPointRadius = 0.02f;
|
||||
static const SkScalar kArrowStrokeWidth = 0.0f;
|
||||
static const SkScalar kArrowLength = 0.2f;
|
||||
static const SkScalar kEdgeTextSize = 0.1f;
|
||||
static const SkScalar kPointTextSize = 0.02f;
|
||||
|
||||
static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
|
||||
SkPaint paint;
|
||||
SkASSERT(paramValue <= 1.0f);
|
||||
int gs = int(255*paramValue);
|
||||
paint.setARGB(255, gs, gs, gs);
|
||||
|
||||
canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
|
||||
|
||||
if (stroke) {
|
||||
SkPaint stroke;
|
||||
stroke.setColor(SK_ColorYELLOW);
|
||||
stroke.setStyle(SkPaint::kStroke_Style);
|
||||
stroke.setStrokeWidth(kPointRadius/3.0f);
|
||||
canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
|
||||
}
|
||||
}
|
||||
|
||||
static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
|
||||
SkPaint p;
|
||||
p.setColor(color);
|
||||
|
||||
canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
|
||||
}
|
||||
|
||||
static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
|
||||
SkScalar len, SkColor color) {
|
||||
SkPaint paint;
|
||||
paint.setColor(color);
|
||||
paint.setStrokeWidth(kArrowStrokeWidth);
|
||||
paint.setStyle(SkPaint::kStroke_Style);
|
||||
|
||||
canvas->drawLine(p.fX, p.fY,
|
||||
p.fX + len * n.fX, p.fY + len * n.fY,
|
||||
paint);
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
|
||||
SkPaint paint;
|
||||
paint.setTextSize(kEdgeTextSize);
|
||||
|
||||
for (int cur = 0; cur < fPts.count(); ++cur) {
|
||||
int next = (cur + 1) % fPts.count();
|
||||
|
||||
draw_line(canvas,
|
||||
tess.point(fPts[cur].fIndex),
|
||||
tess.point(fPts[next].fIndex),
|
||||
SK_ColorGREEN);
|
||||
|
||||
SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
|
||||
mid.scale(0.5f);
|
||||
|
||||
if (fPts.count()) {
|
||||
draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
|
||||
mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
|
||||
mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
|
||||
}
|
||||
|
||||
SkString num;
|
||||
num.printf("%d", this->origEdgeID(cur));
|
||||
canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
|
||||
|
||||
if (fPts.count()) {
|
||||
draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
|
||||
kArrowLength, SK_ColorBLUE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
|
||||
for (int i = 0; i < fIndices.count(); i += 3) {
|
||||
SkASSERT(fIndices[i] < this->numPts()) ;
|
||||
SkASSERT(fIndices[i+1] < this->numPts()) ;
|
||||
SkASSERT(fIndices[i+2] < this->numPts()) ;
|
||||
|
||||
draw_line(canvas,
|
||||
this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
|
||||
SK_ColorBLACK);
|
||||
draw_line(canvas,
|
||||
this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
|
||||
SK_ColorBLACK);
|
||||
draw_line(canvas,
|
||||
this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
|
||||
SK_ColorBLACK);
|
||||
}
|
||||
|
||||
fInitialRing.draw(canvas, *this);
|
||||
for (int i = 0; i < fRings.count(); ++i) {
|
||||
fRings[i]->draw(canvas, *this);
|
||||
}
|
||||
|
||||
for (int i = 0; i < this->numPts(); ++i) {
|
||||
draw_point(canvas,
|
||||
this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
|
||||
!this->movable(i));
|
||||
|
||||
SkPaint paint;
|
||||
paint.setTextSize(kPointTextSize);
|
||||
paint.setTextAlign(SkPaint::kCenter_Align);
|
||||
if (this->depth(i) <= -fTargetDepth) {
|
||||
paint.setColor(SK_ColorWHITE);
|
||||
}
|
||||
|
||||
SkString num;
|
||||
num.printf("%d", i);
|
||||
canvas->drawText(num.c_str(), num.size(),
|
||||
this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
|
||||
paint);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
244
src/gpu/GrAAConvexTessellator.h
Normal file
244
src/gpu/GrAAConvexTessellator.h
Normal file
@ -0,0 +1,244 @@
|
||||
/*
|
||||
* Copyright 2015 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#ifndef GrAAConvexTessellator_DEFINED
|
||||
#define GrAAConvexTessellator_DEFINED
|
||||
|
||||
#include "SkColor.h"
|
||||
#include "SkPoint.h"
|
||||
#include "SkScalar.h"
|
||||
#include "SkTDArray.h"
|
||||
|
||||
class SkCanvas;
|
||||
class SkMatrix;
|
||||
class SkPath;
|
||||
|
||||
//#define GR_AA_CONVEX_TESSELLATOR_VIZ 1
|
||||
|
||||
class GrAAConvexTessellator;
|
||||
|
||||
// The AAConvexTessellator holds the global pool of points and the triangulation
|
||||
// that connects them. It also drives the tessellation process.
|
||||
// The outward facing normals of the original polygon are stored (in 'fNorms') to service
|
||||
// computeDepthFromEdge requests.
|
||||
class GrAAConvexTessellator {
|
||||
public:
|
||||
GrAAConvexTessellator(SkScalar targetDepth = 0.5f)
|
||||
: fSide(SkPoint::kOn_Side)
|
||||
, fTargetDepth(targetDepth) {
|
||||
}
|
||||
|
||||
void setTargetDepth(SkScalar targetDepth) { fTargetDepth = targetDepth; }
|
||||
SkScalar targetDepth() const { return fTargetDepth; }
|
||||
|
||||
SkPoint::Side side() const { return fSide; }
|
||||
|
||||
bool tessellate(const SkMatrix& m, const SkPath& path);
|
||||
|
||||
// The next five should only be called after tessellate to extract the result
|
||||
int numPts() const { return fPts.count(); }
|
||||
int numIndices() const { return fIndices.count(); }
|
||||
|
||||
const SkPoint& lastPoint() const { return fPts.top(); }
|
||||
const SkPoint& point(int index) const { return fPts[index]; }
|
||||
int index(int index) const { return fIndices[index]; }
|
||||
SkScalar depth(int index) const {return fDepths[index]; }
|
||||
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
void draw(SkCanvas* canvas) const;
|
||||
#endif
|
||||
|
||||
// The tessellator can be reused for multiple paths by rewinding in between
|
||||
void rewind();
|
||||
|
||||
private:
|
||||
// CandidateVerts holds the vertices for the next ring while they are
|
||||
// being generated. Its main function is to de-dup the points.
|
||||
class CandidateVerts {
|
||||
public:
|
||||
void setReserve(int numPts) { fPts.setReserve(numPts); }
|
||||
void rewind() { fPts.rewind(); }
|
||||
|
||||
int numPts() const { return fPts.count(); }
|
||||
|
||||
const SkPoint& lastPoint() const { return fPts.top().fPt; }
|
||||
const SkPoint& firstPoint() const { return fPts[0].fPt; }
|
||||
const SkPoint& point(int index) const { return fPts[index].fPt; }
|
||||
|
||||
int originatingIdx(int index) const { return fPts[index].fOriginatingIdx; }
|
||||
int origEdge(int index) const { return fPts[index].fOrigEdgeId; }
|
||||
bool needsToBeNew(int index) const { return fPts[index].fNeedsToBeNew; }
|
||||
|
||||
int addNewPt(const SkPoint& newPt, int originatingIdx, int origEdge, bool needsToBeNew) {
|
||||
struct PointData* pt = fPts.push();
|
||||
pt->fPt = newPt;
|
||||
pt->fOrigEdgeId = origEdge;
|
||||
pt->fOriginatingIdx = originatingIdx;
|
||||
pt->fNeedsToBeNew = needsToBeNew;
|
||||
return fPts.count() - 1;
|
||||
}
|
||||
|
||||
int fuseWithPrior(int origEdgeId) {
|
||||
fPts.top().fOrigEdgeId = origEdgeId;
|
||||
fPts.top().fOriginatingIdx = -1;
|
||||
fPts.top().fNeedsToBeNew = true;
|
||||
return fPts.count() - 1;
|
||||
}
|
||||
|
||||
int fuseWithNext() {
|
||||
fPts[0].fOriginatingIdx = -1;
|
||||
fPts[0].fNeedsToBeNew = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int fuseWithBoth() {
|
||||
if (fPts.count() > 1) {
|
||||
fPts.pop();
|
||||
}
|
||||
|
||||
fPts[0].fOriginatingIdx = -1;
|
||||
fPts[0].fNeedsToBeNew = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
struct PointData {
|
||||
SkPoint fPt;
|
||||
int fOriginatingIdx;
|
||||
int fOrigEdgeId;
|
||||
bool fNeedsToBeNew;
|
||||
};
|
||||
|
||||
SkTDArray<struct PointData> fPts;
|
||||
};
|
||||
|
||||
// The Ring holds a set of indices into the global pool that together define
|
||||
// a single polygon inset.
|
||||
class Ring {
|
||||
public:
|
||||
void setReserve(int numPts) { fPts.setReserve(numPts); }
|
||||
void rewind() { fPts.rewind(); }
|
||||
|
||||
int numPts() const { return fPts.count(); }
|
||||
|
||||
void addIdx(int index, int origEdgeId) {
|
||||
struct PointData* pt = fPts.push();
|
||||
pt->fIndex = index;
|
||||
pt->fOrigEdgeId = origEdgeId;
|
||||
}
|
||||
|
||||
// init should be called after all the indices have been added (via addIdx)
|
||||
void init(const GrAAConvexTessellator& tess);
|
||||
void init(const SkTDArray<SkVector>& norms, const SkTDArray<SkVector>& bisectors);
|
||||
|
||||
const SkPoint& norm(int index) const { return fPts[index].fNorm; }
|
||||
const SkPoint& bisector(int index) const { return fPts[index].fBisector; }
|
||||
int index(int index) const { return fPts[index].fIndex; }
|
||||
int origEdgeID(int index) const { return fPts[index].fOrigEdgeId; }
|
||||
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
void draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const;
|
||||
#endif
|
||||
|
||||
private:
|
||||
void computeNormals(const GrAAConvexTessellator& result);
|
||||
void computeBisectors();
|
||||
|
||||
SkDEBUGCODE(bool isConvex(const GrAAConvexTessellator& tess) const;)
|
||||
|
||||
struct PointData {
|
||||
SkPoint fNorm;
|
||||
SkPoint fBisector;
|
||||
int fIndex;
|
||||
int fOrigEdgeId;
|
||||
};
|
||||
|
||||
SkTDArray<PointData> fPts;
|
||||
};
|
||||
|
||||
bool movable(int index) const { return fMovable[index]; }
|
||||
|
||||
// Movable points are those that can be slid along their bisector.
|
||||
// Basically, a point is immovable if it is part of the original
|
||||
// polygon or it results from the fusing of two bisectors.
|
||||
int addPt(const SkPoint& pt, SkScalar depth, bool movable);
|
||||
void popLastPt();
|
||||
void popFirstPtShuffle();
|
||||
|
||||
void updatePt(int index, const SkPoint& pt, SkScalar depth);
|
||||
|
||||
void addTri(int i0, int i1, int i2);
|
||||
|
||||
void reservePts(int count) {
|
||||
fPts.setReserve(count);
|
||||
fDepths.setReserve(count);
|
||||
fMovable.setReserve(count);
|
||||
}
|
||||
|
||||
SkScalar computeDepthFromEdge(int edgeIdx, const SkPoint& p) const;
|
||||
|
||||
bool computePtAlongBisector(int startIdx, const SkPoint& bisector,
|
||||
int edgeIdx, SkScalar desiredDepth,
|
||||
SkPoint* result) const;
|
||||
|
||||
void terminate(const Ring& lastRing);
|
||||
|
||||
// return false on failure/degenerate path
|
||||
bool extractFromPath(const SkMatrix& m, const SkPath& path);
|
||||
void computeBisectors();
|
||||
|
||||
void fanRing(const Ring& ring);
|
||||
void createOuterRing();
|
||||
|
||||
Ring* getNextRing(Ring* lastRing);
|
||||
|
||||
bool createInsetRing(const Ring& lastRing, Ring* nextRing);
|
||||
|
||||
void validate() const;
|
||||
|
||||
|
||||
#ifdef SK_DEBUG
|
||||
SkScalar computeRealDepth(const SkPoint& p) const;
|
||||
void checkAllDepths() const;
|
||||
#endif
|
||||
|
||||
// fPts, fWeights & fMovable should always have the same # of elements
|
||||
SkTDArray<SkPoint> fPts;
|
||||
SkTDArray<SkScalar> fDepths;
|
||||
// movable points are those that can be slid further along their bisector
|
||||
SkTDArray<bool> fMovable;
|
||||
|
||||
// The outward facing normals for the original polygon
|
||||
SkTDArray<SkVector> fNorms;
|
||||
// The inward facing bisector at each point in the original polygon. Only
|
||||
// needed for exterior ring creation and then handed off to the initial ring.
|
||||
SkTDArray<SkVector> fBisectors;
|
||||
SkPoint::Side fSide; // winding of the original polygon
|
||||
|
||||
// The triangulation of the points
|
||||
SkTDArray<int> fIndices;
|
||||
|
||||
Ring fInitialRing;
|
||||
#if GR_AA_CONVEX_TESSELLATOR_VIZ
|
||||
// When visualizing save all the rings
|
||||
SkTDArray<Ring*> fRings;
|
||||
#else
|
||||
Ring fRings[2];
|
||||
#endif
|
||||
CandidateVerts fCandidateVerts;
|
||||
|
||||
SkScalar fTargetDepth;
|
||||
|
||||
// If some goes wrong with the inset computation the tessellator will
|
||||
// truncate the creation of the inset polygon. In this case the depth
|
||||
// check will complain.
|
||||
SkDEBUGCODE(bool fShouldCheckDepths;)
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user