Add GrAAConvexTessellator class

This CL adds a GrAAConvexTessellator class. It does not connect it to the GrAAConvexPathRenderer.

Review URL: https://codereview.chromium.org/1084943003
This commit is contained in:
robertphillips 2015-05-06 05:15:57 -07:00 committed by Commit bot
parent 91d06bcc6c
commit 84b008873b
3 changed files with 1120 additions and 0 deletions

View File

@ -55,6 +55,8 @@
'<(skia_src_path)/gpu/GrAAHairLinePathRenderer.h',
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.cpp',
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.h',
'<(skia_src_path)/gpu/GrAAConvexTessellator.cpp',
'<(skia_src_path)/gpu/GrAAConvexTessellator.h',
'<(skia_src_path)/gpu/GrAADistanceFieldPathRenderer.cpp',
'<(skia_src_path)/gpu/GrAADistanceFieldPathRenderer.h',
'<(skia_src_path)/gpu/GrAARectRenderer.cpp',

View File

@ -0,0 +1,874 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAConvexTessellator.h"
#include "SkCanvas.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkString.h"
// Next steps:
// use in AAConvexPathRenderer
// add an interactive sample app slide
// add debug check that all points are suitably far apart
// test more degenerate cases
// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& n1) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
}
// This is a special case version of intersect where we have the vector
// perpendicular to the second line rather than the vector parallel to it.
static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& perp) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.dot(perp);
return v.dot(perp) / perpDot;
}
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
SkScalar distSq = p0.distanceToSqd(p1);
return distSq < kCloseSqd;
}
static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
SkPoint testV = test - p0;
SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
return SkScalarAbs(dist);
}
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
bool movable) {
this->validate();
int index = fPts.count();
*fPts.push() = pt;
*fDepths.push() = depth;
*fMovable.push() = movable;
this->validate();
return index;
}
void GrAAConvexTessellator::popLastPt() {
this->validate();
fPts.pop();
fDepths.pop();
fMovable.pop();
this->validate();
}
void GrAAConvexTessellator::popFirstPtShuffle() {
this->validate();
fPts.removeShuffle(0);
fDepths.removeShuffle(0);
fMovable.removeShuffle(0);
this->validate();
}
void GrAAConvexTessellator::updatePt(int index,
const SkPoint& pt,
SkScalar depth) {
this->validate();
SkASSERT(fMovable[index]);
fPts[index] = pt;
fDepths[index] = depth;
}
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
if (i0 == i1 || i1 == i2 || i2 == i0) {
return;
}
*fIndices.push() = i0;
*fIndices.push() = i1;
*fIndices.push() = i2;
}
void GrAAConvexTessellator::rewind() {
fPts.rewind();
fDepths.rewind();
fMovable.rewind();
fIndices.rewind();
fNorms.rewind();
fInitialRing.rewind();
fCandidateVerts.rewind();
#if GR_AA_CONVEX_TESSELLATOR_VIZ
fRings.rewind(); // TODO: leak in this case!
#else
fRings[0].rewind();
fRings[1].rewind();
#endif
}
void GrAAConvexTessellator::computeBisectors() {
fBisectors.setCount(fNorms.count());
int prev = fBisectors.count() - 1;
for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
fBisectors[cur] = fNorms[cur] + fNorms[prev];
fBisectors[cur].normalize();
fBisectors[cur].negate(); // make the bisector face in
SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
}
}
// The general idea here is to, conceptually, start with the original polygon and slide
// the vertices along the bisectors until the first intersection. At that
// point two of the edges collapse and the process repeats on the new polygon.
// The polygon state is captured in the Ring class while the GrAAConvexTessellator
// controls the iteration. The CandidateVerts holds the formative points for the
// next ring.
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
static const int kMaxNumRings = 8;
SkDEBUGCODE(fShouldCheckDepths = true;)
if (!this->extractFromPath(m, path)) {
return false;
}
this->createOuterRing();
// the bisectors are only needed for the computation of the outer ring
fBisectors.rewind();
Ring* lastRing = &fInitialRing;
int i;
for (i = 0; i < kMaxNumRings; ++i) {
Ring* nextRing = this->getNextRing(lastRing);
if (this->createInsetRing(*lastRing, nextRing)) {
break;
}
nextRing->init(*this);
lastRing = nextRing;
}
if (kMaxNumRings == i) {
// If we've exceeded the amount of time we want to throw at this, set
// the depth of all points in the final ring to 'fTargetDepth' and
// create a fan.
this->terminate(*lastRing);
SkDEBUGCODE(fShouldCheckDepths = false;)
}
#ifdef SK_DEBUG
this->validate();
if (fShouldCheckDepths) {
SkDEBUGCODE(this->checkAllDepths();)
}
#endif
return true;
}
SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
SkASSERT(edgeIdx < fNorms.count());
SkPoint v = p - fPts[edgeIdx];
SkScalar depth = -fNorms[edgeIdx].dot(v);
SkASSERT(depth >= 0.0f);
return depth;
}
// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
// along the 'bisector' from the 'startIdx'-th point.
bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
const SkVector& bisector,
int edgeIdx,
SkScalar desiredDepth,
SkPoint* result) const {
const SkPoint& norm = fNorms[edgeIdx];
// First find the point where the edge and the bisector intersect
SkPoint newP;
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
if (SkScalarNearlyEqual(t, 0.0f)) {
// the start point was one of the original ring points
SkASSERT(startIdx < fNorms.count());
newP = fPts[startIdx];
} else if (t > 0.0f) {
SkASSERT(t < 0.0f);
newP = bisector;
newP.scale(t);
newP += fPts[startIdx];
} else {
return false;
}
// Then offset along the bisector from that point the correct distance
t = -desiredDepth / bisector.dot(norm);
SkASSERT(t > 0.0f);
*result = bisector;
result->scale(t);
*result += newP;
return true;
}
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
// Outer ring: 3*numPts
// Middle ring: numPts
// Presumptive inner ring: numPts
this->reservePts(5*path.countPoints());
// Outer ring: 12*numPts
// Middle ring: 0
// Presumptive inner ring: 6*numPts + 6
fIndices.setReserve(18*path.countPoints() + 6);
fNorms.setReserve(path.countPoints());
SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
// and then walk them to find duplicates?
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
m.mapPoints(&pts[1], 1);
if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
continue;
}
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
if (this->numPts() >= 2 &&
abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
fNorms.pop();
}
this->addPt(pts[1], 0.0f, false);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
if (this->numPts() >= 3) {
int cur = this->numPts()-1;
SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
maxCross = SkTMax(maxCross, cross);
minCross = SkTMin(minCross, cross);
}
break;
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb:
case SkPath::kCubic_Verb:
SkASSERT(false);
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
}
}
if (this->numPts() < 3) {
return false;
}
// check if last point is a duplicate of the first point. If so, remove it.
if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
this->popLastPt();
fNorms.pop();
}
SkASSERT(fPts.count() == fNorms.count()+1);
if (this->numPts() >= 3 &&
abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
// The last point is on the line from the second to last to the first point.
this->popLastPt();
fNorms.pop();
}
if (this->numPts() < 3) {
return false;
}
*fNorms.push() = fPts[0] - fPts.top();
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(fPts.count() == fNorms.count());
if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
// The first point is on the line from the last to the second.
this->popFirstPtShuffle();
fNorms.removeShuffle(0);
fNorms[0] = fPts[1] - fPts[0];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
}
if (this->numPts() < 3) {
return false;
}
// Check the cross produce of the final trio
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
maxCross = SkTMax(maxCross, cross);
minCross = SkTMin(minCross, cross);
if (maxCross > 0.0f) {
SkASSERT(minCross >= 0.0f);
fSide = SkPoint::kRight_Side;
} else {
SkASSERT(minCross <= 0.0f);
fSide = SkPoint::kLeft_Side;
}
// Make all the normals face outwards rather than along the edge
for (int cur = 0; cur < fNorms.count(); ++cur) {
fNorms[cur].setOrthog(fNorms[cur], fSide);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
}
this->computeBisectors();
fCandidateVerts.setReserve(this->numPts());
fInitialRing.setReserve(this->numPts());
for (int i = 0; i < this->numPts(); ++i) {
fInitialRing.addIdx(i, i);
}
fInitialRing.init(fNorms, fBisectors);
this->validate();
return true;
}
GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
#if GR_AA_CONVEX_TESSELLATOR_VIZ
Ring* ring = *fRings.push() = SkNEW(Ring);
ring->setReserve(fInitialRing.numPts());
ring->rewind();
return ring;
#else
// Flip flop back and forth between fRings[0] & fRings[1]
int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
fRings[nextRing].setReserve(fInitialRing.numPts());
fRings[nextRing].rewind();
return &fRings[nextRing];
#endif
}
void GrAAConvexTessellator::fanRing(const Ring& ring) {
// fan out from point 0
for (int cur = 1; cur < ring.numPts()-1; ++cur) {
this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
}
}
void GrAAConvexTessellator::createOuterRing() {
// For now, we're only generating one outer ring (at the start). This
// could be relaxed for stroking use cases.
SkASSERT(0 == fIndices.count());
SkASSERT(fPts.count() == fNorms.count());
const int numPts = fPts.count();
// For each vertex of the original polygon we add three points to the
// outset polygon - one extending perpendicular to each impinging edge
// and one along the bisector. Two triangles are added for each corner
// and two are added along each edge.
int prev = numPts - 1;
int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
for (int cur = 0; cur < numPts; ++cur) {
// The perpendicular point for the last edge
SkPoint temp = fNorms[prev];
temp.scale(fTargetDepth);
temp += fPts[cur];
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
newIdx0 = this->addPt(temp, -fTargetDepth, false);
// The bisector outset point
temp = fBisectors[cur];
temp.scale(-fTargetDepth); // the bisectors point in
temp += fPts[cur];
// For very shallow angles all the corner points could fuse
if (duplicate_pt(temp, this->point(newIdx0))) {
newIdx1 = newIdx0;
} else {
newIdx1 = this->addPt(temp, -fTargetDepth, false);
}
// The perpendicular point for the next edge.
temp = fNorms[cur];
temp.scale(fTargetDepth);
temp += fPts[cur];
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(temp, this->point(newIdx1))) {
newIdx2 = newIdx1;
} else {
newIdx2 = this->addPt(temp, -fTargetDepth, false);
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = newIdx0;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
this->addTri(prev, newIdx0, cur);
this->addTri(prev, lastPerpIdx, newIdx0);
}
// The two triangles for the corner
this->addTri(cur, newIdx0, newIdx1);
this->addTri(cur, newIdx1, newIdx2);
prev = cur;
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = newIdx2;
}
// pick up the final edge rect
this->addTri(numPts-1, firstPerpIdx, 0);
this->addTri(numPts-1, lastPerpIdx, firstPerpIdx);
this->validate();
}
// Something went wrong in the creation of the next ring. Mark the last good
// ring as being at the desired depth and fan it.
void GrAAConvexTessellator::terminate(const Ring& ring) {
for (int i = 0; i < ring.numPts(); ++i) {
fDepths[ring.index(i)] = fTargetDepth;
}
this->fanRing(ring);
}
// return true when processing is complete
bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
bool done = false;
fCandidateVerts.rewind();
// Loop through all the points in the ring and find the intersection with the smallest depth
SkScalar minDist = SK_ScalarMax, minT = 0.0f;
int minEdgeIdx = -1;
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
this->point(lastRing.index(next)), lastRing.bisector(next));
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
if (minDist > dist) {
minDist = dist;
minT = t;
minEdgeIdx = cur;
}
}
SkPoint newPt = lastRing.bisector(minEdgeIdx);
newPt.scale(minT);
newPt += this->point(lastRing.index(minEdgeIdx));
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
if (depth >= fTargetDepth) {
// None of the bisectors intersect before reaching the desired depth.
// Just step them all to the desired depth
depth = fTargetDepth;
done = true;
}
// 'dst' stores where each point in the last ring maps to/transforms into
// in the next ring.
SkTDArray<int> dst;
dst.setCount(lastRing.numPts());
// Create the first point (who compares with no one)
if (!this->computePtAlongBisector(lastRing.index(0),
lastRing.bisector(0),
lastRing.origEdgeID(0),
depth, &newPt)) {
this->terminate(lastRing);
SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
dst[0] = fCandidateVerts.addNewPt(newPt,
lastRing.index(0), lastRing.origEdgeID(0),
!this->movable(lastRing.index(0)));
// Handle the middle points (who only compare with the prior point)
for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
}
}
// Check on the last point (handling the wrap around)
int cur = lastRing.numPts()-1;
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
SkDEBUGCODE(fShouldCheckDepths = false;)
return true;
}
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
if (!dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else if (dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else if (!dupPrev && dupNext) {
dst[cur] = fCandidateVerts.fuseWithNext();
} else {
bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
if (!dupPrevVsNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else {
dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth();
}
}
// Fold the new ring's points into the global pool
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
int newIdx;
if (fCandidateVerts.needsToBeNew(i)) {
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
newIdx = this->addPt(fCandidateVerts.point(i), depth,
fCandidateVerts.originatingIdx(i) != -1);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
newIdx = fCandidateVerts.originatingIdx(i);
}
nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
}
// 'dst' currently has indices into the ring. Remap these to be indices
// into the global pool since the triangulation operates in that space.
for (int i = 0; i < dst.count(); ++i) {
dst[i] = nextRing->index(dst[i]);
}
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
this->addTri(lastRing.index(cur), dst[next], dst[cur]);
}
if (done) {
this->fanRing(*nextRing);
}
if (nextRing->numPts() < 3) {
done = true;
}
return done;
}
void GrAAConvexTessellator::validate() const {
SkASSERT(fPts.count() == fDepths.count());
SkASSERT(fPts.count() == fMovable.count());
SkASSERT(0 == (fIndices.count() % 3));
}
//////////////////////////////////////////////////////////////////////////////
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
this->computeNormals(tess);
this->computeBisectors();
SkASSERT(this->isConvex(tess));
}
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
const SkTDArray<SkVector>& bisectors) {
for (int i = 0; i < fPts.count(); ++i) {
fPts[i].fNorm = norms[i];
fPts[i].fBisector = bisectors[i];
}
}
// Compute the outward facing normal at each vertex.
void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
SkASSERT(len > 0.0f);
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
}
}
void GrAAConvexTessellator::Ring::computeBisectors() {
int prev = fPts.count() - 1;
for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
fPts[cur].fBisector.normalize();
fPts[cur].fBisector.negate(); // make the bisector face in
SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
}
}
//////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
// Is this ring convex?
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
if (fPts.count() < 3) {
return false;
}
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
SkScalar maxDot = minDot;
prev = cur;
for (int i = 1; i < fPts.count(); ++i) {
int next = (i + 1) % fPts.count();
cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
minDot = SkMinScalar(minDot, dot);
maxDot = SkMaxScalar(maxDot, dot);
prev = cur;
}
return (maxDot > 0.0f) == (minDot >= 0.0f);
}
static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
const SkPoint& test, SkPoint::Side side,
int* sign) {
*sign = -1;
SkPoint edge = p1 - p0;
SkScalar len = SkPoint::Normalize(&edge);
SkPoint testVec = test - p0;
SkScalar d0 = edge.dot(testVec);
if (d0 < 0.0f) {
return SkPoint::Distance(p0, test);
}
if (d0 > len) {
return SkPoint::Distance(p1, test);
}
SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
if (SkPoint::kRight_Side == side) {
perpDist = -perpDist;
}
if (perpDist < 0.0f) {
perpDist = -perpDist;
} else {
*sign = 1;
}
return perpDist;
}
SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
SkScalar minDist = SK_ScalarMax;
int closestSign, sign;
for (int edge = 0; edge < fNorms.count(); ++edge) {
SkScalar dist = capsule_depth(this->point(edge),
this->point((edge+1) % fNorms.count()),
p, fSide, &sign);
SkASSERT(dist >= 0.0f);
if (minDist > dist) {
minDist = dist;
closestSign = sign;
}
}
return closestSign * minDist;
}
// Verify that the incrementally computed depths are close to the actual depths.
void GrAAConvexTessellator::checkAllDepths() const {
for (int cur = 0; cur < this->numPts(); ++cur) {
SkScalar realDepth = this->computeRealDepth(this->point(cur));
SkScalar computedDepth = this->depth(cur);
SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
}
}
#endif
//////////////////////////////////////////////////////////////////////////////
#if GR_AA_CONVEX_TESSELLATOR_VIZ
static const SkScalar kPointRadius = 0.02f;
static const SkScalar kArrowStrokeWidth = 0.0f;
static const SkScalar kArrowLength = 0.2f;
static const SkScalar kEdgeTextSize = 0.1f;
static const SkScalar kPointTextSize = 0.02f;
static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
SkPaint paint;
SkASSERT(paramValue <= 1.0f);
int gs = int(255*paramValue);
paint.setARGB(255, gs, gs, gs);
canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
if (stroke) {
SkPaint stroke;
stroke.setColor(SK_ColorYELLOW);
stroke.setStyle(SkPaint::kStroke_Style);
stroke.setStrokeWidth(kPointRadius/3.0f);
canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
}
}
static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
SkPaint p;
p.setColor(color);
canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
}
static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
SkScalar len, SkColor color) {
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(kArrowStrokeWidth);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawLine(p.fX, p.fY,
p.fX + len * n.fX, p.fY + len * n.fY,
paint);
}
void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
SkPaint paint;
paint.setTextSize(kEdgeTextSize);
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
draw_line(canvas,
tess.point(fPts[cur].fIndex),
tess.point(fPts[next].fIndex),
SK_ColorGREEN);
SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
mid.scale(0.5f);
if (fPts.count()) {
draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
}
SkString num;
num.printf("%d", this->origEdgeID(cur));
canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
if (fPts.count()) {
draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
kArrowLength, SK_ColorBLUE);
}
}
}
void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
for (int i = 0; i < fIndices.count(); i += 3) {
SkASSERT(fIndices[i] < this->numPts()) ;
SkASSERT(fIndices[i+1] < this->numPts()) ;
SkASSERT(fIndices[i+2] < this->numPts()) ;
draw_line(canvas,
this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
SK_ColorBLACK);
}
fInitialRing.draw(canvas, *this);
for (int i = 0; i < fRings.count(); ++i) {
fRings[i]->draw(canvas, *this);
}
for (int i = 0; i < this->numPts(); ++i) {
draw_point(canvas,
this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
!this->movable(i));
SkPaint paint;
paint.setTextSize(kPointTextSize);
paint.setTextAlign(SkPaint::kCenter_Align);
if (this->depth(i) <= -fTargetDepth) {
paint.setColor(SK_ColorWHITE);
}
SkString num;
num.printf("%d", i);
canvas->drawText(num.c_str(), num.size(),
this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
paint);
}
}
#endif

View File

@ -0,0 +1,244 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrAAConvexTessellator_DEFINED
#define GrAAConvexTessellator_DEFINED
#include "SkColor.h"
#include "SkPoint.h"
#include "SkScalar.h"
#include "SkTDArray.h"
class SkCanvas;
class SkMatrix;
class SkPath;
//#define GR_AA_CONVEX_TESSELLATOR_VIZ 1
class GrAAConvexTessellator;
// The AAConvexTessellator holds the global pool of points and the triangulation
// that connects them. It also drives the tessellation process.
// The outward facing normals of the original polygon are stored (in 'fNorms') to service
// computeDepthFromEdge requests.
class GrAAConvexTessellator {
public:
GrAAConvexTessellator(SkScalar targetDepth = 0.5f)
: fSide(SkPoint::kOn_Side)
, fTargetDepth(targetDepth) {
}
void setTargetDepth(SkScalar targetDepth) { fTargetDepth = targetDepth; }
SkScalar targetDepth() const { return fTargetDepth; }
SkPoint::Side side() const { return fSide; }
bool tessellate(const SkMatrix& m, const SkPath& path);
// The next five should only be called after tessellate to extract the result
int numPts() const { return fPts.count(); }
int numIndices() const { return fIndices.count(); }
const SkPoint& lastPoint() const { return fPts.top(); }
const SkPoint& point(int index) const { return fPts[index]; }
int index(int index) const { return fIndices[index]; }
SkScalar depth(int index) const {return fDepths[index]; }
#if GR_AA_CONVEX_TESSELLATOR_VIZ
void draw(SkCanvas* canvas) const;
#endif
// The tessellator can be reused for multiple paths by rewinding in between
void rewind();
private:
// CandidateVerts holds the vertices for the next ring while they are
// being generated. Its main function is to de-dup the points.
class CandidateVerts {
public:
void setReserve(int numPts) { fPts.setReserve(numPts); }
void rewind() { fPts.rewind(); }
int numPts() const { return fPts.count(); }
const SkPoint& lastPoint() const { return fPts.top().fPt; }
const SkPoint& firstPoint() const { return fPts[0].fPt; }
const SkPoint& point(int index) const { return fPts[index].fPt; }
int originatingIdx(int index) const { return fPts[index].fOriginatingIdx; }
int origEdge(int index) const { return fPts[index].fOrigEdgeId; }
bool needsToBeNew(int index) const { return fPts[index].fNeedsToBeNew; }
int addNewPt(const SkPoint& newPt, int originatingIdx, int origEdge, bool needsToBeNew) {
struct PointData* pt = fPts.push();
pt->fPt = newPt;
pt->fOrigEdgeId = origEdge;
pt->fOriginatingIdx = originatingIdx;
pt->fNeedsToBeNew = needsToBeNew;
return fPts.count() - 1;
}
int fuseWithPrior(int origEdgeId) {
fPts.top().fOrigEdgeId = origEdgeId;
fPts.top().fOriginatingIdx = -1;
fPts.top().fNeedsToBeNew = true;
return fPts.count() - 1;
}
int fuseWithNext() {
fPts[0].fOriginatingIdx = -1;
fPts[0].fNeedsToBeNew = true;
return 0;
}
int fuseWithBoth() {
if (fPts.count() > 1) {
fPts.pop();
}
fPts[0].fOriginatingIdx = -1;
fPts[0].fNeedsToBeNew = true;
return 0;
}
private:
struct PointData {
SkPoint fPt;
int fOriginatingIdx;
int fOrigEdgeId;
bool fNeedsToBeNew;
};
SkTDArray<struct PointData> fPts;
};
// The Ring holds a set of indices into the global pool that together define
// a single polygon inset.
class Ring {
public:
void setReserve(int numPts) { fPts.setReserve(numPts); }
void rewind() { fPts.rewind(); }
int numPts() const { return fPts.count(); }
void addIdx(int index, int origEdgeId) {
struct PointData* pt = fPts.push();
pt->fIndex = index;
pt->fOrigEdgeId = origEdgeId;
}
// init should be called after all the indices have been added (via addIdx)
void init(const GrAAConvexTessellator& tess);
void init(const SkTDArray<SkVector>& norms, const SkTDArray<SkVector>& bisectors);
const SkPoint& norm(int index) const { return fPts[index].fNorm; }
const SkPoint& bisector(int index) const { return fPts[index].fBisector; }
int index(int index) const { return fPts[index].fIndex; }
int origEdgeID(int index) const { return fPts[index].fOrigEdgeId; }
#if GR_AA_CONVEX_TESSELLATOR_VIZ
void draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const;
#endif
private:
void computeNormals(const GrAAConvexTessellator& result);
void computeBisectors();
SkDEBUGCODE(bool isConvex(const GrAAConvexTessellator& tess) const;)
struct PointData {
SkPoint fNorm;
SkPoint fBisector;
int fIndex;
int fOrigEdgeId;
};
SkTDArray<PointData> fPts;
};
bool movable(int index) const { return fMovable[index]; }
// Movable points are those that can be slid along their bisector.
// Basically, a point is immovable if it is part of the original
// polygon or it results from the fusing of two bisectors.
int addPt(const SkPoint& pt, SkScalar depth, bool movable);
void popLastPt();
void popFirstPtShuffle();
void updatePt(int index, const SkPoint& pt, SkScalar depth);
void addTri(int i0, int i1, int i2);
void reservePts(int count) {
fPts.setReserve(count);
fDepths.setReserve(count);
fMovable.setReserve(count);
}
SkScalar computeDepthFromEdge(int edgeIdx, const SkPoint& p) const;
bool computePtAlongBisector(int startIdx, const SkPoint& bisector,
int edgeIdx, SkScalar desiredDepth,
SkPoint* result) const;
void terminate(const Ring& lastRing);
// return false on failure/degenerate path
bool extractFromPath(const SkMatrix& m, const SkPath& path);
void computeBisectors();
void fanRing(const Ring& ring);
void createOuterRing();
Ring* getNextRing(Ring* lastRing);
bool createInsetRing(const Ring& lastRing, Ring* nextRing);
void validate() const;
#ifdef SK_DEBUG
SkScalar computeRealDepth(const SkPoint& p) const;
void checkAllDepths() const;
#endif
// fPts, fWeights & fMovable should always have the same # of elements
SkTDArray<SkPoint> fPts;
SkTDArray<SkScalar> fDepths;
// movable points are those that can be slid further along their bisector
SkTDArray<bool> fMovable;
// The outward facing normals for the original polygon
SkTDArray<SkVector> fNorms;
// The inward facing bisector at each point in the original polygon. Only
// needed for exterior ring creation and then handed off to the initial ring.
SkTDArray<SkVector> fBisectors;
SkPoint::Side fSide; // winding of the original polygon
// The triangulation of the points
SkTDArray<int> fIndices;
Ring fInitialRing;
#if GR_AA_CONVEX_TESSELLATOR_VIZ
// When visualizing save all the rings
SkTDArray<Ring*> fRings;
#else
Ring fRings[2];
#endif
CandidateVerts fCandidateVerts;
SkScalar fTargetDepth;
// If some goes wrong with the inset computation the tessellator will
// truncate the creation of the inset polygon. In this case the depth
// check will complain.
SkDEBUGCODE(bool fShouldCheckDepths;)
};
#endif