Add direct bezier cubic support for GPU shaders

BUG=
R=bsalomon@google.com, jvanverth@google.com, robertphillips@google.com

Author: egdaniel@google.com

Review URL: https://chromiumcodereview.appspot.com/22900007

git-svn-id: http://skia.googlecode.com/svn/trunk@10814 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2013-08-20 14:45:45 +00:00
parent bcb88e51cd
commit 858638d8a5
3 changed files with 473 additions and 0 deletions

View File

@ -737,6 +737,105 @@ void add_line(const SkPoint p[2],
}
/**
* Shader is based off of "Resolution Independent Curve Rendering using
* Programmable Graphics Hardware" by Loop and Blinn.
* The output of this effect is a hairline edge for non rational cubics.
* Cubics are specified by implicit equation K^3 - LM.
* K, L, and M, are the first three values of the vertex attribute,
* the fourth value is not used. Distance is calculated using a
* first order approximation from the taylor series.
* Coverage is max(0, 1-distance).
*/
class HairCubicEdgeEffect : public GrEffect {
public:
static GrEffectRef* Create() {
GR_CREATE_STATIC_EFFECT(gHairCubicEdgeEffect, HairCubicEdgeEffect, ());
gHairCubicEdgeEffect->ref();
return gHairCubicEdgeEffect;
}
virtual ~HairCubicEdgeEffect() {}
static const char* Name() { return "HairCubicEdge"; }
virtual void getConstantColorComponents(GrColor* color,
uint32_t* validFlags) const SK_OVERRIDE {
*validFlags = 0;
}
virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
return GrTBackendEffectFactory<HairCubicEdgeEffect>::getInstance();
}
class GLEffect : public GrGLEffect {
public:
GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&)
: INHERITED (factory) {}
virtual void emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect& drawEffect,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) SK_OVERRIDE {
const char *vsName, *fsName;
SkAssertResult(builder->enableFeature(
GrGLShaderBuilder::kStandardDerivatives_GLSLFeature));
builder->addVarying(kVec4f_GrSLType, "CubicCoeffs",
&vsName, &fsName);
const SkString* attr0Name =
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]);
builder->vsCodeAppendf("\t%s = %s;\n", vsName, attr0Name->c_str());
builder->fsCodeAppend("\t\tfloat edgeAlpha;\n");
builder->fsCodeAppendf("\t\tvec3 dklmdx = dFdx(%s.xyz);\n", fsName);
builder->fsCodeAppendf("\t\tvec3 dklmdy = dFdy(%s.xyz);\n", fsName);
builder->fsCodeAppendf("\t\tfloat dfdx =\n"
"\t\t3.0*%s.x*%s.x*dklmdx.x - %s.y*dklmdx.z - %s.z*dklmdx.y;\n",
fsName, fsName, fsName, fsName);
builder->fsCodeAppendf("\t\tfloat dfdy =\n"
"\t\t3.0*%s.x*%s.x*dklmdy.x - %s.y*dklmdy.z - %s.z*dklmdy.y;\n",
fsName, fsName, fsName, fsName);
builder->fsCodeAppend("\t\tvec2 gF = vec2(dfdx, dfdy);\n");
builder->fsCodeAppend("\t\tfloat gFM = sqrt(dot(gF, gF));\n");
builder->fsCodeAppendf("\t\tfloat func = abs(%s.x*%s.x*%s.x - %s.y*%s.z);\n",
fsName, fsName, fsName, fsName, fsName);
builder->fsCodeAppend("\t\tedgeAlpha = func / gFM;\n");
builder->fsCodeAppend("\t\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
// Add line below for smooth cubic ramp
// builder->fsCodeAppend("\t\tedgeAlpha = edgeAlpha*edgeAlpha*(3.0-2.0*edgeAlpha);\n");
SkString modulate;
GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha");
builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str());
}
static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
return 0x0;
}
virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {}
private:
typedef GrGLEffect INHERITED;
};
private:
HairCubicEdgeEffect() {
this->addVertexAttrib(kVec4f_GrSLType);
}
virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE {
return true;
}
GR_DECLARE_EFFECT_TEST;
typedef GrEffect INHERITED;
};
/**
* Shader is based off of Loop-Blinn Quadratic GPU Rendering
* The output of this effect is a hairline edge for conics.

View File

@ -476,3 +476,332 @@ void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
}
}
////////////////////////////////////////////////////////////////////////////////
enum CubicType {
kSerpentine_CubicType,
kCusp_CubicType,
kLoop_CubicType,
kQuadratic_CubicType,
kLine_CubicType,
kPoint_CubicType
};
// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
// Classification:
// discr(I) > 0 Serpentine
// discr(I) = 0 Cusp
// discr(I) < 0 Loop
// d0 = d1 = 0 Quadratic
// d0 = d1 = d2 = 0 Line
// p0 = p1 = p2 = p3 Point
static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
return kPoint_CubicType;
}
const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
if (discr > SK_ScalarNearlyZero) {
return kSerpentine_CubicType;
} else if (discr < -SK_ScalarNearlyZero) {
return kLoop_CubicType;
} else {
if (0.f == d[0] && 0.f == d[1]) {
return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
} else {
return kCusp_CubicType;
}
}
}
// Assumes the third component of points is 1.
// Calcs p0 . (p1 x p2)
static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
return (xComp + yComp + wComp);
}
// Solves linear system to extract klm
// P.K = k (similarly for l, m)
// Where P is matrix of control points
// K is coefficients for the line K
// k is vector of values of K evaluated at the control points
// Solving for K, thus K = P^(-1) . k
static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
const SkScalar controlL[4], const SkScalar controlM[4],
SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
SkMatrix matrix;
matrix.setAll(p[0].fX, p[0].fY, 1.f,
p[1].fX, p[1].fY, 1.f,
p[2].fX, p[2].fY, 1.f);
SkMatrix inverse;
if (matrix.invert(&inverse)) {
inverse.mapHomogeneousPoints(k, controlK, 1);
inverse.mapHomogeneousPoints(l, controlL, 1);
inverse.mapHomogeneousPoints(m, controlM, 1);
}
}
static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
SkScalar ls = 3.f * d[1] - tempSqrt;
SkScalar lt = 6.f * d[0];
SkScalar ms = 3.f * d[1] + tempSqrt;
SkScalar mt = 6.f * d[0];
k[0] = ls * ms;
k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
k[3] = (lt - ls) * (mt - ms);
l[0] = ls * ls * ls;
const SkScalar lt_ls = lt - ls;
l[1] = ls * ls * lt_ls * -1.f;
l[2] = lt_ls * lt_ls * ls;
l[3] = -1.f * lt_ls * lt_ls * lt_ls;
m[0] = ms * ms * ms;
const SkScalar mt_ms = mt - ms;
m[1] = ms * ms * mt_ms * -1.f;
m[2] = mt_ms * mt_ms * ms;
m[3] = -1.f * mt_ms * mt_ms * mt_ms;
// If d0 < 0 we need to flip the orientation of our curve
// This is done by negating the k and l values
// We want negative distance values to be on the inside
if ( d[0] > 0) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
SkScalar ls = d[1] - tempSqrt;
SkScalar lt = 2.f * d[0];
SkScalar ms = d[1] + tempSqrt;
SkScalar mt = 2.f * d[0];
k[0] = ls * ms;
k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
k[3] = (lt - ls) * (mt - ms);
l[0] = ls * ls * ms;
l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
m[0] = ls * ms * ms;
m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
// If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
// we need to flip the orientation of our curve.
// This is done by negating the k and l values
if ( (d[0] < 0 && k[1] < 0) || (d[0] > 0 && k[1] > 0)) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
const SkScalar ls = d[2];
const SkScalar lt = 3.f * d[1];
k[0] = ls;
k[1] = ls - lt / 3.f;
k[2] = ls - 2.f * lt / 3.f;
k[3] = ls - lt;
l[0] = ls * ls * ls;
const SkScalar ls_lt = ls - lt;
l[1] = ls * ls * ls_lt;
l[2] = ls_lt * ls_lt * ls;
l[3] = ls_lt * ls_lt * ls_lt;
m[0] = 1.f;
m[1] = 1.f;
m[2] = 1.f;
m[3] = 1.f;
}
// For the case when a cubic is actually a quadratic
// M =
// 0 0 0
// 1/3 0 1/3
// 2/3 1/3 2/3
// 1 1 1
static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
k[0] = 0.f;
k[1] = 1.f/3.f;
k[2] = 2.f/3.f;
k[3] = 1.f;
l[0] = 0.f;
l[1] = 0.f;
l[2] = 1.f/3.f;
l[3] = 1.f;
m[0] = 0.f;
m[1] = 1.f/3.f;
m[2] = 2.f/3.f;
m[3] = 1.f;
// If d2 < 0 we need to flip the orientation of our curve
// This is done by negating the k and l values
if ( d[2] > 0) {
for (int i = 0; i < 4; ++i) {
k[i] = -k[i];
l[i] = -l[i];
}
}
}
// Calc coefficients of I(s,t) where roots of I are inflection points of curve
// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
// d0 = a1 - 2*a2+3*a3
// d1 = -a2 + 3*a3
// d2 = 3*a3
// a1 = p0 . (p3 x p2)
// a2 = p1 . (p0 x p3)
// a3 = p2 . (p1 x p0)
// Places the values of d1, d2, d3 in array d passed in
static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
// need to scale a's or values in later calculations will grow to high
SkScalar max = SkScalarAbs(a1);
max = SkMaxScalar(max, SkScalarAbs(a2));
max = SkMaxScalar(max, SkScalarAbs(a3));
max = 1.f/max;
a1 = a1 * max;
a2 = a2 * max;
a3 = a3 * max;
d[2] = 3.f * a3;
d[1] = d[2] - a2;
d[0] = d[1] - a2 + a1;
}
int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
SkScalar klm_rev[3]) {
// Variable to store the two parametric values at the loop double point
SkScalar smallS = 0.f;
SkScalar largeS = 0.f;
SkScalar d[3];
calc_cubic_inflection_func(src, d);
CubicType cType = classify_cubic(src, d);
int chop_count = 0;
if (kLoop_CubicType == cType) {
SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
SkScalar ls = d[1] - tempSqrt;
SkScalar lt = 2.f * d[0];
SkScalar ms = d[1] + tempSqrt;
SkScalar mt = 2.f * d[0];
ls = ls / lt;
ms = ms / mt;
// need to have t values sorted since this is what is expected by SkChopCubicAt
if (ls <= ms) {
smallS = ls;
largeS = ms;
} else {
smallS = ms;
largeS = ls;
}
SkScalar chop_ts[2];
if (smallS > 0.f && smallS < 1.f) {
chop_ts[chop_count++] = smallS;
}
if (largeS > 0.f && largeS < 1.f) {
chop_ts[chop_count++] = largeS;
}
if(dst) {
SkChopCubicAt(src, dst, chop_ts, chop_count);
}
} else {
if (dst) {
memcpy(dst, src, sizeof(SkPoint) * 4);
}
}
if (klm && klm_rev) {
// Set klm_rev to to match the sub_section of cubic that needs to have its orientation
// flipped. This will always be the section that is the "loop"
if (2 == chop_count) {
klm_rev[0] = 1.f;
klm_rev[1] = -1.f;
klm_rev[2] = 1.f;
} else if (1 == chop_count) {
if (smallS < 0.f) {
klm_rev[0] = -1.f;
klm_rev[1] = 1.f;
} else {
klm_rev[0] = 1.f;
klm_rev[1] = -1.f;
}
} else {
if (smallS < 0.f && largeS > 1.f) {
klm_rev[0] = -1.f;
} else {
klm_rev[0] = 1.f;
}
}
SkScalar controlK[4];
SkScalar controlL[4];
SkScalar controlM[4];
if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
set_serp_klm(d, controlK, controlL, controlM);
} else if (kLoop_CubicType == cType) {
set_loop_klm(d, controlK, controlL, controlM);
} else if (kCusp_CubicType == cType) {
SkASSERT(0.f == d[0]);
set_cusp_klm(d, controlK, controlL, controlM);
} else if (kQuadratic_CubicType == cType) {
set_quadratic_klm(d, controlK, controlL, controlM);
}
calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
}
return chop_count + 1;
}
void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
SkScalar d[3];
calc_cubic_inflection_func(p, d);
CubicType cType = classify_cubic(p, d);
SkScalar controlK[4];
SkScalar controlL[4];
SkScalar controlM[4];
if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
set_serp_klm(d, controlK, controlL, controlM);
} else if (kLoop_CubicType == cType) {
set_loop_klm(d, controlK, controlL, controlM);
} else if (kCusp_CubicType == cType) {
SkASSERT(0.f == d[0]);
set_cusp_klm(d, controlK, controlL, controlM);
} else if (kQuadratic_CubicType == cType) {
set_quadratic_klm(d, controlK, controlL, controlM);
}
calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
}

View File

@ -115,5 +115,50 @@ namespace GrPathUtils {
bool constrainWithinTangents,
SkPath::Direction dir,
SkTArray<SkPoint, true>* quads);
// Chops the cubic bezier passed in by src, at the double point (intersection point)
// if the curve is a cubic loop. If it is a loop, there will be two parametric values for
// the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
// Return value:
// Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
// dst[0..3], dst[3..6], and dst[6..9] if dst is not NULL
// Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
// dst[0..3] and dst[3..6] if dst is not NULL
// Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
// dst[0..3] if dst is not NULL
//
// Optional KLM Calculation:
// The function can also return the KLM linear functionals for the chopped cubic implicit form
// of K^3 - LM.
// It will calculate a single set of KLM values that can be shared by all sub cubics, except
// for the subsection that is "the loop" the K and L values need to be negated.
// Output:
// klm: Holds the values for the linear functionals as:
// K = (klm[0], klm[1], klm[2])
// L = (klm[3], klm[4], klm[5])
// M = (klm[6], klm[7], klm[8])
// klm_rev: These values are flags for the corresponding sub cubic saying whether or not
// the K and L values need to be flipped. A value of -1.f means flip K and L and
// a value of 1.f means do nothing.
// *****DO NOT FLIP M, JUST K AND L*****
//
// Notice that the klm lines are calculated in the same space as the input control points.
// If you transform the points the lines will also need to be transformed. This can be done
// by mapping the lines with the inverse-transpose of the matrix used to map the points.
int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = NULL,
SkScalar klm[9] = NULL, SkScalar klm_rev[3] = NULL);
// Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
// Output is the coefficients of the three linear functionals K, L, & M which
// represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
// will always be 1. The output is stored in the array klm, where the values are:
// K = (klm[0], klm[1], klm[2])
// L = (klm[3], klm[4], klm[5])
// M = (klm[6], klm[7], klm[8])
//
// Notice that the klm lines are calculated in the same space as the input control points.
// If you transform the points the lines will also need to be transformed. This can be done
// by mapping the lines with the inverse-transpose of the matrix used to map the points.
void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
};
#endif