565 support for SIMD xfermodes

This uses the most basic approach possible:
  - to load an Sk4px from 565, convert to SkPMColors on the stack serially then load those SkPMColors.
  - to store an Sk4px to 565, store to SkPMColors on the stack then convert to 565 serially.

Clearly, we can optimize these loads and stores.  That's a TODO.

The code using SkPMFloat is the same idea but a little more long-term viable, as we're only operating on one pixel at a time anyway.  We could probably write 565 <-> SkPMFloat methods, but I'd rather not until it's really compelling.

The speedups are varied but similar across SSE and NEON: a few uninteresting, many 50% faster, some 2x faster, and SoftLight ~4x faster.

This will cause minor GM diffs, but I don't think any layout test changes.

BUG=skia:

Committed: https://skia.googlesource.com/skia/+/942930dcaa51f66d82cdaf46ae62efebd16c8cd0

Review URL: https://codereview.chromium.org/1245673002
This commit is contained in:
mtklein 2015-07-21 17:23:39 -07:00 committed by Commit bot
parent c71239b9ff
commit 860dcaa2dd
5 changed files with 230 additions and 15 deletions

View File

@ -10,6 +10,7 @@
#include "SkNx.h"
#include "SkColor.h"
#include "SkColorPriv.h"
// This file may be included multiple times by .cpp files with different flags, leading
// to different definitions. Usually that doesn't matter because it's all inlined, but
@ -47,6 +48,14 @@ public:
void store2(SkPMColor[2]) const;
void store1(SkPMColor[1]) const;
// Same as above for 565.
static Sk4px Load4(const SkPMColor16 src[4]);
static Sk4px Load2(const SkPMColor16 src[2]);
static Sk4px Load1(const SkPMColor16 src[1]);
void store4(SkPMColor16 dst[4]) const;
void store2(SkPMColor16 dst[2]) const;
void store1(SkPMColor16 dst[1]) const;
// 1, 2, or 4 SkPMColors with 16-bit components.
// This is most useful as the result of a multiply, e.g. from mulWiden().
class Wide : public Sk16h {
@ -99,8 +108,8 @@ public:
// A generic driver that maps fn over a src array into a dst array.
// fn should take an Sk4px (4 src pixels) and return an Sk4px (4 dst pixels).
template <typename Fn>
static void MapSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) {
template <typename Fn, typename Dst>
static void MapSrc(int n, Dst* dst, const SkPMColor* src, const Fn& fn) {
// This looks a bit odd, but it helps loop-invariant hoisting across different calls to fn.
// Basically, we need to make sure we keep things inside a single loop.
while (n > 0) {
@ -129,8 +138,8 @@ public:
}
// As above, but with dst4' = fn(dst4, src4).
template <typename Fn>
static void MapDstSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) {
template <typename Fn, typename Dst>
static void MapDstSrc(int n, Dst* dst, const SkPMColor* src, const Fn& fn) {
while (n > 0) {
if (n >= 8) {
Sk4px dst0 = fn(Load4(dst+0), Load4(src+0)),
@ -157,8 +166,8 @@ public:
}
// As above, but with dst4' = fn(dst4, src4, alpha4).
template <typename Fn>
static void MapDstSrcAlpha(int n, SkPMColor* dst, const SkPMColor* src, const SkAlpha* a,
template <typename Fn, typename Dst>
static void MapDstSrcAlpha(int n, Dst* dst, const SkPMColor* src, const SkAlpha* a,
const Fn& fn) {
while (n > 0) {
if (n >= 8) {

View File

@ -222,6 +222,19 @@ public:
}
}
void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
if (NULL == aa) {
Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) {
return fProc4(src4, dst4);
});
} else {
Sk4px::MapDstSrcAlpha(n, dst, src, aa,
[&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) {
return fAAProc4(src4, dst4, alpha);
});
}
}
private:
Proc4 fProc4;
AAProc4 fAAProc4;
@ -237,19 +250,35 @@ public:
void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
for (int i = 0; i < n; i++) {
SkPMFloat s(src[i]),
d(dst[i]),
b(fProcF(s,d));
if (aa) {
// We do aa in full float precision before going back down to bytes, because we can!
SkPMFloat a = Sk4f(aa[i]) * Sk4f(1.0f/255);
b = b*a + d*(Sk4f(1)-a);
}
dst[i] = b.round();
dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i])
: this->xfer32(dst[i], src[i]);
}
}
void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
for (int i = 0; i < n; i++) {
SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
dst32 = aa ? this->xfer32(dst32, src[i], aa[i])
: this->xfer32(dst32, src[i]);
dst[i] = SkPixel32ToPixel16(dst32);
}
}
private:
inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const {
return fProcF(SkPMFloat(src), SkPMFloat(dst)).round();
}
inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const {
SkPMFloat s(src),
d(dst),
b(fProcF(s,d));
// We do aa in full float precision before going back down to bytes, because we can!
SkPMFloat a = Sk4f(aa) * Sk4f(1.0f/255);
b = b*a + d*(Sk4f(1)-a);
return b.round();
}
ProcF fProcF;
typedef SkProcCoeffXfermode INHERITED;
};

View File

@ -89,5 +89,76 @@ inline Sk4px Sk4px::zeroAlphas() const {
return Sk16b(vbicq_u8(this->fVec, (uint8x16_t)vdupq_n_u32(0xFF << SK_A32_SHIFT)));
}
static inline uint8x16_t widen_to_8888(uint16x4_t v) {
// RGB565 format: |R....|G.....|B....|
// Bit: 16 11 5 0
// First get each pixel into its own 32-bit lane.
// v == rgb3 rgb2 rgb1 rgb0
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
uint32x4_t spread = vmovl_u16(v);
// Get each color independently, still in 565 precison but down at bit 0.
auto r5 = vshrq_n_u32(spread, 11),
g6 = vandq_u32(vdupq_n_u32(63), vshrq_n_u32(spread, 5)),
b5 = vandq_u32(vdupq_n_u32(31), spread);
// Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component.
auto r8 = vorrq_u32(vshlq_n_u32(r5, 3), vshrq_n_u32(r5, 2)),
g8 = vorrq_u32(vshlq_n_u32(g6, 2), vshrq_n_u32(g6, 4)),
b8 = vorrq_u32(vshrq_n_u32(b5, 3), vshrq_n_u32(b5, 2));
// Now put all the 8-bit components into SkPMColor order.
return (uint8x16_t)vorrq_u32(vshlq_n_u32(r8, SK_R32_SHIFT), // TODO: one shift is zero...
vorrq_u32(vshlq_n_u32(g8, SK_G32_SHIFT),
vorrq_u32(vshlq_n_u32(b8, SK_B32_SHIFT),
vdupq_n_u32(0xFF << SK_A32_SHIFT))));
}
static inline uint16x4_t narrow_to_565(uint8x16_t w8x16) {
uint32x4_t w = (uint32x4_t)w8x16;
// Extract out top RGB 565 bits of each pixel, with no rounding.
auto r5 = vandq_u32(vdupq_n_u32(31), vshrq_n_u32(w, SK_R32_SHIFT + 3)),
g6 = vandq_u32(vdupq_n_u32(63), vshrq_n_u32(w, SK_G32_SHIFT + 2)),
b5 = vandq_u32(vdupq_n_u32(31), vshrq_n_u32(w, SK_B32_SHIFT + 3));
// Now put the bits in place in the low 16-bits of each 32-bit lane.
auto spread = vorrq_u32(vshlq_n_u32(r5, 11),
vorrq_u32(vshlq_n_u32(g6, 5),
b5));
// Pack the low 16-bits of our 128-bit register down into a 64-bit register.
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
// v == rgb3 rgb2 rgb1 rgb0
auto v = vmovn_u32(spread);
return v;
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
return Sk16b(widen_to_8888(vld1_u16(src)));
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
auto src2 = ((uint32_t)src[0] )
| ((uint32_t)src[1] << 16);
return Sk16b(widen_to_8888(vcreate_u16(src2)));
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
return Sk16b(widen_to_8888(vcreate_u16(src[0])));
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
vst1_u16(dst, narrow_to_565(this->fVec));
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
auto v = narrow_to_565(this->fVec);
dst[0] = vget_lane_u16(v, 0);
dst[1] = vget_lane_u16(v, 1);
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
dst[0] = vget_lane_u16(narrow_to_565(this->fVec), 0);
}
} // namespace

View File

@ -93,4 +93,79 @@ inline Sk4px Sk4px::zeroAlphas() const {
return Sk16b(_mm_andnot_si128(_mm_set1_epi32(0xFF << SK_A32_SHIFT), this->fVec));
}
static inline __m128i widen_low_half_to_8888(__m128i v) {
// RGB565 format: |R....|G.....|B....|
// Bit: 16 11 5 0
// First get each pixel into its own 32-bit lane.
// v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
auto spread = _mm_unpacklo_epi16(v, _mm_setzero_si128());
// Get each color independently, still in 565 precison but down at bit 0.
auto r5 = _mm_srli_epi32(spread, 11),
g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(spread, 5)),
b5 = _mm_and_si128(_mm_set1_epi32(31), spread);
// Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component.
auto r8 = _mm_or_si128(_mm_slli_epi32(r5, 3), _mm_srli_epi32(r5, 2)),
g8 = _mm_or_si128(_mm_slli_epi32(g6, 2), _mm_srli_epi32(g6, 4)),
b8 = _mm_or_si128(_mm_slli_epi32(b5, 3), _mm_srli_epi32(b5, 2));
// Now put all the 8-bit components into SkPMColor order.
return _mm_or_si128(_mm_slli_epi32(r8, SK_R32_SHIFT), // TODO: one of these shifts is zero...
_mm_or_si128(_mm_slli_epi32(g8, SK_G32_SHIFT),
_mm_or_si128(_mm_slli_epi32(b8, SK_B32_SHIFT),
_mm_set1_epi32(0xFF << SK_A32_SHIFT))));
}
static inline __m128i narrow_to_565(__m128i w) {
// Extract out top RGB 565 bits of each pixel, with no rounding.
auto r5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_R32_SHIFT + 3)),
g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(w, SK_G32_SHIFT + 2)),
b5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_B32_SHIFT + 3));
// Now put the bits in place in the low 16-bits of each 32-bit lane.
auto spread = _mm_or_si128(_mm_slli_epi32(r5, 11),
_mm_or_si128(_mm_slli_epi32(g6, 5),
b5));
// We want to pack the bottom 16-bits of spread down into the low half of the register, v.
// spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0
// v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0
// Ideally now we'd use _mm_packus_epi32(spread, <anything>) to pack v. But that's from SSE4.
// With only SSE2, we need to use _mm_packs_epi32. That does signed saturation, and
// we need to preserve all 16 bits. So we pretend our data is signed by sign-extending first.
// TODO: is it faster to just _mm_shuffle_epi8 this when we have SSSE3?
auto signExtended = _mm_srai_epi32(_mm_slli_epi32(spread, 16), 16);
auto v = _mm_packs_epi32(signExtended, signExtended);
return v;
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
return Sk16b(widen_low_half_to_8888(_mm_loadl_epi64((const __m128i*)src)));
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
auto src2 = ((uint32_t)src[0] )
| ((uint32_t)src[1] << 16);
return Sk16b(widen_low_half_to_8888(_mm_cvtsi32_si128(src2)));
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
return Sk16b(widen_low_half_to_8888(_mm_insert_epi16(_mm_setzero_si128(), src[0], 0)));
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
_mm_storel_epi64((__m128i*)dst, narrow_to_565(this->fVec));
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
dst[0] = dst2;
dst[1] = dst2 >> 16;
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec));
dst[0] = dst2;
}
} // namespace

View File

@ -100,4 +100,35 @@ inline Sk4px Sk4px::zeroColors() const {
0,0,0, this->kth<15>());
}
inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) {
SkPMColor src32[4];
for (int i = 0; i < 4; i++) { src32[i] = SkPixel16ToPixel32(src[i]); }
return Load4(src32);
}
inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) {
SkPMColor src32[2];
for (int i = 0; i < 2; i++) { src32[i] = SkPixel16ToPixel32(src[i]); }
return Load2(src32);
}
inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) {
SkPMColor src32 = SkPixel16ToPixel32(src[0]);
return Load1(&src32);
}
inline void Sk4px::store4(SkPMColor16 dst[4]) const {
SkPMColor dst32[4];
this->store4(dst32);
for (int i = 0; i < 4; i++) { dst[i] = SkPixel32ToPixel16(dst32[i]); }
}
inline void Sk4px::store2(SkPMColor16 dst[2]) const {
SkPMColor dst32[2];
this->store2(dst32);
for (int i = 0; i < 2; i++) { dst[i] = SkPixel32ToPixel16(dst32[i]); }
}
inline void Sk4px::store1(SkPMColor16 dst[1]) const {
SkPMColor dst32;
this->store1(&dst32);
dst[0] = SkPixel32ToPixel16(dst32);
}
} // namespace