Add some optimizations to PolyUtils

* Switch inset/offset code to use a linked list rather than an array
* Use std::set to store active edge list for IsSimplePolygon rather than array
* Pre-alloc the priority queue for IsSimplePolygon
* When adding radial curves, expand the array all at once rather than pushing
one at a time.

Bug: skia:
Change-Id: I692f8c29c500c41ec1d1be39d924d8a752676bf4
Reviewed-on: https://skia-review.googlesource.com/140787
Reviewed-by: Robert Phillips <robertphillips@google.com>
Commit-Queue: Jim Van Verth <jvanverth@google.com>
This commit is contained in:
Jim Van Verth 2018-07-17 14:13:47 -04:00 committed by Skia Commit-Bot
parent 92eaa3cafd
commit 8bb0db3d07
4 changed files with 327 additions and 221 deletions

View File

@ -9,12 +9,12 @@
#include "SkPolyUtils.h"
class PolyUtilsBench : public Benchmark {
public:
// Evaluate SkTriangulateSimplePolygon's performance (via derived classes) on:
// a non-self-intersecting star, a circle of tiny line segments and a self-intersecting star
enum class Type { kConvexCheck, kSimpleCheck, kInsetConvex, kOffsetSimple, kTessellateSimple };
SkString fName;
public:
PolyUtilsBench() {}
PolyUtilsBench(Type type) : fType(type) {}
virtual void appendName(SkString*) = 0;
virtual void makePoly(SkTDArray<SkPoint>* poly) = 0;
@ -24,32 +24,84 @@ protected:
const char* onGetName() override {
fName = "poly_utils_";
this->appendName(&fName);
switch (fType) {
case Type::kConvexCheck:
fName.append("_c");
break;
case Type::kSimpleCheck:
fName.append("_s");
break;
case Type::kInsetConvex:
fName.append("_i");
break;
case Type::kOffsetSimple:
fName.append("_o");
break;
case Type::kTessellateSimple:
fName.append("_t");
break;
}
return fName.c_str();
}
void onDraw(int loops, SkCanvas* canvas) override {
SkTDArray<SkPoint> poly;
this->makePoly(&poly);
SkAutoSTMalloc<64, uint16_t> indexMap(poly.count());
for (int i = 0; i < poly.count(); ++i) {
indexMap[i] = i;
}
SkTDArray<uint16_t> triangleIndices;
for (int i = 0; i < loops; i++) {
if (SkIsSimplePolygon(poly.begin(), poly.count())) {
SkTriangulateSimplePolygon(poly.begin(), indexMap, poly.count(),
&triangleIndices);
}
switch (fType) {
case Type::kConvexCheck:
for (int i = 0; i < loops; i++) {
(void)SkIsConvexPolygon(poly.begin(), poly.count());
}
break;
case Type::kSimpleCheck:
for (int i = 0; i < loops; i++) {
(void)SkIsSimplePolygon(poly.begin(), poly.count());
}
break;
case Type::kInsetConvex:
if (SkIsConvexPolygon(poly.begin(), poly.count())) {
SkTDArray<SkPoint> result;
for (int i = 0; i < loops; i++) {
(void)SkInsetConvexPolygon(poly.begin(), poly.count(), 10, &result);
(void)SkInsetConvexPolygon(poly.begin(), poly.count(), 40, &result);
}
}
break;
case Type::kOffsetSimple:
if (SkIsSimplePolygon(poly.begin(), poly.count())) {
SkTDArray<SkPoint> result;
for (int i = 0; i < loops; i++) {
(void)SkOffsetSimplePolygon(poly.begin(), poly.count(), 10, &result);
(void)SkOffsetSimplePolygon(poly.begin(), poly.count(), -10, &result);
}
}
break;
case Type::kTessellateSimple:
if (SkIsSimplePolygon(poly.begin(), poly.count())) {
SkAutoSTMalloc<64, uint16_t> indexMap(poly.count());
for (int i = 0; i < poly.count(); ++i) {
indexMap[i] = i;
}
SkTDArray<uint16_t> triangleIndices;
for (int i = 0; i < loops; i++) {
SkTriangulateSimplePolygon(poly.begin(), indexMap, poly.count(),
&triangleIndices);
}
}
break;
}
}
private:
SkString fName;
Type fType;
typedef Benchmark INHERITED;
};
class StarPolyUtilsBench : public PolyUtilsBench {
public:
StarPolyUtilsBench() {}
StarPolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {}
void appendName(SkString* name) override {
name->append("star");
@ -77,7 +129,7 @@ private:
class CirclePolyUtilsBench : public PolyUtilsBench {
public:
CirclePolyUtilsBench() {}
CirclePolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {}
void appendName(SkString* name) override {
name->append("circle");
@ -101,7 +153,7 @@ private:
class IntersectingPolyUtilsBench : public PolyUtilsBench {
public:
IntersectingPolyUtilsBench() {}
IntersectingPolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {}
void appendName(SkString* name) override {
name->append("intersecting");
@ -125,6 +177,18 @@ private:
typedef PolyUtilsBench INHERITED;
};
DEF_BENCH(return new StarPolyUtilsBench();)
DEF_BENCH(return new CirclePolyUtilsBench();)
DEF_BENCH(return new IntersectingPolyUtilsBench();)
DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);)
DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);)
DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);)
DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);)
DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);)
DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);)
DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);)
DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);)
DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);)
DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);)
DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);)
DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);)
DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);)
DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);)
DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);)

View File

@ -30,6 +30,7 @@ template <typename T,
class SkTDPQueue {
public:
SkTDPQueue() {}
SkTDPQueue(int reserve) { fArray.setReserve(reserve); }
SkTDPQueue(SkTDPQueue&&) = default;
SkTDPQueue& operator =(SkTDPQueue&&) = default;

View File

@ -7,6 +7,7 @@
#include "SkPolyUtils.h"
#include <set>
#include "SkPointPriv.h"
#include "SkTArray.h"
#include "SkTemplates.h"
@ -298,34 +299,32 @@ bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
return true;
}
struct EdgeData {
struct OffsetEdge {
OffsetEdge* fPrev;
OffsetEdge* fNext;
OffsetSegment fInset;
SkPoint fIntersection;
SkScalar fTValue;
uint16_t fStart;
uint16_t fEnd;
uint16_t fIndex;
bool fValid;
void init() {
void init(uint16_t start = 0, uint16_t end = 0) {
fIntersection = fInset.fP0;
fTValue = SK_ScalarMin;
fStart = 0;
fEnd = 0;
fIndex = 0;
fValid = true;
}
void init(uint16_t start, uint16_t end) {
fIntersection = fInset.fP0;
fTValue = SK_ScalarMin;
fStart = start;
fEnd = end;
fIndex = start;
fValid = true;
}
};
static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
// remove from linked list
node->fPrev->fNext = node->fNext;
node->fNext->fPrev = node->fPrev;
if (node == *head) {
*head = (node->fNext == node) ? nullptr : node->fNext;
}
}
//////////////////////////////////////////////////////////////////////////////////
// The objective here is to inset all of the edges by the given distance, and then
@ -354,115 +353,117 @@ bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize
}
// set up
SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
for (int i = 0; i < inputPolygonSize; ++i) {
int j = (i + 1) % inputPolygonSize;
int k = (i + 2) % inputPolygonSize;
if (!inputPolygonVerts[i].isFinite()) {
SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
int prev = inputPolygonSize - 1;
for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
int next = (curr + 1) % inputPolygonSize;
if (!inputPolygonVerts[curr].isFinite()) {
return false;
}
// check for convexity just to be sure
if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
inputPolygonVerts[k])*winding < 0) {
if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr],
inputPolygonVerts[next])*winding < 0) {
return false;
}
if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
insetDistanceFunc(inputPolygonVerts[i]),
insetDistanceFunc(inputPolygonVerts[j]),
edgeData[curr].fPrev = &edgeData[prev];
edgeData[curr].fNext = &edgeData[next];
if (!SkOffsetSegment(inputPolygonVerts[curr], inputPolygonVerts[next],
insetDistanceFunc(inputPolygonVerts[curr]),
insetDistanceFunc(inputPolygonVerts[next]),
winding,
&edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) {
&edgeData[curr].fInset.fP0, &edgeData[curr].fInset.fP1)) {
return false;
}
edgeData[i].init();
edgeData[curr].init();
}
int prevIndex = inputPolygonSize - 1;
int currIndex = 0;
OffsetEdge* head = &edgeData[0];
OffsetEdge* currEdge = head;
OffsetEdge* prevEdge = currEdge->fPrev;
int insetVertexCount = inputPolygonSize;
int iterations = 0;
while (prevIndex != currIndex) {
while (head && prevEdge != currEdge) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > inputPolygonSize*inputPolygonSize) {
return false;
}
if (!edgeData[prevIndex].fValid) {
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
continue;
}
SkScalar s, t;
SkPoint intersection;
if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
if (compute_intersection(prevEdge->fInset, currEdge->fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < edgeData[prevIndex].fTValue) {
if (s < prevEdge->fTValue) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
remove_node(prevEdge, &head);
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
prevEdge = prevEdge->fPrev;
// we've already considered this intersection, we're done
} else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
} else if (currEdge->fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
edgeData[currIndex].fIntersection,
currEdge->fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
edgeData[currIndex].fIntersection = intersection;
edgeData[currIndex].fTValue = t;
currEdge->fIntersection = intersection;
currEdge->fTValue = t;
// go to next segment
prevIndex = currIndex;
currIndex = (currIndex + 1) % inputPolygonSize;
prevEdge = currEdge;
currEdge = currEdge->fNext;
}
} else {
// if prev to right side of curr
int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP1);
if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP0)) {
int side = winding*compute_side(currEdge->fInset.fP0,
currEdge->fInset.fP1,
prevEdge->fInset.fP1);
if (side < 0 && side == winding*compute_side(currEdge->fInset.fP0,
currEdge->fInset.fP1,
prevEdge->fInset.fP0)) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
remove_node(prevEdge, &head);
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
prevEdge = prevEdge->fPrev;
} else {
// move to next segment
edgeData[currIndex].fValid = false;
remove_node(currEdge, &head);
--insetVertexCount;
currIndex = (currIndex + 1) % inputPolygonSize;
currEdge = currEdge->fNext;
}
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
static constexpr SkScalar kCleanupTolerance = 0.01f;
insetPolygon->reset();
if (insetVertexCount >= 0) {
insetPolygon->setReserve(insetVertexCount);
}
currIndex = -1;
for (int i = 0; i < inputPolygonSize; ++i) {
if (edgeData[i].fValid && (currIndex == -1 ||
!SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
(*insetPolygon)[currIndex],
kCleanupTolerance))) {
*insetPolygon->push() = edgeData[i].fIntersection;
currIndex++;
if (head) {
static constexpr SkScalar kCleanupTolerance = 0.01f;
if (insetVertexCount >= 0) {
insetPolygon->setReserve(insetVertexCount);
}
int currIndex = 0;
OffsetEdge* currEdge = head;
*insetPolygon->push() = currEdge->fIntersection;
currEdge = currEdge->fNext;
while (currEdge != head) {
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
(*insetPolygon)[currIndex],
kCleanupTolerance)) {
*insetPolygon->push() = currEdge->fIntersection;
currIndex++;
}
currEdge = currEdge->fNext;
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
kCleanupTolerance)) {
insetPolygon->pop();
}
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
kCleanupTolerance)) {
insetPolygon->pop();
}
return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count());
@ -504,6 +505,7 @@ struct Vertex {
static bool Left(const Vertex& qv0, const Vertex& qv1) {
return left(qv0.fPosition, qv1.fPosition);
}
// packed to fit into 16 bytes (one cache line)
SkPoint fPosition;
uint16_t fIndex; // index in unsorted polygon
@ -517,9 +519,14 @@ enum VertexFlags {
kNextLeft_VertexFlag = 0x2,
};
struct Edge {
struct ActiveEdge {
ActiveEdge(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1)
: fSegment({p0, p1})
, fIndex0(index0)
, fIndex1(index1) {}
// returns true if "this" is above "that"
bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) {
bool above(const ActiveEdge& that, SkScalar tolerance = SK_ScalarNearlyZero) const {
SkASSERT(this->fSegment.fP0.fX < that.fSegment.fP0.fX ||
SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance));
// The idea here is that if the vector between the origins of the two segments (dv)
@ -537,10 +544,26 @@ struct Edge {
// lies on dv. So then we try the same for the vector from the tail of "this"
// to the head of "that". Again, ccw means "this" is above "that".
dv = that.fSegment.fP1 - this->fSegment.fP0;
return (dv.cross(u) > tolerance);
if (dv.cross(u) > tolerance) {
return true;
}
// If the previous check fails, the two segments are nearly collinear
// If this segment starts to the left of that one,
// just need to check y-coord of 1st endpoint
if (this->fSegment.fP0.fX < that.fSegment.fP0.fX) {
return (this->fSegment.fP0.fY >= that.fSegment.fP0.fY);
} else if (this->fSegment.fP0.fY > that.fSegment.fP0.fY) {
return true;
}
// Otherwise the first endpoints are effectively the same, so check the other endpoint
if (this->fSegment.fP1.fX < that.fSegment.fP1.fX) {
return (this->fSegment.fP1.fY >= that.fSegment.fP1.fY);
} else {
return (this->fSegment.fP1.fY > that.fSegment.fP1.fY);
}
}
bool intersect(const Edge& that) const {
bool intersect(const ActiveEdge& that) const {
SkPoint intersection;
SkScalar s, t;
// check first to see if these edges are neighbors in the polygon
@ -551,78 +574,73 @@ struct Edge {
return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t);
}
bool operator==(const Edge& that) const {
bool operator==(const ActiveEdge& that) const {
return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1);
}
bool operator!=(const Edge& that) const {
bool operator!=(const ActiveEdge& that) const {
return !operator==(that);
}
bool operator<(const ActiveEdge& that) const {
// this may not be necessary
if (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1) {
return false;
}
if (this->fSegment.fP0.fX > that.fSegment.fP0.fX) {
return !that.above(*this);
}
return this->above(that);
}
OffsetSegment fSegment;
int32_t fIndex0; // indices for previous and next vertex
int32_t fIndex1;
};
class EdgeList {
class ActiveEdgeList {
public:
void reserve(int count) { fEdges.reserve(count); }
void reserve(int count) { }
bool insert(const Edge& newEdge) {
// linear search for now (expected case is very few active edges)
int insertIndex = 0;
while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) {
++insertIndex;
}
// if we intersect with the existing edge above or below us
// then we know this polygon is not simple, so don't insert, just fail
if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) {
return false;
}
if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) {
bool insert(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) {
std::pair<Iterator, bool> result = fEdgeTree.emplace(p0, p1, index0, index1);
if (!result.second) {
return false;
}
fEdges.push_back();
for (int i = fEdges.count() - 1; i > insertIndex; --i) {
fEdges[i] = fEdges[i - 1];
Iterator& curr = result.first;
if (curr != fEdgeTree.begin() && curr->intersect(*std::prev(curr))) {
return false;
}
Iterator next = std::next(curr);
if (next != fEdgeTree.end() && curr->intersect(*next)) {
return false;
}
fEdges[insertIndex] = newEdge;
return true;
}
bool remove(const Edge& edge) {
SkASSERT(fEdges.count() > 0);
// linear search for now (expected case is very few active edges)
int removeIndex = 0;
while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) {
++removeIndex;
}
// we'd better find it or something is wrong
SkASSERT(removeIndex < fEdges.count());
// if we intersect with the edge above or below us
// then we know this polygon is not simple, so don't remove, just fail
if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex - 1])) {
bool remove(const ActiveEdge& edge) {
auto element = fEdgeTree.find(edge);
// this better not happen
if (element == fEdgeTree.end()) {
return false;
}
if (removeIndex < fEdges.count() - 1) {
if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) {
return false;
}
// copy over the old entry
memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1],
sizeof(Edge)*(fEdges.count() - removeIndex - 1));
if (element != fEdgeTree.begin() && element->intersect(*std::prev(element))) {
return false;
}
Iterator next = std::next(element);
if (next != fEdgeTree.end() && element->intersect(*next)) {
return false;
}
fEdges.pop_back();
fEdgeTree.erase(element);
return true;
}
private:
SkSTArray<1, Edge> fEdges;
std::set<ActiveEdge> fEdgeTree;
typedef std::set<ActiveEdge>::iterator Iterator;
};
// Here we implement a sweep line algorithm to determine whether the provided points
@ -636,10 +654,7 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
return false;
}
SkTDPQueue <Vertex, Vertex::Left> vertexQueue;
EdgeList sweepLine;
sweepLine.reserve(polygonSize);
SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
for (int i = 0; i < polygonSize; ++i) {
Vertex newVertex;
if (!polygon[i].isFinite()) {
@ -661,31 +676,31 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
// pop each vertex from the queue and generate events depending on
// where it lies relative to its neighboring edges
ActiveEdgeList sweepLine;
sweepLine.reserve(polygonSize);
while (vertexQueue.count() > 0) {
const Vertex& v = vertexQueue.peek();
// check edge to previous vertex
if (v.fFlags & kPrevLeft_VertexFlag) {
Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex };
ActiveEdge edge(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex);
if (!sweepLine.remove(edge)) {
break;
}
} else {
Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex };
if (!sweepLine.insert(edge)) {
if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
break;
}
}
// check edge to next vertex
if (v.fFlags & kNextLeft_VertexFlag) {
Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex };
ActiveEdge edge(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex);
if (!sweepLine.remove(edge)) {
break;
}
} else {
Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex };
if (!sweepLine.insert(edge)) {
if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
break;
}
}
@ -698,6 +713,15 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
///////////////////////////////////////////////////////////////////////////////////////////
// helper function for SkOffsetSimplePolygon
static void setup_offset_edge(OffsetEdge* currEdge,
const SkPoint& endpoint0, const SkPoint& endpoint1,
int startIndex, int endIndex) {
currEdge->fInset.fP0 = endpoint0;
currEdge->fInset.fP1 = endpoint1;
currEdge->init(startIndex, endIndex);
}
bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
std::function<SkScalar(const SkPoint&)> offsetDistanceFunc,
SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
@ -736,7 +760,7 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz
}
// build initial offset edge list
SkSTArray<64, EdgeData> edgeData(inputPolygonSize);
SkSTArray<64, OffsetEdge> edgeData(inputPolygonSize);
int prevIndex = inputPolygonSize - 1;
int currIndex = 0;
int nextIndex = 1;
@ -754,126 +778,143 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz
&rotSin, &rotCos, &numSteps)) {
return false;
}
auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1));
for (int i = 0; i < numSteps - 1; ++i) {
SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
prevNormal.fY*rotCos + prevNormal.fX*rotSin);
EdgeData& edge = edgeData.push_back();
edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal;
edge.init(currIndex, currIndex);
setup_offset_edge(currEdge,
inputPolygonVerts[currIndex] + prevNormal,
inputPolygonVerts[currIndex] + currNormal,
currIndex, currIndex);
prevNormal = currNormal;
++currEdge;
}
EdgeData& edge = edgeData.push_back();
edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
edge.fInset.fP1 = inputPolygonVerts[currIndex] + normal0[currIndex];
edge.init(currIndex, currIndex);
setup_offset_edge(currEdge,
inputPolygonVerts[currIndex] + prevNormal,
inputPolygonVerts[currIndex] + normal0[currIndex],
currIndex, currIndex);
++currEdge;
}
// Add the edge
EdgeData& edge = edgeData.push_back();
edge.fInset.fP0 = inputPolygonVerts[currIndex] + normal0[currIndex];
edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normal1[nextIndex];
edge.init(currIndex, nextIndex);
auto edge = edgeData.push_back_n(1);
setup_offset_edge(edge,
inputPolygonVerts[currIndex] + normal0[currIndex],
inputPolygonVerts[nextIndex] + normal1[nextIndex],
currIndex, nextIndex);
prevIndex = currIndex;
currIndex++;
nextIndex = (nextIndex + 1) % inputPolygonSize;
}
// build linked list
// we have to do this as a post-process step because we might have reallocated
// the array when adding fans for reflex verts
prevIndex = edgeData.count()-1;
for (int currIndex = 0; currIndex < edgeData.count(); prevIndex = currIndex, ++currIndex) {
int nextIndex = (currIndex + 1) % edgeData.count();
edgeData[currIndex].fPrev = &edgeData[prevIndex];
edgeData[currIndex].fNext = &edgeData[nextIndex];
}
// now clip edges
int edgeDataSize = edgeData.count();
prevIndex = edgeDataSize - 1;
currIndex = 0;
int insetVertexCount = edgeDataSize;
auto head = &edgeData[0];
auto currEdge = head;
auto prevEdge = currEdge->fPrev;
int offsetVertexCount = edgeDataSize;
int iterations = 0;
while (prevIndex != currIndex) {
while (head && prevEdge != currEdge) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > edgeDataSize*edgeDataSize) {
return false;
}
if (!edgeData[prevIndex].fValid) {
prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
continue;
}
if (!edgeData[currIndex].fValid) {
currIndex = (currIndex + 1) % edgeDataSize;
continue;
}
SkScalar s, t;
SkPoint intersection;
if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
if (compute_intersection(prevEdge->fInset, currEdge->fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < edgeData[prevIndex].fTValue) {
if (s < prevEdge->fTValue) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
--insetVertexCount;
remove_node(prevEdge, &head);
--offsetVertexCount;
// go back one segment
prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
prevEdge = prevEdge->fPrev;
// we've already considered this intersection, we're done
} else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
} else if (currEdge->fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
edgeData[currIndex].fIntersection,
currEdge->fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
edgeData[currIndex].fIntersection = intersection;
edgeData[currIndex].fTValue = t;
edgeData[currIndex].fIndex = edgeData[prevIndex].fEnd;
currEdge->fIntersection = intersection;
currEdge->fTValue = t;
currEdge->fIndex = prevEdge->fEnd;
// go to next segment
prevIndex = currIndex;
currIndex = (currIndex + 1) % edgeDataSize;
prevEdge = currEdge;
currEdge = currEdge->fNext;
}
} else {
// If there is no intersection, we want to minimize the distance between
// the point where the segment lines cross and the segments themselves.
SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
SkScalar currNextIndex = (currIndex + 1) % edgeDataSize;
SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset,
edgeData[prevPrevIndex].fInset);
SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset,
edgeData[currNextIndex].fInset);
OffsetEdge* prevPrevEdge = prevEdge->fPrev;
OffsetEdge* currNextEdge = currEdge->fNext;
SkScalar dist0 = compute_crossing_distance(currEdge->fInset,
prevPrevEdge->fInset);
SkScalar dist1 = compute_crossing_distance(prevEdge->fInset,
currNextEdge->fInset);
if (dist0 < dist1) {
edgeData[prevIndex].fValid = false;
prevIndex = prevPrevIndex;
remove_node(prevEdge, &head);
prevEdge = prevPrevEdge;
} else {
edgeData[currIndex].fValid = false;
currIndex = currNextIndex;
remove_node(currEdge, &head);
currEdge = currNextEdge;
}
--insetVertexCount;
--offsetVertexCount;
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
static constexpr SkScalar kCleanupTolerance = 0.01f;
offsetPolygon->reset();
offsetPolygon->setReserve(insetVertexCount);
currIndex = -1;
for (int i = 0; i < edgeData.count(); ++i) {
if (edgeData[i].fValid && (currIndex == -1 ||
!SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
(*offsetPolygon)[currIndex],
kCleanupTolerance))) {
*offsetPolygon->push() = edgeData[i].fIntersection;
if (polygonIndices) {
*polygonIndices->push() = edgeData[i].fIndex;
}
currIndex++;
if (head) {
static constexpr SkScalar kCleanupTolerance = 0.01f;
if (offsetVertexCount >= 0) {
offsetPolygon->setReserve(offsetVertexCount);
}
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
kCleanupTolerance)) {
offsetPolygon->pop();
int currIndex = 0;
OffsetEdge* currEdge = head;
*offsetPolygon->push() = currEdge->fIntersection;
if (polygonIndices) {
polygonIndices->pop();
*polygonIndices->push() = currEdge->fIndex;
}
currEdge = currEdge->fNext;
while (currEdge != head) {
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
(*offsetPolygon)[currIndex],
kCleanupTolerance)) {
*offsetPolygon->push() = currEdge->fIntersection;
if (polygonIndices) {
*polygonIndices->push() = currEdge->fIndex;
}
currIndex++;
}
currEdge = currEdge->fNext;
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
kCleanupTolerance)) {
offsetPolygon->pop();
if (polygonIndices) {
polygonIndices->pop();
}
}
}

View File

@ -65,7 +65,7 @@ DEF_TEST(InsetConvexPoly, reporter) {
// past full inset
result = SkInsetConvexPolygon(rrectPoly.begin(), rrectPoly.count(), 75, &insetPoly);
REPORTER_ASSERT(reporter, !result);
REPORTER_ASSERT(reporter, insetPoly.count() == 0);
REPORTER_ASSERT(reporter, insetPoly.count() == 1);
// troublesome case
SkTDArray<SkPoint> clippedRRectPoly;