Reorg helper functions in prep for function pointer caching
This does several pure refactoring changes: 1. Adds reset() functions to each helper struct type instead of having TessellationHelper impl. the struct's reset logic. 2. Moves computeDegenerateQuad() to EdgeEquations. 3. Separate adjustVertices() into adjust and adjustDegenerate varieties, and have it take a signed distance. This makes it no longer branch on degeneracy or on whether or not it's insetting or outsetting. 4. The top-level inset()/outset() functions apply the appropriate sign to the edge distances, and use the appropriate adjust or adjustDegenerate function based on the inset/outset degenerate flag in OutsetRequest. Essentially all the old branching in adjustVertices() is baked into the choice of inset() or outset(). 5. Rearranged the structs and function definitions so no forward declarations were needed, and functions in CPP matched H order. The major functional change with this is that adjustDegenerate() now has an optimized case for rectilinear quads, where it can continue to use moveAlong() but with smaller inset distances. Change-Id: Ifc7f4537a4e89e82c74e831ab1cd00ffc4daaa4f Reviewed-on: https://skia-review.googlesource.com/c/skia/+/256777 Reviewed-by: Robert Phillips <robertphillips@google.com> Commit-Queue: Michael Ludwig <michaelludwig@google.com>
This commit is contained in:
parent
c694627157
commit
8c14134836
@ -408,149 +408,265 @@ bool CropToRect(const SkRect& cropRect, GrAA cropAA, GrQuadAAFlags* edgeFlags, G
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// TessellationHelper implementation
|
||||
// TessellationHelper implementation and helper struct implementations
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
|
||||
// Record basic state that isn't recorded on the Vertices struct itself
|
||||
fDeviceType = deviceQuad.quadType();
|
||||
fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
|
||||
|
||||
// Reset metadata validity
|
||||
fOutsetRequestValid = false;
|
||||
fEdgeEquationsValid = false;
|
||||
|
||||
// Set vertices to match the device and local quad
|
||||
fOriginal.fX = deviceQuad.x4f();
|
||||
fOriginal.fY = deviceQuad.y4f();
|
||||
fOriginal.fW = deviceQuad.w4f();
|
||||
|
||||
if (localQuad) {
|
||||
fOriginal.fU = localQuad->x4f();
|
||||
fOriginal.fV = localQuad->y4f();
|
||||
fOriginal.fR = localQuad->w4f();
|
||||
fOriginal.fUVRCount = fLocalType == GrQuad::Type::kPerspective ? 3 : 2;
|
||||
} else {
|
||||
fOriginal.fUVRCount = 0;
|
||||
}
|
||||
//** EdgeVectors implementation
|
||||
|
||||
void TessellationHelper::EdgeVectors::reset(const skvx::Vec<4, float>& xs,
|
||||
const skvx::Vec<4, float>& ys,
|
||||
const skvx::Vec<4, float>& ws,
|
||||
GrQuad::Type quadType) {
|
||||
// Calculate all projected edge vector values for this quad.
|
||||
if (fDeviceType == GrQuad::Type::kPerspective) {
|
||||
V4f iw = 1.0 / fOriginal.fW;
|
||||
fEdgeVectors.fX2D = fOriginal.fX * iw;
|
||||
fEdgeVectors.fY2D = fOriginal.fY * iw;
|
||||
if (quadType == GrQuad::Type::kPerspective) {
|
||||
V4f iw = 1.0 / ws;
|
||||
fX2D = xs * iw;
|
||||
fY2D = ys * iw;
|
||||
} else {
|
||||
fEdgeVectors.fX2D = fOriginal.fX;
|
||||
fEdgeVectors.fY2D = fOriginal.fY;
|
||||
fX2D = xs;
|
||||
fY2D = ys;
|
||||
}
|
||||
|
||||
fEdgeVectors.fDX = next_ccw(fEdgeVectors.fX2D) - fEdgeVectors.fX2D;
|
||||
fEdgeVectors.fDY = next_ccw(fEdgeVectors.fY2D) - fEdgeVectors.fY2D;
|
||||
fEdgeVectors.fInvLengths = rsqrt(mad(fEdgeVectors.fDX, fEdgeVectors.fDX,
|
||||
fEdgeVectors.fDY * fEdgeVectors.fDY));
|
||||
fDX = next_ccw(fX2D) - fX2D;
|
||||
fDY = next_ccw(fY2D) - fY2D;
|
||||
fInvLengths = rsqrt(mad(fDX, fDX, fDY * fDY));
|
||||
|
||||
// Normalize edge vectors
|
||||
fEdgeVectors.fDX *= fEdgeVectors.fInvLengths;
|
||||
fEdgeVectors.fDY *= fEdgeVectors.fInvLengths;
|
||||
fDX *= fInvLengths;
|
||||
fDY *= fInvLengths;
|
||||
|
||||
// Calculate angles between vectors
|
||||
if (fDeviceType <= GrQuad::Type::kRectilinear) {
|
||||
fEdgeVectors.fCosTheta = 0.f;
|
||||
fEdgeVectors.fInvSinTheta = 1.f;
|
||||
if (quadType <= GrQuad::Type::kRectilinear) {
|
||||
fCosTheta = 0.f;
|
||||
fInvSinTheta = 1.f;
|
||||
} else {
|
||||
fEdgeVectors.fCosTheta = mad(fEdgeVectors.fDX, next_cw(fEdgeVectors.fDX),
|
||||
fEdgeVectors.fDY * next_cw(fEdgeVectors.fDY));
|
||||
fCosTheta = mad(fDX, next_cw(fDX), fDY * next_cw(fDY));
|
||||
// NOTE: if cosTheta is close to 1, inset/outset math will avoid the fast paths that rely
|
||||
// on thefInvSinTheta since it will approach infinity.
|
||||
fEdgeVectors.fInvSinTheta = rsqrt(1.f - fEdgeVectors.fCosTheta * fEdgeVectors.fCosTheta);
|
||||
fInvSinTheta = rsqrt(1.f - fCosTheta * fCosTheta);
|
||||
}
|
||||
|
||||
fVerticesValid = true;
|
||||
}
|
||||
|
||||
const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
|
||||
if (!fEdgeEquationsValid) {
|
||||
V4f dx = fEdgeVectors.fDX;
|
||||
V4f dy = fEdgeVectors.fDY;
|
||||
// Correct for bad edges by copying adjacent edge information into the bad component
|
||||
correct_bad_edges(fEdgeVectors.fInvLengths >= 1.f / kTolerance, &dx, &dy, nullptr);
|
||||
//** EdgeEquations implementation
|
||||
|
||||
V4f c = mad(dx, fEdgeVectors.fY2D, -dy * fEdgeVectors.fX2D);
|
||||
// Make sure normals point into the shape
|
||||
V4f test = mad(dy, next_cw(fEdgeVectors.fX2D), mad(-dx, next_cw(fEdgeVectors.fY2D), c));
|
||||
if (any(test < -kTolerance)) {
|
||||
fEdgeEquations.fA = -dy;
|
||||
fEdgeEquations.fB = dx;
|
||||
fEdgeEquations.fC = -c;
|
||||
} else {
|
||||
fEdgeEquations.fA = dy;
|
||||
fEdgeEquations.fB = -dx;
|
||||
fEdgeEquations.fC = c;
|
||||
}
|
||||
void TessellationHelper::EdgeEquations::reset(const EdgeVectors& edgeVectors) {
|
||||
V4f dx = edgeVectors.fDX;
|
||||
V4f dy = edgeVectors.fDY;
|
||||
// Correct for bad edges by copying adjacent edge information into the bad component
|
||||
correct_bad_edges(edgeVectors.fInvLengths >= 1.f / kTolerance, &dx, &dy, nullptr);
|
||||
|
||||
fEdgeEquationsValid = true;
|
||||
V4f c = mad(dx, edgeVectors.fY2D, -dy * edgeVectors.fX2D);
|
||||
// Make sure normals point into the shape
|
||||
V4f test = mad(dy, next_cw(edgeVectors.fX2D), mad(-dx, next_cw(edgeVectors.fY2D), c));
|
||||
if (any(test < -kTolerance)) {
|
||||
fA = -dy;
|
||||
fB = dx;
|
||||
fC = -c;
|
||||
} else {
|
||||
fA = dy;
|
||||
fB = -dx;
|
||||
fC = c;
|
||||
}
|
||||
return fEdgeEquations;
|
||||
}
|
||||
|
||||
const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
|
||||
const skvx::Vec<4, float>& edgeDistances) {
|
||||
// Much of the code assumes that we start from positive distances and apply it unmodified to
|
||||
// create an outset; knowing that it's outset simplifies degeneracy checking.
|
||||
SkASSERT(all(edgeDistances >= 0.f));
|
||||
V4f TessellationHelper::EdgeEquations::estimateCoverage(const V4f& x2d, const V4f& y2d) const {
|
||||
// Calculate distance of the 4 inset points (px, py) to the 4 edges
|
||||
V4f d0 = mad(fA[0], x2d, mad(fB[0], y2d, fC[0]));
|
||||
V4f d1 = mad(fA[1], x2d, mad(fB[1], y2d, fC[1]));
|
||||
V4f d2 = mad(fA[2], x2d, mad(fB[2], y2d, fC[2]));
|
||||
V4f d3 = mad(fA[3], x2d, mad(fB[3], y2d, fC[3]));
|
||||
|
||||
// Rebuild outset request if invalid or if the edge distances have changed.
|
||||
if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
|
||||
// Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
|
||||
// calculate the inset or outset geometry.
|
||||
if (fDeviceType <= GrQuad::Type::kRectilinear) {
|
||||
// Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
|
||||
// (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
|
||||
// never be degenerate in this case). The same applies for height (edge[0] or edge[3])
|
||||
// and (dist[1] + dist[2]).
|
||||
fOutsetRequest.fOutsetDegenerate = false;
|
||||
float widthChange = edgeDistances[0] + edgeDistances[3];
|
||||
float heightChange = edgeDistances[1] + edgeDistances[2];
|
||||
// (1/len > 1/(edge sum) implies len - edge sum < 0.
|
||||
fOutsetRequest.fInsetDegenerate =
|
||||
(widthChange > 0.f && fEdgeVectors.fInvLengths[1] > 1.f / widthChange) ||
|
||||
(heightChange > 0.f && fEdgeVectors.fInvLengths[0] > 1.f / heightChange);
|
||||
} else if (any(fEdgeVectors.fInvLengths >= 1.f / kTolerance)) {
|
||||
// Have an edge that is effectively length 0, so we're dealing with a triangle, which
|
||||
// must always go through the degenerate code path.
|
||||
fOutsetRequest.fOutsetDegenerate = true;
|
||||
fOutsetRequest.fInsetDegenerate = true;
|
||||
// For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
|
||||
// axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
|
||||
// so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
|
||||
// at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
|
||||
// accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
|
||||
// mathematically accurate but qualitatively provides a stable value proportional to the size of
|
||||
// the shape.
|
||||
V4f w = max(0.f, min(1.f, d0 + d3));
|
||||
V4f h = max(0.f, min(1.f, d1 + d2));
|
||||
return w * h;
|
||||
}
|
||||
|
||||
int TessellationHelper::EdgeEquations::computeDegenerateQuad(const V4f& signedEdgeDistances,
|
||||
V4f* x2d, V4f* y2d) const {
|
||||
// Move the edge by the signed edge adjustment.
|
||||
V4f oc = fC + signedEdgeDistances;
|
||||
|
||||
// There are 6 points that we care about to determine the final shape of the polygon, which
|
||||
// are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
|
||||
// 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
|
||||
V4f denom = fA * next_cw(fB) - fB * next_cw(fA);
|
||||
V4f px = (fB * next_cw(oc) - oc * next_cw(fB)) / denom;
|
||||
V4f py = (oc * next_cw(fA) - fA * next_cw(oc)) / denom;
|
||||
correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
|
||||
|
||||
// Calculate the signed distances from these 4 corners to the other two edges that did not
|
||||
// define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
|
||||
// p(3) to e0,e2
|
||||
V4f dists1 = px * skvx::shuffle<3, 3, 0, 0>(fA) +
|
||||
py * skvx::shuffle<3, 3, 0, 0>(fB) +
|
||||
skvx::shuffle<3, 3, 0, 0>(oc);
|
||||
V4f dists2 = px * skvx::shuffle<1, 2, 1, 2>(fA) +
|
||||
py * skvx::shuffle<1, 2, 1, 2>(fB) +
|
||||
skvx::shuffle<1, 2, 1, 2>(oc);
|
||||
|
||||
// If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
|
||||
// the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
|
||||
// and we need to use a central point to represent it. If all four points are only on the
|
||||
// wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
|
||||
// Otherwise, use a triangle that replaces the bad points with the intersections of
|
||||
// (e1, e2) or (e0, e3) as needed.
|
||||
M4f d1v0 = dists1 < kTolerance;
|
||||
M4f d2v0 = dists2 < kTolerance;
|
||||
M4f d1And2 = d1v0 & d2v0;
|
||||
M4f d1Or2 = d1v0 | d2v0;
|
||||
|
||||
if (!any(d1Or2)) {
|
||||
// Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
|
||||
// and use full coverage
|
||||
*x2d = px;
|
||||
*y2d = py;
|
||||
return 4;
|
||||
} else if (any(d1And2)) {
|
||||
// A point failed against two edges, so reduce the shape to a single point, which we take as
|
||||
// the center of the original quad to ensure it is contained in the intended geometry. Since
|
||||
// it has collapsed, we know the shape cannot cover a pixel so update the coverage.
|
||||
SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
|
||||
0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
|
||||
*x2d = center.fX;
|
||||
*y2d = center.fY;
|
||||
return 1;
|
||||
} else if (all(d1Or2)) {
|
||||
// Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
|
||||
// that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
|
||||
if (dists1[2] < kTolerance && dists1[3] < kTolerance) {
|
||||
// Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
|
||||
*x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
|
||||
*y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
|
||||
} else {
|
||||
// If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
|
||||
// request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
|
||||
if (any(abs(fEdgeVectors.fCosTheta) >= 0.9f)) {
|
||||
fOutsetRequest.fOutsetDegenerate = true;
|
||||
fOutsetRequest.fInsetDegenerate = true;
|
||||
} else {
|
||||
// With an edge-centric view, an edge's length changes by
|
||||
// edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
|
||||
// corner uses ccw theta value). An edge's length also changes when its adjacent
|
||||
// edges move, in which case it's updated by edgeDistance / sin(theta)
|
||||
// (or cos(theta) for the other edge).
|
||||
// Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
|
||||
*x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
|
||||
*y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
|
||||
}
|
||||
return 2;
|
||||
} else {
|
||||
// This turns into a triangle. Replace corners as needed with the intersections between
|
||||
// (e0,e3) and (e1,e2), which must now be calculated
|
||||
using V2f = skvx::Vec<2, float>;
|
||||
V2f eDenom = skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(fB) -
|
||||
skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(fA);
|
||||
V2f ex = (skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(oc) -
|
||||
skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fB)) / eDenom;
|
||||
V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fA) -
|
||||
skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
|
||||
|
||||
// cos(pi - theta) = -cos(theta)
|
||||
V4f halfTanTheta = -fEdgeVectors.fCosTheta * fEdgeVectors.fInvSinTheta;
|
||||
V4f edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
|
||||
next_ccw(edgeDistances) * next_ccw(fEdgeVectors.fInvSinTheta) +
|
||||
next_cw(edgeDistances) * fEdgeVectors.fInvSinTheta;
|
||||
|
||||
// If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
|
||||
// the edge lengths negative, then it's degenerate.
|
||||
V4f threshold = 0.1f - (1.f / fEdgeVectors.fInvLengths);
|
||||
fOutsetRequest.fOutsetDegenerate = any(edgeAdjust < threshold);
|
||||
fOutsetRequest.fInsetDegenerate = any(edgeAdjust > -threshold);
|
||||
}
|
||||
if (SkScalarAbs(eDenom[0]) > kTolerance) {
|
||||
px = if_then_else(d1v0, V4f(ex[0]), px);
|
||||
py = if_then_else(d1v0, V4f(ey[0]), py);
|
||||
}
|
||||
if (SkScalarAbs(eDenom[1]) > kTolerance) {
|
||||
px = if_then_else(d2v0, V4f(ex[1]), px);
|
||||
py = if_then_else(d2v0, V4f(ey[1]), py);
|
||||
}
|
||||
|
||||
fOutsetRequest.fEdgeDistances = edgeDistances;
|
||||
fOutsetRequestValid = true;
|
||||
*x2d = px;
|
||||
*y2d = py;
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
|
||||
//** OutsetRequest implementation
|
||||
|
||||
void TessellationHelper::OutsetRequest::reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
|
||||
const skvx::Vec<4, float>& edgeDistances) {
|
||||
fEdgeDistances = edgeDistances;
|
||||
|
||||
// Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
|
||||
// calculate the inset or outset geometry.
|
||||
if (quadType <= GrQuad::Type::kRectilinear) {
|
||||
// Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
|
||||
// (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
|
||||
// never be degenerate in this case). The same applies for height (edge[0] or edge[3])
|
||||
// and (dist[1] + dist[2]).
|
||||
fOutsetDegenerate = false;
|
||||
float widthChange = edgeDistances[0] + edgeDistances[3];
|
||||
float heightChange = edgeDistances[1] + edgeDistances[2];
|
||||
// (1/len > 1/(edge sum) implies len - edge sum < 0.
|
||||
fInsetDegenerate =
|
||||
(widthChange > 0.f && edgeVectors.fInvLengths[1] > 1.f / widthChange) ||
|
||||
(heightChange > 0.f && edgeVectors.fInvLengths[0] > 1.f / heightChange);
|
||||
} else if (any(edgeVectors.fInvLengths >= 1.f / kTolerance)) {
|
||||
// Have an edge that is effectively length 0, so we're dealing with a triangle, which
|
||||
// must always go through the degenerate code path.
|
||||
fOutsetDegenerate = true;
|
||||
fInsetDegenerate = true;
|
||||
} else {
|
||||
// If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
|
||||
// request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
|
||||
if (any(abs(edgeVectors.fCosTheta) >= 0.9f)) {
|
||||
fOutsetDegenerate = true;
|
||||
fInsetDegenerate = true;
|
||||
} else {
|
||||
// With an edge-centric view, an edge's length changes by
|
||||
// edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
|
||||
// corner uses ccw theta value). An edge's length also changes when its adjacent
|
||||
// edges move, in which case it's updated by edgeDistance / sin(theta)
|
||||
// (or cos(theta) for the other edge).
|
||||
|
||||
// cos(pi - theta) = -cos(theta)
|
||||
V4f halfTanTheta = -edgeVectors.fCosTheta * edgeVectors.fInvSinTheta;
|
||||
V4f edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
|
||||
next_ccw(edgeDistances) * next_ccw(edgeVectors.fInvSinTheta) +
|
||||
next_cw(edgeDistances) * edgeVectors.fInvSinTheta;
|
||||
|
||||
// If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
|
||||
// the edge lengths negative, then it's degenerate.
|
||||
V4f threshold = 0.1f - (1.f / edgeVectors.fInvLengths);
|
||||
fOutsetDegenerate = any(edgeAdjust < threshold);
|
||||
fInsetDegenerate = any(edgeAdjust > -threshold);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//** Vertices implementation
|
||||
|
||||
void TessellationHelper::Vertices::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
|
||||
// Set vertices to match the device and local quad
|
||||
fX = deviceQuad.x4f();
|
||||
fY = deviceQuad.y4f();
|
||||
fW = deviceQuad.w4f();
|
||||
|
||||
if (localQuad) {
|
||||
fU = localQuad->x4f();
|
||||
fV = localQuad->y4f();
|
||||
fR = localQuad->w4f();
|
||||
fUVRCount = localQuad->hasPerspective() ? 3 : 2;
|
||||
} else {
|
||||
fUVRCount = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
|
||||
GrQuad* localOut, GrQuad::Type localType) const {
|
||||
SkASSERT(deviceOut);
|
||||
SkASSERT(fUVRCount == 0 || localOut);
|
||||
|
||||
fX.store(deviceOut->xs());
|
||||
fY.store(deviceOut->ys());
|
||||
if (deviceType == GrQuad::Type::kPerspective) {
|
||||
fW.store(deviceOut->ws());
|
||||
}
|
||||
deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
|
||||
|
||||
if (fUVRCount > 0) {
|
||||
fU.store(localOut->xs());
|
||||
fV.store(localOut->ys());
|
||||
if (fUVRCount == 3) {
|
||||
fR.store(localOut->ws());
|
||||
}
|
||||
localOut->setQuadType(localType);
|
||||
}
|
||||
return fOutsetRequest;
|
||||
}
|
||||
|
||||
void TessellationHelper::Vertices::moveAlong(const EdgeVectors& edgeVectors,
|
||||
@ -689,169 +805,22 @@ void TessellationHelper::Vertices::moveTo(const V4f& x2d, const V4f& y2d, const
|
||||
}
|
||||
}
|
||||
|
||||
void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
|
||||
GrQuad* localOut, GrQuad::Type localType) const {
|
||||
SkASSERT(deviceOut);
|
||||
SkASSERT(fUVRCount == 0 || localOut);
|
||||
//** TessellationHelper implementation
|
||||
|
||||
fX.store(deviceOut->xs());
|
||||
fY.store(deviceOut->ys());
|
||||
if (deviceType == GrQuad::Type::kPerspective) {
|
||||
fW.store(deviceOut->ws());
|
||||
}
|
||||
deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
|
||||
void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
|
||||
// Record basic state that isn't recorded on the Vertices struct itself
|
||||
fDeviceType = deviceQuad.quadType();
|
||||
fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
|
||||
|
||||
if (fUVRCount > 0) {
|
||||
fU.store(localOut->xs());
|
||||
fV.store(localOut->ys());
|
||||
if (fUVRCount == 3) {
|
||||
fR.store(localOut->ws());
|
||||
}
|
||||
localOut->setQuadType(localType);
|
||||
}
|
||||
}
|
||||
// Reset metadata validity
|
||||
fOutsetRequestValid = false;
|
||||
fEdgeEquationsValid = false;
|
||||
|
||||
V4f TessellationHelper::EdgeEquations::estimateCoverage(const V4f& x2d, const V4f& y2d) const {
|
||||
// Calculate distance of the 4 inset points (px, py) to the 4 edges
|
||||
V4f d0 = mad(fA[0], x2d, mad(fB[0], y2d, fC[0]));
|
||||
V4f d1 = mad(fA[1], x2d, mad(fB[1], y2d, fC[1]));
|
||||
V4f d2 = mad(fA[2], x2d, mad(fB[2], y2d, fC[2]));
|
||||
V4f d3 = mad(fA[3], x2d, mad(fB[3], y2d, fC[3]));
|
||||
// Compute vertex properties that are always needed for a quad, so no point in doing it lazily.
|
||||
fOriginal.reset(deviceQuad, localQuad);
|
||||
fEdgeVectors.reset(fOriginal.fX, fOriginal.fY, fOriginal.fW, fDeviceType);
|
||||
|
||||
// For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
|
||||
// axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
|
||||
// so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
|
||||
// at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
|
||||
// accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
|
||||
// mathematically accurate but qualitatively provides a stable value proportional to the size of
|
||||
// the shape.
|
||||
V4f w = max(0.f, min(1.f, d0 + d3));
|
||||
V4f h = max(0.f, min(1.f, d1 + d2));
|
||||
return w * h;
|
||||
}
|
||||
|
||||
int TessellationHelper::computeDegenerateQuad(const V4f& signedEdgeDistances, V4f* x2d, V4f* y2d) {
|
||||
// Move the edge by the signed edge adjustment.
|
||||
const EdgeEquations& edges = this->getEdgeEquations();
|
||||
V4f oc = edges.fC + signedEdgeDistances;
|
||||
|
||||
// There are 6 points that we care about to determine the final shape of the polygon, which
|
||||
// are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
|
||||
// 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
|
||||
V4f denom = edges.fA * next_cw(edges.fB) - edges.fB * next_cw(edges.fA);
|
||||
V4f px = (edges.fB * next_cw(oc) - oc * next_cw(edges.fB)) / denom;
|
||||
V4f py = (oc * next_cw(edges.fA) - edges.fA * next_cw(oc)) / denom;
|
||||
correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
|
||||
|
||||
// Calculate the signed distances from these 4 corners to the other two edges that did not
|
||||
// define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
|
||||
// p(3) to e0,e2
|
||||
V4f dists1 = px * skvx::shuffle<3, 3, 0, 0>(edges.fA) +
|
||||
py * skvx::shuffle<3, 3, 0, 0>(edges.fB) +
|
||||
skvx::shuffle<3, 3, 0, 0>(oc);
|
||||
V4f dists2 = px * skvx::shuffle<1, 2, 1, 2>(edges.fA) +
|
||||
py * skvx::shuffle<1, 2, 1, 2>(edges.fB) +
|
||||
skvx::shuffle<1, 2, 1, 2>(oc);
|
||||
|
||||
// If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
|
||||
// the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
|
||||
// and we need to use a central point to represent it. If all four points are only on the
|
||||
// wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
|
||||
// Otherwise, use a triangle that replaces the bad points with the intersections of
|
||||
// (e1, e2) or (e0, e3) as needed.
|
||||
M4f d1v0 = dists1 < kTolerance;
|
||||
M4f d2v0 = dists2 < kTolerance;
|
||||
M4f d1And2 = d1v0 & d2v0;
|
||||
M4f d1Or2 = d1v0 | d2v0;
|
||||
|
||||
if (!any(d1Or2)) {
|
||||
// Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
|
||||
// and use full coverage
|
||||
*x2d = px;
|
||||
*y2d = py;
|
||||
return 4;
|
||||
} else if (any(d1And2)) {
|
||||
// A point failed against two edges, so reduce the shape to a single point, which we take as
|
||||
// the center of the original quad to ensure it is contained in the intended geometry. Since
|
||||
// it has collapsed, we know the shape cannot cover a pixel so update the coverage.
|
||||
SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
|
||||
0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
|
||||
*x2d = center.fX;
|
||||
*y2d = center.fY;
|
||||
return 1;
|
||||
} else if (all(d1Or2)) {
|
||||
// Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
|
||||
// that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
|
||||
if (dists1[2] < kTolerance && dists1[3] < kTolerance) {
|
||||
// Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
|
||||
*x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
|
||||
*y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
|
||||
} else {
|
||||
// Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
|
||||
*x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
|
||||
*y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
|
||||
}
|
||||
return 2;
|
||||
} else {
|
||||
// This turns into a triangle. Replace corners as needed with the intersections between
|
||||
// (e0,e3) and (e1,e2), which must now be calculated
|
||||
using V2f = skvx::Vec<2, float>;
|
||||
V2f eDenom = skvx::shuffle<0, 1>(edges.fA) * skvx::shuffle<3, 2>(edges.fB) -
|
||||
skvx::shuffle<0, 1>(edges.fB) * skvx::shuffle<3, 2>(edges.fA);
|
||||
V2f ex = (skvx::shuffle<0, 1>(edges.fB) * skvx::shuffle<3, 2>(oc) -
|
||||
skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(edges.fB)) / eDenom;
|
||||
V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(edges.fA) -
|
||||
skvx::shuffle<0, 1>(edges.fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
|
||||
|
||||
if (SkScalarAbs(eDenom[0]) > kTolerance) {
|
||||
px = if_then_else(d1v0, V4f(ex[0]), px);
|
||||
py = if_then_else(d1v0, V4f(ey[0]), py);
|
||||
}
|
||||
if (SkScalarAbs(eDenom[1]) > kTolerance) {
|
||||
px = if_then_else(d2v0, V4f(ex[1]), px);
|
||||
py = if_then_else(d2v0, V4f(ey[1]), py);
|
||||
}
|
||||
|
||||
*x2d = px;
|
||||
*y2d = py;
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
|
||||
int TessellationHelper::adjustVertices(const skvx::Vec<4, float>& edgeDistances, bool inset,
|
||||
Vertices* vertices) {
|
||||
SkASSERT(vertices);
|
||||
SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
|
||||
|
||||
const OutsetRequest& outsetRequest = this->getOutsetRequest(edgeDistances);
|
||||
// Insets are more likely to become degenerate than outsets, so this allows us to compute the
|
||||
// outer geometry with the fast path and the inner geometry with a slow path if possible.
|
||||
bool degenerate = inset ? outsetRequest.fInsetDegenerate : outsetRequest.fOutsetDegenerate;
|
||||
V4f signedEdgeDistances = outsetRequest.fEdgeDistances;
|
||||
if (inset) {
|
||||
signedEdgeDistances *= -1.f;
|
||||
}
|
||||
|
||||
if (fDeviceType == GrQuad::Type::kPerspective || degenerate) {
|
||||
Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0};
|
||||
int vertexCount;
|
||||
if (degenerate) {
|
||||
// Must use the slow path to handle numerical issues and self intersecting geometry
|
||||
vertexCount = computeDegenerateQuad(signedEdgeDistances, &projected.fX, &projected.fY);
|
||||
} else {
|
||||
// Move the projected quad with the fast path, even though we will reconstruct the
|
||||
// perspective corners afterwards.
|
||||
projected.moveAlong(fEdgeVectors, signedEdgeDistances);
|
||||
vertexCount = 4;
|
||||
}
|
||||
vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
|
||||
return vertexCount;
|
||||
} else {
|
||||
// Quad is 2D and the inset/outset request does not cause the geometry to self intersect, so
|
||||
// we can directly move the corners along the already calculated edge vectors.
|
||||
vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
|
||||
return 4;
|
||||
}
|
||||
fVerticesValid = true;
|
||||
}
|
||||
|
||||
V4f TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
|
||||
@ -859,9 +828,16 @@ V4f TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
|
||||
SkASSERT(fVerticesValid);
|
||||
|
||||
Vertices inset = fOriginal;
|
||||
int vertexCount = this->adjustVertices(edgeDistances, true, &inset);
|
||||
inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
|
||||
const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
|
||||
int vertexCount;
|
||||
if (request.fInsetDegenerate) {
|
||||
vertexCount = this->adjustDegenerateVertices(-request.fEdgeDistances, &inset);
|
||||
} else {
|
||||
this->adjustVertices(-request.fEdgeDistances, &inset);
|
||||
vertexCount = 4;
|
||||
}
|
||||
|
||||
inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
|
||||
if (vertexCount < 3) {
|
||||
// The interior has less than a full pixel's area so estimate reduced coverage using
|
||||
// the distance of the inset's projected corners to the original edges.
|
||||
@ -877,8 +853,81 @@ void TessellationHelper::outset(const skvx::Vec<4, float>& edgeDistances,
|
||||
SkASSERT(fVerticesValid);
|
||||
|
||||
Vertices outset = fOriginal;
|
||||
this->adjustVertices(edgeDistances, false, &outset);
|
||||
const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
|
||||
if (request.fOutsetDegenerate) {
|
||||
this->adjustDegenerateVertices(request.fEdgeDistances, &outset);
|
||||
} else {
|
||||
this->adjustVertices(request.fEdgeDistances, &outset);
|
||||
}
|
||||
|
||||
outset.asGrQuads(deviceOutset, fDeviceType, localOutset, fLocalType);
|
||||
}
|
||||
|
||||
const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
|
||||
const skvx::Vec<4, float>& edgeDistances) {
|
||||
// Much of the code assumes that we start from positive distances and apply it unmodified to
|
||||
// create an outset; knowing that it's outset simplifies degeneracy checking.
|
||||
SkASSERT(all(edgeDistances >= 0.f));
|
||||
|
||||
// Rebuild outset request if invalid or if the edge distances have changed.
|
||||
if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
|
||||
fOutsetRequest.reset(fEdgeVectors, fDeviceType, edgeDistances);
|
||||
fOutsetRequestValid = true;
|
||||
}
|
||||
return fOutsetRequest;
|
||||
}
|
||||
|
||||
const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
|
||||
if (!fEdgeEquationsValid) {
|
||||
fEdgeEquations.reset(fEdgeVectors);
|
||||
fEdgeEquationsValid = true;
|
||||
}
|
||||
return fEdgeEquations;
|
||||
}
|
||||
|
||||
void TessellationHelper::adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances,
|
||||
Vertices* vertices) {
|
||||
SkASSERT(vertices);
|
||||
SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
|
||||
|
||||
if (fDeviceType < GrQuad::Type::kPerspective) {
|
||||
// For non-perspective, non-degenerate quads, moveAlong is correct and most efficient
|
||||
vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
|
||||
} else {
|
||||
// For perspective, non-degenerate quads, use moveAlong for the projected points and then
|
||||
// reconstruct Ws with moveTo.
|
||||
Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 };
|
||||
projected.moveAlong(fEdgeVectors, signedEdgeDistances);
|
||||
vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
int TessellationHelper::adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
|
||||
Vertices* vertices) {
|
||||
SkASSERT(vertices);
|
||||
SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
|
||||
|
||||
if (fDeviceType <= GrQuad::Type::kRectilinear) {
|
||||
// For rectilinear, degenerate quads, can use moveAlong if the edge distances are adjusted
|
||||
// to not cross over each other.
|
||||
SkASSERT(all(signedEdgeDistances <= 0.f)); // Only way rectilinear can degenerate is insets
|
||||
V4f halfLengths = -0.5f / next_cw(fEdgeVectors.fInvLengths); // Negate to inset
|
||||
M4f crossedEdges = halfLengths > signedEdgeDistances;
|
||||
V4f safeInsets = if_then_else(crossedEdges, halfLengths, signedEdgeDistances);
|
||||
vertices->moveAlong(fEdgeVectors, safeInsets);
|
||||
|
||||
// A degenerate rectilinear quad is either a point (both w and h crossed), or a line
|
||||
return all(crossedEdges) ? 1 : 2;
|
||||
} else {
|
||||
// Degenerate non-rectangular shape, must go through slowest path (which automatically
|
||||
// handles perspective).
|
||||
V4f x2d = fEdgeVectors.fX2D;
|
||||
V4f y2d = fEdgeVectors.fY2D;
|
||||
int vertexCount = this->getEdgeEquations().computeDegenerateQuad(signedEdgeDistances,
|
||||
&x2d, &y2d);
|
||||
vertices->moveTo(x2d, y2d, signedEdgeDistances != 0.f);
|
||||
return vertexCount;
|
||||
}
|
||||
}
|
||||
|
||||
}; // namespace GrQuadUtils
|
||||
|
@ -70,36 +70,6 @@ namespace GrQuadUtils {
|
||||
GrQuad* deviceOutset, GrQuad* localOutset);
|
||||
|
||||
private:
|
||||
struct EdgeVectors;
|
||||
struct OutsetRequest;
|
||||
|
||||
struct Vertices {
|
||||
// X, Y, and W coordinates in device space. If not perspective, w should be set to 1.f
|
||||
skvx::Vec<4, float> fX, fY, fW;
|
||||
// U, V, and R coordinates representing local quad.
|
||||
// Ignored depending on uvrCount (0, 1, 2).
|
||||
skvx::Vec<4, float> fU, fV, fR;
|
||||
int fUVRCount;
|
||||
|
||||
// Update the device and optional local coordinates by moving the corners along their
|
||||
// edge vectors such that the new edges have moved 'signedEdgeDistances' from their
|
||||
// original lines. This should only be called if the 'edgeVectors' fInvSinTheta data is
|
||||
// numerically sound.
|
||||
void moveAlong(const EdgeVectors& edgeVectors,
|
||||
const skvx::Vec<4, float>& signedEdgeDistances);
|
||||
|
||||
// Update the device coordinates by deriving (x,y,w) that project to (x2d, y2d), with
|
||||
// optional local coordinates updated to match the new vertices. It is assumed that
|
||||
// 'mask' was respected when determing (x2d, y2d), but it is used to ensure that only
|
||||
// unmasked unprojected edge vectors are used when computing device and local coords.
|
||||
void moveTo(const skvx::Vec<4, float>& x2d,
|
||||
const skvx::Vec<4, float>& y2d,
|
||||
const skvx::Vec<4, int32_t>& mask);
|
||||
|
||||
void asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
|
||||
GrQuad* localOut, GrQuad::Type localType) const;
|
||||
};
|
||||
|
||||
// NOTE: This struct is named 'EdgeVectors' because it holds a lot of cached calculations
|
||||
// pertaining to the edge vectors of the input quad, projected into 2D device coordinates.
|
||||
// While they are not direction vectors, this struct represents a convenient storage space
|
||||
@ -116,14 +86,25 @@ namespace GrQuadUtils {
|
||||
// Theta represents the angle formed by the two edges connected at each corner.
|
||||
skvx::Vec<4, float> fCosTheta;
|
||||
skvx::Vec<4, float> fInvSinTheta; // 1 / sin(theta)
|
||||
|
||||
void reset(const skvx::Vec<4, float>& xs, const skvx::Vec<4, float>& ys,
|
||||
const skvx::Vec<4, float>& ws, GrQuad::Type quadType);
|
||||
};
|
||||
|
||||
struct EdgeEquations {
|
||||
// a * x + b * y + c = 0; positive distance is inside the quad; ordered LBTR.
|
||||
skvx::Vec<4, float> fA, fB, fC;
|
||||
|
||||
void reset(const EdgeVectors& edgeVectors);
|
||||
|
||||
skvx::Vec<4, float> estimateCoverage(const skvx::Vec<4, float>& x2d,
|
||||
const skvx::Vec<4, float>& y2d) const;
|
||||
|
||||
// Outsets or insets 'x2d' and 'y2d' in place. To be used when the interior is very
|
||||
// small, edges are near parallel, or edges are very short/zero-length. Returns number
|
||||
// of effective vertices in the degenerate quad.
|
||||
int computeDegenerateQuad(const skvx::Vec<4, float>& signedEdgeDistances,
|
||||
skvx::Vec<4, float>* x2d, skvx::Vec<4, float>* y2d) const;
|
||||
};
|
||||
|
||||
struct OutsetRequest {
|
||||
@ -136,6 +117,38 @@ namespace GrQuadUtils {
|
||||
// be because of the requested edge distances (collapse of inset, etc.)
|
||||
bool fInsetDegenerate;
|
||||
bool fOutsetDegenerate;
|
||||
|
||||
void reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
|
||||
const skvx::Vec<4, float>& edgeDistances);
|
||||
};
|
||||
|
||||
struct Vertices {
|
||||
// X, Y, and W coordinates in device space. If not perspective, w should be set to 1.f
|
||||
skvx::Vec<4, float> fX, fY, fW;
|
||||
// U, V, and R coordinates representing local quad.
|
||||
// Ignored depending on uvrCount (0, 1, 2).
|
||||
skvx::Vec<4, float> fU, fV, fR;
|
||||
int fUVRCount;
|
||||
|
||||
void reset(const GrQuad& deviceQuad, const GrQuad* localQuad);
|
||||
|
||||
void asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
|
||||
GrQuad* localOut, GrQuad::Type localType) const;
|
||||
|
||||
// Update the device and optional local coordinates by moving the corners along their
|
||||
// edge vectors such that the new edges have moved 'signedEdgeDistances' from their
|
||||
// original lines. This should only be called if the 'edgeVectors' fInvSinTheta data is
|
||||
// numerically sound.
|
||||
void moveAlong(const EdgeVectors& edgeVectors,
|
||||
const skvx::Vec<4, float>& signedEdgeDistances);
|
||||
|
||||
// Update the device coordinates by deriving (x,y,w) that project to (x2d, y2d), with
|
||||
// optional local coordinates updated to match the new vertices. It is assumed that
|
||||
// 'mask' was respected when determining (x2d, y2d), but it is used to ensure that only
|
||||
// unmasked unprojected edge vectors are used when computing device and local coords.
|
||||
void moveTo(const skvx::Vec<4, float>& x2d,
|
||||
const skvx::Vec<4, float>& y2d,
|
||||
const skvx::Vec<4, int32_t>& mask);
|
||||
};
|
||||
|
||||
Vertices fOriginal;
|
||||
@ -148,7 +161,7 @@ namespace GrQuadUtils {
|
||||
EdgeEquations fEdgeEquations;
|
||||
|
||||
// Validity of Vertices/EdgeVectors (always true after first call to set()).
|
||||
bool fVerticesValid = false;
|
||||
bool fVerticesValid = false;
|
||||
// Validity of outset request (true after calling getOutsetRequest() until next set() call
|
||||
// or next inset/outset() with different edge distances).
|
||||
bool fOutsetRequestValid = false;
|
||||
@ -160,16 +173,13 @@ namespace GrQuadUtils {
|
||||
const OutsetRequest& getOutsetRequest(const skvx::Vec<4, float>& edgeDistances);
|
||||
const EdgeEquations& getEdgeEquations();
|
||||
|
||||
// Outsets or insets 'x2d' and 'y2d' in place. To be used when the interior is very small,
|
||||
// edges are near parallel, or edges are very short/zero-length. Returns number of effective
|
||||
// vertices in the degenerate quad.
|
||||
int computeDegenerateQuad(const skvx::Vec<4, float>& signedEdgeDistances,
|
||||
skvx::Vec<4, float>* x2d, skvx::Vec<4, float>* y2d);
|
||||
// Outsets or insets 'vertices' by the given perpendicular 'edgeDistances'. If 'inset' is
|
||||
// true the distances move the edges inwards; if it is false, the distances move outwards.
|
||||
// Returns number of effective vertices in the adjusted quad.
|
||||
int adjustVertices(const skvx::Vec<4, float>& edgeDistances, bool inset,
|
||||
Vertices* vertices);
|
||||
// Outsets or insets 'vertices' by the given perpendicular 'signedEdgeDistances' (inset or
|
||||
// outset is determined implicitly by the sign of the distances).
|
||||
void adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances, Vertices* vertices);
|
||||
// Like adjustVertices() but handles empty edges, collapsed quads, numerical issues, and
|
||||
// returns the number of effective vertices in the adjusted shape.
|
||||
int adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
|
||||
Vertices* vertices);
|
||||
};
|
||||
|
||||
}; // namespace GrQuadUtils
|
||||
|
Loading…
Reference in New Issue
Block a user