remove SK_SCALAR_IS_[FLOAT,FIXED] and assume floats
To keep the CL (slightly) managable, this does not make any changes to existing macros (e.g. SkScalarMul). Just tackling #ifdef constructs this time around. BUG= R=bsalomon@google.com, caryclark@google.com Review URL: https://codereview.chromium.org/117053002 git-svn-id: http://skia.googlecode.com/svn/trunk@12712 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
parent
a34b638b90
commit
8f4d2306fa
@ -84,9 +84,6 @@ private:
|
||||
typedef SkBenchmark INHERITED;
|
||||
};
|
||||
|
||||
// Fixed point can be 100x slower than float on these tests, causing
|
||||
// bench to timeout.
|
||||
#ifndef SK_SCALAR_IS_FIXED
|
||||
DEF_BENCH( return new MorphologyBench(SMALL, kErode_MT); )
|
||||
DEF_BENCH( return new MorphologyBench(SMALL, kDilate_MT); )
|
||||
|
||||
@ -97,4 +94,3 @@ DEF_BENCH( return new MorphologyBench(REAL, kErode_MT); )
|
||||
DEF_BENCH( return new MorphologyBench(REAL, kDilate_MT); )
|
||||
|
||||
DEF_BENCH( return new MorphologyBench(0, kErode_MT); )
|
||||
#endif
|
||||
|
@ -407,12 +407,6 @@ int tool_main(int argc, char** argv) {
|
||||
writer.option("scale", SkStringPrintf("%d", FLAGS_scale).c_str());
|
||||
writer.option("clip", SkStringPrintf("%d", FLAGS_clip).c_str());
|
||||
|
||||
#if defined(SK_SCALAR_IS_FIXED)
|
||||
writer.option("scalar", "fixed");
|
||||
#else
|
||||
writer.option("scalar", "float");
|
||||
#endif
|
||||
|
||||
#if defined(SK_BUILD_FOR_WIN32)
|
||||
writer.option("system", "WIN32");
|
||||
#elif defined(SK_BUILD_FOR_MAC)
|
||||
|
@ -10,29 +10,14 @@
|
||||
// FIXME: needs to be in a header
|
||||
bool SkSetPoly3To3_A(SkMatrix* matrix, const SkPoint src[3], const SkPoint dst[3]);
|
||||
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
typedef int64_t SkDScalar;
|
||||
typedef double SkDScalar;
|
||||
|
||||
static SkScalar SkDScalar_toScalar(SkDScalar value) {
|
||||
SkDScalar result = (value + (1 << 15)) >> 16;
|
||||
int top = result >> 31;
|
||||
SkASSERT(top == 0 || top == -1);
|
||||
return (SkScalar)result;
|
||||
}
|
||||
static SkScalar divide(SkDScalar numer, SkDScalar denom) {
|
||||
denom >>= 16;
|
||||
return numer / denom;
|
||||
}
|
||||
#else
|
||||
typedef double SkDScalar;
|
||||
|
||||
static SkScalar SkDScalar_toScalar(SkDScalar value) {
|
||||
return static_cast<float>(value);
|
||||
}
|
||||
static SkScalar divide(SkDScalar numer, SkDScalar denom) {
|
||||
return static_cast<float>(numer / denom);
|
||||
}
|
||||
#endif
|
||||
static SkScalar SkDScalar_toScalar(SkDScalar value) {
|
||||
return static_cast<float>(value);
|
||||
}
|
||||
static SkScalar divide(SkDScalar numer, SkDScalar denom) {
|
||||
return static_cast<float>(numer / denom);
|
||||
}
|
||||
|
||||
static SkDScalar SkDScalar_setMul(SkScalar a, SkScalar b) {
|
||||
return (SkDScalar) ((SkDScalar) a * b);
|
||||
|
10
gm/blurs.cpp
10
gm/blurs.cpp
@ -18,16 +18,6 @@ public:
|
||||
}
|
||||
|
||||
protected:
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
virtual uint32_t onGetFlags() const SK_OVERRIDE {
|
||||
// SkCanvas::drawCircle, used by this test, performs a quick reject.
|
||||
// The large size given to the device used by SkGPipeCanvas means that
|
||||
// the device clip will not be set properly and circles will be
|
||||
// rejected when in FIXED.
|
||||
return this->INHERITED::onGetFlags() | GM::kSkipPipe_Flag;
|
||||
}
|
||||
#endif
|
||||
|
||||
virtual SkString onShortName() {
|
||||
return SkString("blurs");
|
||||
}
|
||||
|
@ -90,7 +90,6 @@
|
||||
'../samplecode/SampleMipMap.cpp',
|
||||
'../samplecode/SampleMovie.cpp',
|
||||
'../samplecode/SampleOvalTest.cpp',
|
||||
'../samplecode/SampleOverflow.cpp',
|
||||
'../samplecode/SamplePatch.cpp',
|
||||
'../samplecode/SamplePath.cpp',
|
||||
'../samplecode/SamplePathClip.cpp',
|
||||
|
@ -37,14 +37,6 @@
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/* Scalars (the fractional value type in skia) can be implemented either as
|
||||
floats or 16.16 integers (fixed). Exactly one of these two symbols must be
|
||||
defined.
|
||||
*/
|
||||
//#define SK_SCALAR_IS_FLOAT
|
||||
//#define SK_SCALAR_IS_FIXED
|
||||
|
||||
|
||||
/* Skia has lots of debug-only code. Often this is just null checks or other
|
||||
parameter checking, but sometimes it can be quite intrusive (e.g. check that
|
||||
each 32bit pixel is in premultiplied form). This code can be very useful
|
||||
|
@ -282,10 +282,6 @@ typedef int64_t SkFixed48;
|
||||
#define SkFixed48ToFixed(x) ((SkFixed)((x) >> 32))
|
||||
#define SkFloatToFixed48(x) ((SkFixed48)((x) * (65536.0f * 65536.0f * 65536.0f)))
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SkScalarToFixed48(x) SkFloatToFixed48(x)
|
||||
#else
|
||||
#define SkScalarToFixed48(x) SkFixedToFixed48(x)
|
||||
#endif
|
||||
#define SkScalarToFixed48(x) SkFloatToFixed48(x)
|
||||
|
||||
#endif
|
||||
|
@ -127,12 +127,7 @@ static inline int32_t SkFloatToIntCeil(float x) {
|
||||
|
||||
// Scalar wrappers for float-bit routines
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SkScalarAs2sCompliment(x) SkFloatAs2sCompliment(x)
|
||||
#define Sk2sComplimentAsScalar(x) Sk2sComplimentAsFloat(x)
|
||||
#else
|
||||
#define SkScalarAs2sCompliment(x) (x)
|
||||
#define Sk2sComplimentAsScalar(x) (x)
|
||||
#endif
|
||||
#define SkScalarAs2sCompliment(x) SkFloatAs2sCompliment(x)
|
||||
#define Sk2sComplimentAsScalar(x) Sk2sComplimentAsFloat(x)
|
||||
|
||||
#endif
|
||||
|
@ -14,15 +14,10 @@
|
||||
|
||||
class SkString;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
typedef SkScalar SkPersp;
|
||||
#define SkScalarToPersp(x) (x)
|
||||
#define SkPerspToScalar(x) (x)
|
||||
#else
|
||||
typedef SkFract SkPersp;
|
||||
#define SkScalarToPersp(x) SkFixedToFract(x)
|
||||
#define SkPerspToScalar(x) SkFractToFixed(x)
|
||||
#endif
|
||||
// TODO: can we remove these 3 (need to check chrome/android)
|
||||
typedef SkScalar SkPersp;
|
||||
#define SkScalarToPersp(x) (x)
|
||||
#define SkPerspToScalar(x) (x)
|
||||
|
||||
/** \class SkMatrix
|
||||
|
||||
@ -543,13 +538,7 @@ public:
|
||||
return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
friend bool operator==(const SkMatrix& a, const SkMatrix& b) {
|
||||
return a.cheapEqualTo(b);
|
||||
}
|
||||
#else
|
||||
friend bool operator==(const SkMatrix& a, const SkMatrix& b);
|
||||
#endif
|
||||
friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
@ -22,12 +22,6 @@
|
||||
# error "can't have unittests without debug"
|
||||
#endif
|
||||
|
||||
#if defined(SK_SCALAR_IS_FIXED) && defined(SK_SCALAR_IS_FLOAT)
|
||||
# error "cannot define both SK_SCALAR_IS_FIXED and SK_SCALAR_IS_FLOAT"
|
||||
#elif !defined(SK_SCALAR_IS_FIXED) && !defined(SK_SCALAR_IS_FLOAT)
|
||||
# define SK_SCALAR_IS_FLOAT
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Matrix calculations may be float or double.
|
||||
* The default is double, as that is faster given our impl uses doubles
|
||||
|
@ -91,12 +91,6 @@
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if !defined(SK_SCALAR_IS_FLOAT) && !defined(SK_SCALAR_IS_FIXED)
|
||||
#define SK_SCALAR_IS_FLOAT
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
#if !defined(SK_CPU_BENDIAN) && !defined(SK_CPU_LENDIAN)
|
||||
#if defined (__ppc__) || defined(__PPC__) || defined(__ppc64__) \
|
||||
|| defined(__PPC64__)
|
||||
|
@ -436,7 +436,6 @@ struct SK_API SkRect {
|
||||
* returns false.
|
||||
*/
|
||||
bool isFinite() const {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float accum = 0;
|
||||
accum *= fLeft;
|
||||
accum *= fTop;
|
||||
@ -449,13 +448,6 @@ struct SK_API SkRect {
|
||||
// value==value will be true iff value is not NaN
|
||||
// TODO: is it faster to say !accum or accum==accum?
|
||||
return accum == accum;
|
||||
#else
|
||||
// use bit-or for speed, since we don't care about short-circuting the
|
||||
// tests, and we expect the common case will be that we need to check all.
|
||||
int isNaN = (SK_FixedNaN == fLeft) | (SK_FixedNaN == fTop) |
|
||||
(SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom);
|
||||
return !isNaN;
|
||||
#endif
|
||||
}
|
||||
|
||||
SkScalar x() const { return fLeft; }
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
/*
|
||||
* Copyright 2006 The Android Open Source Project
|
||||
*
|
||||
@ -6,260 +5,167 @@
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef SkScalar_DEFINED
|
||||
#define SkScalar_DEFINED
|
||||
|
||||
#include "SkFixed.h"
|
||||
#include "SkFloatingPoint.h"
|
||||
|
||||
/** \file SkScalar.h
|
||||
typedef float SkScalar;
|
||||
|
||||
Types and macros for the data type SkScalar. This is the fractional numeric type
|
||||
that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented
|
||||
either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written
|
||||
to allow the calling code to manipulate SkScalar values without knowing which representation
|
||||
is in effect.
|
||||
/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
|
||||
*/
|
||||
#define SK_Scalar1 (1.0f)
|
||||
/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarHalf (0.5f)
|
||||
/** SK_ScalarInfinity is defined to be infinity as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarInfinity SK_FloatInfinity
|
||||
/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
||||
/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarMax (3.402823466e+38f)
|
||||
/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarMin (-SK_ScalarMax)
|
||||
/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarNaN SK_FloatNaN
|
||||
/** SkScalarIsNaN(n) returns true if argument is not a number
|
||||
*/
|
||||
static inline bool SkScalarIsNaN(float x) { return x != x; }
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
/** Returns true if x is not NaN and not infinite */
|
||||
static inline bool SkScalarIsFinite(float x) {
|
||||
// We rely on the following behavior of infinities and nans
|
||||
// 0 * finite --> 0
|
||||
// 0 * infinity --> NaN
|
||||
// 0 * NaN --> NaN
|
||||
float prod = x * 0;
|
||||
// At this point, prod will either be NaN or 0
|
||||
// Therefore we can return (prod == prod) or (0 == prod).
|
||||
return prod == prod;
|
||||
}
|
||||
|
||||
/** SkScalar is our type for fractional values and coordinates. Depending on
|
||||
compile configurations, it is either represented as an IEEE float, or
|
||||
as a 16.16 fixed point integer.
|
||||
*/
|
||||
typedef float SkScalar;
|
||||
/** SkIntToScalar(n) returns its integer argument as an SkScalar
|
||||
*/
|
||||
#define SkIntToScalar(n) ((float)(n))
|
||||
/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
|
||||
*/
|
||||
#define SkFixedToScalar(x) SkFixedToFloat(x)
|
||||
/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
|
||||
*/
|
||||
#define SkScalarToFixed(x) SkFloatToFixed(x)
|
||||
|
||||
/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
|
||||
*/
|
||||
#define SK_Scalar1 (1.0f)
|
||||
/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarHalf (0.5f)
|
||||
/** SK_ScalarInfinity is defined to be infinity as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarInfinity SK_FloatInfinity
|
||||
/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
||||
/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarMax (3.402823466e+38f)
|
||||
/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarMin (-SK_ScalarMax)
|
||||
/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
|
||||
*/
|
||||
#define SK_ScalarNaN SK_FloatNaN
|
||||
/** SkScalarIsNaN(n) returns true if argument is not a number
|
||||
*/
|
||||
static inline bool SkScalarIsNaN(float x) { return x != x; }
|
||||
|
||||
/** Returns true if x is not NaN and not infinite */
|
||||
static inline bool SkScalarIsFinite(float x) {
|
||||
// We rely on the following behavior of infinities and nans
|
||||
// 0 * finite --> 0
|
||||
// 0 * infinity --> NaN
|
||||
// 0 * NaN --> NaN
|
||||
float prod = x * 0;
|
||||
// At this point, prod will either be NaN or 0
|
||||
// Therefore we can return (prod == prod) or (0 == prod).
|
||||
return prod == prod;
|
||||
}
|
||||
|
||||
/** SkIntToScalar(n) returns its integer argument as an SkScalar
|
||||
*/
|
||||
#define SkIntToScalar(n) ((float)(n))
|
||||
/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
|
||||
*/
|
||||
#define SkFixedToScalar(x) SkFixedToFloat(x)
|
||||
/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
|
||||
*/
|
||||
#define SkScalarToFixed(x) SkFloatToFixed(x)
|
||||
|
||||
#define SkScalarToFloat(n) (n)
|
||||
#define SkScalarToFloat(n) (n)
|
||||
#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
|
||||
#define SkFloatToScalar(n) (n)
|
||||
#define SkFloatToScalar(n) (n)
|
||||
#endif
|
||||
|
||||
#define SkScalarToDouble(n) (double)(n)
|
||||
#define SkDoubleToScalar(n) (float)(n)
|
||||
#define SkScalarToDouble(n) (double)(n)
|
||||
#define SkDoubleToScalar(n) (float)(n)
|
||||
|
||||
/** SkScalarFraction(x) returns the signed fractional part of the argument
|
||||
*/
|
||||
#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
||||
/** SkScalarFraction(x) returns the signed fractional part of the argument
|
||||
*/
|
||||
#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
||||
|
||||
#define SkScalarFloorToScalar(x) sk_float_floor(x)
|
||||
#define SkScalarCeilToScalar(x) sk_float_ceil(x)
|
||||
#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
|
||||
#define SkScalarFloorToScalar(x) sk_float_floor(x)
|
||||
#define SkScalarCeilToScalar(x) sk_float_ceil(x)
|
||||
#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
|
||||
|
||||
#define SkScalarFloorToInt(x) sk_float_floor2int(x)
|
||||
#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
|
||||
#define SkScalarRoundToInt(x) sk_float_round2int(x)
|
||||
#define SkScalarTruncToInt(x) static_cast<int>(x)
|
||||
#define SkScalarFloorToInt(x) sk_float_floor2int(x)
|
||||
#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
|
||||
#define SkScalarRoundToInt(x) sk_float_round2int(x)
|
||||
#define SkScalarTruncToInt(x) static_cast<int>(x)
|
||||
|
||||
/** Returns the absolute value of the specified SkScalar
|
||||
*/
|
||||
#define SkScalarAbs(x) sk_float_abs(x)
|
||||
/** Return x with the sign of y
|
||||
*/
|
||||
#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
||||
/** Returns the value pinned between 0 and max inclusive
|
||||
*/
|
||||
inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
||||
return x < 0 ? 0 : x > max ? max : x;
|
||||
}
|
||||
/** Returns the value pinned between min and max inclusive
|
||||
*/
|
||||
inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
||||
return x < min ? min : x > max ? max : x;
|
||||
}
|
||||
/** Returns the specified SkScalar squared (x*x)
|
||||
*/
|
||||
inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
||||
/** Returns the product of two SkScalars
|
||||
*/
|
||||
#define SkScalarMul(a, b) ((float)(a) * (b))
|
||||
/** Returns the product of two SkScalars plus a third SkScalar
|
||||
*/
|
||||
#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
|
||||
/** Returns the product of a SkScalar and an int rounded to the nearest integer value
|
||||
*/
|
||||
#define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
|
||||
/** Returns the product of a SkScalar and an int promoted to the next larger int
|
||||
*/
|
||||
#define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
|
||||
/** Returns the product of a SkScalar and an int truncated to the next smaller int
|
||||
*/
|
||||
#define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
|
||||
/** Returns the quotient of two SkScalars (a/b)
|
||||
*/
|
||||
#define SkScalarDiv(a, b) ((float)(a) / (b))
|
||||
/** Returns the mod of two SkScalars (a mod b)
|
||||
*/
|
||||
#define SkScalarMod(x,y) sk_float_mod(x,y)
|
||||
/** Returns the product of the first two arguments, divided by the third argument
|
||||
*/
|
||||
#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
|
||||
/** Returns the multiplicative inverse of the SkScalar (1/x)
|
||||
*/
|
||||
#define SkScalarInvert(x) (SK_Scalar1 / (x))
|
||||
#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
|
||||
/** Returns the square root of the SkScalar
|
||||
*/
|
||||
#define SkScalarSqrt(x) sk_float_sqrt(x)
|
||||
/** Returns b to the e
|
||||
*/
|
||||
#define SkScalarPow(b, e) sk_float_pow(b, e)
|
||||
/** Returns the average of two SkScalars (a+b)/2
|
||||
*/
|
||||
#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
|
||||
/** Returns the geometric mean of two SkScalars
|
||||
*/
|
||||
#define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
|
||||
/** Returns one half of the specified SkScalar
|
||||
*/
|
||||
#define SkScalarHalf(a) ((a) * 0.5f)
|
||||
/** Returns the absolute value of the specified SkScalar
|
||||
*/
|
||||
#define SkScalarAbs(x) sk_float_abs(x)
|
||||
/** Return x with the sign of y
|
||||
*/
|
||||
#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
||||
/** Returns the value pinned between 0 and max inclusive
|
||||
*/
|
||||
inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
||||
return x < 0 ? 0 : x > max ? max : x;
|
||||
}
|
||||
/** Returns the value pinned between min and max inclusive
|
||||
*/
|
||||
inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
||||
return x < min ? min : x > max ? max : x;
|
||||
}
|
||||
/** Returns the specified SkScalar squared (x*x)
|
||||
*/
|
||||
inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
||||
/** Returns the product of two SkScalars
|
||||
*/
|
||||
#define SkScalarMul(a, b) ((float)(a) * (b))
|
||||
/** Returns the product of two SkScalars plus a third SkScalar
|
||||
*/
|
||||
#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
|
||||
/** Returns the product of a SkScalar and an int rounded to the nearest integer value
|
||||
*/
|
||||
#define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
|
||||
/** Returns the product of a SkScalar and an int promoted to the next larger int
|
||||
*/
|
||||
#define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
|
||||
/** Returns the product of a SkScalar and an int truncated to the next smaller int
|
||||
*/
|
||||
#define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
|
||||
/** Returns the quotient of two SkScalars (a/b)
|
||||
*/
|
||||
#define SkScalarDiv(a, b) ((float)(a) / (b))
|
||||
/** Returns the mod of two SkScalars (a mod b)
|
||||
*/
|
||||
#define SkScalarMod(x,y) sk_float_mod(x,y)
|
||||
/** Returns the product of the first two arguments, divided by the third argument
|
||||
*/
|
||||
#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
|
||||
/** Returns the multiplicative inverse of the SkScalar (1/x)
|
||||
*/
|
||||
#define SkScalarInvert(x) (SK_Scalar1 / (x))
|
||||
#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
|
||||
/** Returns the square root of the SkScalar
|
||||
*/
|
||||
#define SkScalarSqrt(x) sk_float_sqrt(x)
|
||||
/** Returns b to the e
|
||||
*/
|
||||
#define SkScalarPow(b, e) sk_float_pow(b, e)
|
||||
/** Returns the average of two SkScalars (a+b)/2
|
||||
*/
|
||||
#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
|
||||
/** Returns the geometric mean of two SkScalars
|
||||
*/
|
||||
#define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
|
||||
/** Returns one half of the specified SkScalar
|
||||
*/
|
||||
#define SkScalarHalf(a) ((a) * 0.5f)
|
||||
|
||||
#define SK_ScalarSqrt2 1.41421356f
|
||||
#define SK_ScalarPI 3.14159265f
|
||||
#define SK_ScalarTanPIOver8 0.414213562f
|
||||
#define SK_ScalarRoot2Over2 0.707106781f
|
||||
#define SK_ScalarSqrt2 1.41421356f
|
||||
#define SK_ScalarPI 3.14159265f
|
||||
#define SK_ScalarTanPIOver8 0.414213562f
|
||||
#define SK_ScalarRoot2Over2 0.707106781f
|
||||
|
||||
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
|
||||
float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
||||
#define SkScalarSin(radians) (float)sk_float_sin(radians)
|
||||
#define SkScalarCos(radians) (float)sk_float_cos(radians)
|
||||
#define SkScalarTan(radians) (float)sk_float_tan(radians)
|
||||
#define SkScalarASin(val) (float)sk_float_asin(val)
|
||||
#define SkScalarACos(val) (float)sk_float_acos(val)
|
||||
#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
||||
#define SkScalarExp(x) (float)sk_float_exp(x)
|
||||
#define SkScalarLog(x) (float)sk_float_log(x)
|
||||
#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
|
||||
float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
||||
#define SkScalarSin(radians) (float)sk_float_sin(radians)
|
||||
#define SkScalarCos(radians) (float)sk_float_cos(radians)
|
||||
#define SkScalarTan(radians) (float)sk_float_tan(radians)
|
||||
#define SkScalarASin(val) (float)sk_float_asin(val)
|
||||
#define SkScalarACos(val) (float)sk_float_acos(val)
|
||||
#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
||||
#define SkScalarExp(x) (float)sk_float_exp(x)
|
||||
#define SkScalarLog(x) (float)sk_float_log(x)
|
||||
|
||||
inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
||||
inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
||||
inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
||||
inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
||||
|
||||
static inline bool SkScalarIsInt(SkScalar x) {
|
||||
return x == (float)(int)x;
|
||||
}
|
||||
#else
|
||||
typedef SkFixed SkScalar;
|
||||
|
||||
#define SK_Scalar1 SK_Fixed1
|
||||
#define SK_ScalarHalf SK_FixedHalf
|
||||
#define SK_ScalarInfinity SK_FixedMax
|
||||
#define SK_ScalarNegativeInfinity SK_FixedMin
|
||||
#define SK_ScalarMax SK_FixedMax
|
||||
#define SK_ScalarMin SK_FixedMin
|
||||
#define SK_ScalarNaN SK_FixedNaN
|
||||
#define SkScalarIsNaN(x) ((x) == SK_FixedNaN)
|
||||
#define SkScalarIsFinite(x) ((x) != SK_FixedNaN)
|
||||
|
||||
#define SkIntToScalar(n) SkIntToFixed(n)
|
||||
#define SkFixedToScalar(x) (x)
|
||||
#define SkScalarToFixed(x) (x)
|
||||
#define SkScalarToFloat(n) SkFixedToFloat(n)
|
||||
#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
|
||||
#define SkFloatToScalar(n) SkFloatToFixed(n)
|
||||
#endif
|
||||
|
||||
#define SkScalarToDouble(n) SkFixedToDouble(n)
|
||||
#define SkDoubleToScalar(n) SkDoubleToFixed(n)
|
||||
#define SkScalarFraction(x) SkFixedFraction(x)
|
||||
|
||||
#define SkScalarFloorToScalar(x) SkFixedFloorToFixed(x)
|
||||
#define SkScalarCeilToScalar(x) SkFixedCeilToFixed(x)
|
||||
#define SkScalarRoundToScalar(x) SkFixedRoundToFixed(x)
|
||||
|
||||
#define SkScalarFloorToInt(x) SkFixedFloorToInt(x)
|
||||
#define SkScalarCeilToInt(x) SkFixedCeilToInt(x)
|
||||
#define SkScalarRoundToInt(x) SkFixedRoundToInt(x)
|
||||
#define SkScalarTruncToInt(x) (((x) < 0) ? SkScalarCeilToInt(x) : SkScalarFloorToInt(x))
|
||||
|
||||
#define SkScalarAbs(x) SkFixedAbs(x)
|
||||
#define SkScalarCopySign(x, y) SkCopySign32(x, y)
|
||||
#define SkScalarClampMax(x, max) SkClampMax(x, max)
|
||||
#define SkScalarPin(x, min, max) SkPin32(x, min, max)
|
||||
#define SkScalarSquare(x) SkFixedSquare(x)
|
||||
#define SkScalarMul(a, b) SkFixedMul(a, b)
|
||||
#define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c)
|
||||
#define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf)
|
||||
#define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1)
|
||||
#define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0)
|
||||
#define SkScalarDiv(a, b) SkFixedDiv(a, b)
|
||||
#define SkScalarMod(a, b) SkFixedMod(a, b)
|
||||
#define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c)
|
||||
#define SkScalarInvert(x) SkFixedInvert(x)
|
||||
#define SkScalarFastInvert(x) SkFixedFastInvert(x)
|
||||
#define SkScalarSqrt(x) SkFixedSqrt(x)
|
||||
#define SkScalarAve(a, b) SkFixedAve(a, b)
|
||||
#define SkScalarMean(a, b) SkFixedMean(a, b)
|
||||
#define SkScalarHalf(a) ((a) >> 1)
|
||||
|
||||
#define SK_ScalarSqrt2 SK_FixedSqrt2
|
||||
#define SK_ScalarPI SK_FixedPI
|
||||
#define SK_ScalarTanPIOver8 SK_FixedTanPIOver8
|
||||
#define SK_ScalarRoot2Over2 SK_FixedRoot2Over2
|
||||
|
||||
#define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180)
|
||||
#define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr)
|
||||
#define SkScalarSin(radians) SkFixedSin(radians)
|
||||
#define SkScalarCos(radians) SkFixedCos(radians)
|
||||
#define SkScalarTan(val) SkFixedTan(val)
|
||||
#define SkScalarASin(val) SkFixedASin(val)
|
||||
#define SkScalarACos(val) SkFixedACos(val)
|
||||
#define SkScalarATan2(y, x) SkFixedATan2(y,x)
|
||||
#define SkScalarExp(x) SkFixedExp(x)
|
||||
#define SkScalarLog(x) SkFixedLog(x)
|
||||
|
||||
#define SkMaxScalar(a, b) SkMax32(a, b)
|
||||
#define SkMinScalar(a, b) SkMin32(a, b)
|
||||
|
||||
static inline bool SkScalarIsInt(SkFixed x) {
|
||||
return 0 == (x & 0xffff);
|
||||
}
|
||||
#endif
|
||||
static inline bool SkScalarIsInt(SkScalar x) {
|
||||
return x == (float)(int)x;
|
||||
}
|
||||
|
||||
// DEPRECATED : use ToInt or ToScalar variant
|
||||
#define SkScalarFloor(x) SkScalarFloorToInt(x)
|
||||
@ -329,7 +235,6 @@ SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
|
||||
* Helper to compare an array of scalars.
|
||||
*/
|
||||
static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkASSERT(n >= 0);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if (a[i] != b[i]) {
|
||||
@ -337,9 +242,6 @@ static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n)
|
||||
}
|
||||
}
|
||||
return true;
|
||||
#else
|
||||
return 0 == memcmp(a, b, n * sizeof(SkScalar));
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -86,11 +86,7 @@ char* SkStrAppendS64(char buffer[], int64_t, int minDigits);
|
||||
* Thus if the caller wants to add a 0 at the end, buffer must be at least
|
||||
* SkStrAppendScalar_MaxSize + 1 bytes large.
|
||||
*/
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SkStrAppendScalar SkStrAppendFloat
|
||||
#else
|
||||
#define SkStrAppendScalar SkStrAppendFixed
|
||||
#endif
|
||||
#define SkStrAppendScalar SkStrAppendFloat
|
||||
|
||||
char* SkStrAppendFloat(char buffer[], float);
|
||||
char* SkStrAppendFixed(char buffer[], SkFixed);
|
||||
|
@ -19,17 +19,10 @@
|
||||
|
||||
class SkCanvas;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
typedef SkFract SkUnitScalar;
|
||||
#define SK_UnitScalar1 SK_Fract1
|
||||
#define SkUnitScalarMul(a, b) SkFractMul(a, b)
|
||||
#define SkUnitScalarDiv(a, b) SkFractDiv(a, b)
|
||||
#else
|
||||
typedef float SkUnitScalar;
|
||||
#define SK_UnitScalar1 SK_Scalar1
|
||||
#define SkUnitScalarMul(a, b) SkScalarMul(a, b)
|
||||
#define SkUnitScalarDiv(a, b) SkScalarDiv(a, b)
|
||||
#endif
|
||||
typedef float SkUnitScalar;
|
||||
#define SK_UnitScalar1 SK_Scalar1
|
||||
#define SkUnitScalarMul(a, b) SkScalarMul(a, b)
|
||||
#define SkUnitScalarDiv(a, b) SkScalarDiv(a, b)
|
||||
|
||||
struct SkUnit3D {
|
||||
SkUnitScalar fX, fY, fZ;
|
||||
|
@ -16,12 +16,10 @@
|
||||
// reconstruct the edges of the circle.
|
||||
// see bug# 1504910
|
||||
static void test_circlebounds(SkCanvas*) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkRect r = { 1.39999998f, 1, 21.3999996f, 21 };
|
||||
SkPath p;
|
||||
p.addOval(r);
|
||||
SkASSERT(r == p.getBounds());
|
||||
#endif
|
||||
}
|
||||
|
||||
class CircleView : public SampleView {
|
||||
|
@ -1,108 +0,0 @@
|
||||
|
||||
/*
|
||||
* Copyright 2011 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
#include "SampleCode.h"
|
||||
#include "SkView.h"
|
||||
#include "SkCanvas.h"
|
||||
#include "SkDevice.h"
|
||||
#include "SkPaint.h"
|
||||
|
||||
static void DrawRoundRect() {
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
bool ret = false;
|
||||
SkPaint paint;
|
||||
SkBitmap bitmap;
|
||||
SkMatrix matrix;
|
||||
matrix.reset();
|
||||
|
||||
bitmap.setConfig(SkBitmap::kARGB_8888_Config, 1370, 812);
|
||||
bitmap.allocPixels();
|
||||
|
||||
SkCanvas canvas(bitmap);
|
||||
|
||||
// set up clipper
|
||||
SkRect skclip;
|
||||
skclip.set(SkIntToFixed(284), SkIntToFixed(40), SkIntToFixed(1370), SkIntToFixed(708));
|
||||
|
||||
ret = canvas.clipRect(skclip);
|
||||
SkASSERT(ret);
|
||||
|
||||
matrix.set(SkMatrix::kMTransX, SkFloatToFixed(-1153.28));
|
||||
matrix.set(SkMatrix::kMTransY, SkFloatToFixed(1180.50));
|
||||
|
||||
matrix.set(SkMatrix::kMScaleX, SkFloatToFixed(0.177171));
|
||||
matrix.set(SkMatrix::kMScaleY, SkFloatToFixed(0.177043));
|
||||
|
||||
matrix.set(SkMatrix::kMSkewX, SkFloatToFixed(0.126968));
|
||||
matrix.set(SkMatrix::kMSkewY, SkFloatToFixed(-0.126876));
|
||||
|
||||
matrix.set(SkMatrix::kMPersp0, SkFloatToFixed(0.0));
|
||||
matrix.set(SkMatrix::kMPersp1, SkFloatToFixed(0.0));
|
||||
|
||||
ret = canvas.concat(matrix);
|
||||
|
||||
paint.setAntiAlias(true);
|
||||
paint.setColor(0xb2202020);
|
||||
paint.setStyle(SkPaint::kStroke_Style);
|
||||
paint.setStrokeWidth(SkFloatToFixed(68.13));
|
||||
|
||||
SkRect r;
|
||||
r.set(SkFloatToFixed(-313.714417), SkFloatToFixed(-4.826389), SkFloatToFixed(18014.447266), SkFloatToFixed(1858.154541));
|
||||
canvas.drawRoundRect(r, SkFloatToFixed(91.756363), SkFloatToFixed(91.756363), paint);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOATx // FIXME: unclear when if ever this can be enabled
|
||||
static bool HitTestPath(const SkPath& path, SkScalar x, SkScalar y) {
|
||||
SkRegion rgn, clip;
|
||||
|
||||
int ix = SkScalarFloor(x);
|
||||
int iy = SkScalarFloor(y);
|
||||
|
||||
clip.setRect(ix, iy, ix + 1, iy + 1);
|
||||
|
||||
bool contains = rgn.setPath(path, clip);
|
||||
return contains;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void TestOverflowHitTest() {
|
||||
SkPath path;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOATx // FIXME: unclear when if ever this can be enabled
|
||||
path.addCircle(0, 0, 70000, SkPath::kCCW_Direction);
|
||||
SkASSERT(HitTestPath(path, 40000, 40000));
|
||||
#endif
|
||||
}
|
||||
|
||||
class OverflowView : public SampleView {
|
||||
public:
|
||||
OverflowView() {}
|
||||
|
||||
protected:
|
||||
// overrides from SkEventSink
|
||||
virtual bool onQuery(SkEvent* evt) {
|
||||
if (SampleCode::TitleQ(*evt)) {
|
||||
SampleCode::TitleR(evt, "Circles");
|
||||
return true;
|
||||
}
|
||||
return this->INHERITED::onQuery(evt);
|
||||
}
|
||||
|
||||
virtual void onDrawContent(SkCanvas* canvas) {
|
||||
DrawRoundRect();
|
||||
TestOverflowHitTest();
|
||||
}
|
||||
|
||||
private:
|
||||
typedef SampleView INHERITED;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static SkView* MyFactory() { return new OverflowView; }
|
||||
static SkViewRegister reg(MyFactory);
|
@ -21,7 +21,6 @@ enum SkDisplayMath_Properties {
|
||||
};
|
||||
|
||||
const SkScalar SkDisplayMath::gConstants[] = {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
2.718281828f, // E
|
||||
2.302585093f, // LN10
|
||||
0.693147181f, // LN2
|
||||
@ -30,16 +29,6 @@ const SkScalar SkDisplayMath::gConstants[] = {
|
||||
3.141592654f, // PI
|
||||
0.707106781f, // SQRT1_2
|
||||
1.414213562f // SQRT2
|
||||
#else
|
||||
0x2B7E1, // E
|
||||
0x24D76, // LN10
|
||||
0xB172, // LN2
|
||||
0x6F2E, // LOG10E
|
||||
0x17154, // LOG2E
|
||||
0x3243F, // PI
|
||||
0xB505, // SQRT1_2
|
||||
0x16A0A // SQRT2
|
||||
#endif
|
||||
};
|
||||
|
||||
enum SkDisplayMath_Functions {
|
||||
|
@ -226,11 +226,7 @@ bool SkDrawColor::setProperty(int index, SkScriptValue& value) {
|
||||
switch (index) {
|
||||
case SK_PROPERTY(alpha):
|
||||
uint8_t alpha;
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
alpha = scalar == SK_Scalar1 ? 255 : SkToU8((U8CPU) (scalar * 256));
|
||||
#else
|
||||
alpha = SkToU8((scalar - (scalar >= SK_ScalarHalf)) >> 8);
|
||||
#endif
|
||||
color = SkColorSetARGB(alpha, SkColorGetR(color),
|
||||
SkColorGetG(color), SkColorGetB(color));
|
||||
break;
|
||||
|
@ -14,20 +14,12 @@
|
||||
#include "SkUnitMapper.h"
|
||||
|
||||
static SkScalar SkUnitToScalar(U16CPU x) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
return x / 65535.0f;
|
||||
#else
|
||||
return x + (x >> 8);
|
||||
#endif
|
||||
}
|
||||
|
||||
static U16CPU SkScalarToUnit(SkScalar x) {
|
||||
SkScalar pin = SkScalarPin(x, 0, SK_Scalar1);
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
return (int) (pin * 65535.0f);
|
||||
#else
|
||||
return pin - (pin >= 32768);
|
||||
#endif
|
||||
}
|
||||
|
||||
class SkDrawGradientUnitMapper : public SkUnitMapper {
|
||||
|
@ -1650,13 +1650,8 @@ bool SkScriptEngine::ValueToString(SkScriptValue value, SkString* string) {
|
||||
#define DEF_STRING_ANSWER NULL
|
||||
|
||||
#define testInt(expression) { #expression, SkType_Int, expression, DEF_SCALAR_ANSWER, DEF_STRING_ANSWER }
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define testScalar(expression) { #expression, SkType_Float, 0, (float) expression, DEF_STRING_ANSWER }
|
||||
#define testRemainder(exp1, exp2) { #exp1 "%" #exp2, SkType_Float, 0, sk_float_mod(exp1, exp2), DEF_STRING_ANSWER }
|
||||
#else
|
||||
#define testScalar(expression) { #expression, SkType_Float, 0, (int) ((expression) * 65536.0f), DEF_STRING_ANSWER }
|
||||
#define testRemainder(exp1, exp2) { #exp1 "%" #exp2, SkType_Float, 0, (int) (sk_float_mod(exp1, exp2) * 65536.0f), DEF_STRING_ANSWER }
|
||||
#endif
|
||||
#define testTrue(expression) { #expression, SkType_Int, 1, DEF_SCALAR_ANSWER, DEF_STRING_ANSWER }
|
||||
#define testFalse(expression) { #expression, SkType_Int, 0, DEF_SCALAR_ANSWER, DEF_STRING_ANSWER }
|
||||
|
||||
|
@ -1274,13 +1274,8 @@ bool SkScriptEngine2::ValueToString(const SkScriptValue2& value, SkString* strin
|
||||
#if defined(SK_SUPPORT_UNITTEST)
|
||||
|
||||
#define testInt(expression) { #expression, SkOperand2::kS32, expression, 0, NULL }
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define testScalar(expression) { #expression, SkOperand2::kScalar, 0, (float) (expression), NULL }
|
||||
#define testRemainder(exp1, exp2) { #exp1 "%" #exp2, SkOperand2::kScalar, 0, fmodf((float) exp1, (float) exp2), NULL }
|
||||
#else
|
||||
#define testScalar(expression) { #expression, SkOperand2::kScalar, 0, (int) ((expression) * 65536.0f), NULL }
|
||||
#define testRemainder(exp1, exp2) { #exp1 "%" #exp2, SkOperand2::kScalar, 0, (int) (fmod(exp1, exp2) * 65536.0f), NULL }
|
||||
#endif
|
||||
#define testTrue(expression) { #expression, SkOperand2::kS32, 1, 0, NULL }
|
||||
#define testFalse(expression) { #expression, SkOperand2::kS32, 0, 0, NULL }
|
||||
|
||||
|
@ -1457,13 +1457,6 @@ bool SkCanvas::quickReject(const SkPath& path) const {
|
||||
}
|
||||
|
||||
static inline int pinIntForScalar(int x) {
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
if (x < SK_MinS16) {
|
||||
x = SK_MinS16;
|
||||
} else if (x > SK_MaxS16) {
|
||||
x = SK_MaxS16;
|
||||
}
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
@ -1487,15 +1480,8 @@ bool SkCanvas::getClipBounds(SkRect* bounds) const {
|
||||
// adjust it outwards in case we are antialiasing
|
||||
const int inset = 1;
|
||||
|
||||
// SkRect::iset() will correctly assert if we pass a value out of range
|
||||
// (when SkScalar==fixed), so we pin to legal values. This does not
|
||||
// really returnt the correct answer, but its the best we can do given
|
||||
// that we've promised to return SkRect (even though we support devices
|
||||
// that can be larger than 32K in width or height).
|
||||
r.iset(pinIntForScalar(ibounds.fLeft - inset),
|
||||
pinIntForScalar(ibounds.fTop - inset),
|
||||
pinIntForScalar(ibounds.fRight + inset),
|
||||
pinIntForScalar(ibounds.fBottom + inset));
|
||||
r.iset(ibounds.fLeft - inset, ibounds.fTop - inset,
|
||||
ibounds.fRight + inset, ibounds.fBottom + inset);
|
||||
inverse.mapRect(bounds, r);
|
||||
}
|
||||
return true;
|
||||
|
@ -31,11 +31,7 @@ static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
|
||||
// Initial guess.
|
||||
// TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
|
||||
// is not only monotonic but degenerate.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
|
||||
#else // !SK_SCALAR_IS_FLOAT
|
||||
SkScalar t1 = SkDivBits(ycrv[0], ycrv[0] - ycrv[3], 16);
|
||||
#endif // !SK_SCALAR_IS_FLOAT
|
||||
|
||||
// Newton's iterations.
|
||||
const SkScalar tol = SK_Scalar1 / 16384; // This leaves 2 fixed noise bits.
|
||||
@ -53,11 +49,7 @@ static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
|
||||
SkScalar y0123 = SkScalarInterp(y012, y123, t0);
|
||||
SkScalar yder = (y123 - y012) * 3;
|
||||
// TODO(turk): check for yder==0: horizontal.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
t1 -= y0123 / yder;
|
||||
#else // !SK_SCALAR_IS_FLOAT
|
||||
t1 -= SkDivBits(y0123, yder, 16);
|
||||
#endif // !SK_SCALAR_IS_FLOAT
|
||||
converged = SkScalarAbs(t1 - t0) <= tol; // NaN-safe
|
||||
++iters;
|
||||
} while (!converged && (iters < maxiters));
|
||||
|
@ -36,19 +36,11 @@ int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
|
||||
SkFDot6 x0, y0, x1, y1;
|
||||
|
||||
{
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float scale = float(1 << (shift + 6));
|
||||
x0 = int(p0.fX * scale);
|
||||
y0 = int(p0.fY * scale);
|
||||
x1 = int(p1.fX * scale);
|
||||
y1 = int(p1.fY * scale);
|
||||
#else
|
||||
shift = 10 - shift;
|
||||
x0 = p0.fX >> shift;
|
||||
y0 = p0.fY >> shift;
|
||||
x1 = p1.fX >> shift;
|
||||
y1 = p1.fY >> shift;
|
||||
#endif
|
||||
}
|
||||
|
||||
int winding = 1;
|
||||
@ -179,7 +171,6 @@ int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
|
||||
SkFDot6 x0, y0, x1, y1, x2, y2;
|
||||
|
||||
{
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float scale = float(1 << (shift + 6));
|
||||
x0 = int(pts[0].fX * scale);
|
||||
y0 = int(pts[0].fY * scale);
|
||||
@ -187,15 +178,6 @@ int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
|
||||
y1 = int(pts[1].fY * scale);
|
||||
x2 = int(pts[2].fX * scale);
|
||||
y2 = int(pts[2].fY * scale);
|
||||
#else
|
||||
shift = 10 - shift;
|
||||
x0 = pts[0].fX >> shift;
|
||||
y0 = pts[0].fY >> shift;
|
||||
x1 = pts[1].fX >> shift;
|
||||
y1 = pts[1].fY >> shift;
|
||||
x2 = pts[2].fX >> shift;
|
||||
y2 = pts[2].fY >> shift;
|
||||
#endif
|
||||
}
|
||||
|
||||
int winding = 1;
|
||||
@ -339,7 +321,6 @@ int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
|
||||
SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
|
||||
|
||||
{
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float scale = float(1 << (shift + 6));
|
||||
x0 = int(pts[0].fX * scale);
|
||||
y0 = int(pts[0].fY * scale);
|
||||
@ -349,17 +330,6 @@ int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
|
||||
y2 = int(pts[2].fY * scale);
|
||||
x3 = int(pts[3].fX * scale);
|
||||
y3 = int(pts[3].fY * scale);
|
||||
#else
|
||||
shift = 10 - shift;
|
||||
x0 = pts[0].fX >> shift;
|
||||
y0 = pts[0].fY >> shift;
|
||||
x1 = pts[1].fX >> shift;
|
||||
y1 = pts[1].fY >> shift;
|
||||
x2 = pts[2].fX >> shift;
|
||||
y2 = pts[2].fY >> shift;
|
||||
x3 = pts[3].fX >> shift;
|
||||
y3 = pts[3].fY >> shift;
|
||||
#endif
|
||||
}
|
||||
|
||||
int winding = 1;
|
||||
|
@ -89,19 +89,11 @@ int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, int shift) {
|
||||
SkFDot6 x0, y0, x1, y1;
|
||||
|
||||
{
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float scale = float(1 << (shift + 6));
|
||||
x0 = int(p0.fX * scale);
|
||||
y0 = int(p0.fY * scale);
|
||||
x1 = int(p1.fX * scale);
|
||||
y1 = int(p1.fY * scale);
|
||||
#else
|
||||
shift = 10 - shift;
|
||||
x0 = p0.fX >> shift;
|
||||
y0 = p0.fY >> shift;
|
||||
x1 = p1.fX >> shift;
|
||||
y1 = p1.fY >> shift;
|
||||
#endif
|
||||
}
|
||||
|
||||
int winding = 1;
|
||||
|
@ -39,13 +39,8 @@ inline SkFixed SkFDot6ToFixed(SkFDot6 x) {
|
||||
return x << 10;
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SkScalarToFDot6(x) (SkFDot6)((x) * 64)
|
||||
#define SkFDot6ToScalar(x) ((SkScalar)(x) * 0.015625f)
|
||||
#else
|
||||
#define SkScalarToFDot6(x) ((x) >> 10)
|
||||
#define SkFDot6ToScalar(x) ((x) << 10)
|
||||
#endif
|
||||
#define SkScalarToFDot6(x) (SkFDot6)((x) * 64)
|
||||
#define SkFDot6ToScalar(x) ((SkScalar)(x) * 0.015625f)
|
||||
|
||||
inline SkFixed SkFDot6Div(SkFDot6 a, SkFDot6 b) {
|
||||
SkASSERT(b != 0);
|
||||
|
@ -24,9 +24,8 @@ SkFlattenableReadBuffer::SkFlattenableReadBuffer() {
|
||||
// Set default values. These should be explicitly set by our client
|
||||
// via setFlags() if the buffer came from serialization.
|
||||
fFlags = 0;
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// TODO: remove this flag, since we're always floats (now)
|
||||
fFlags |= kScalarIsFloat_Flag;
|
||||
#endif
|
||||
if (8 == sizeof(void*)) {
|
||||
fFlags |= kPtrIs64Bit_Flag;
|
||||
}
|
||||
|
@ -68,32 +68,18 @@ bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous)
|
||||
involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
|
||||
May also introduce overflow of fixed when we compute our setup.
|
||||
*/
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
#define DIRECT_EVAL_OF_POLYNOMIALS
|
||||
#endif
|
||||
// #define DIRECT_EVAL_OF_POLYNOMIALS
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
static int is_not_monotonic(int a, int b, int c, int d)
|
||||
{
|
||||
return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
|
||||
static int is_not_monotonic(float a, float b, float c) {
|
||||
float ab = a - b;
|
||||
float bc = b - c;
|
||||
if (ab < 0) {
|
||||
bc = -bc;
|
||||
}
|
||||
|
||||
static int is_not_monotonic(int a, int b, int c)
|
||||
{
|
||||
return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
|
||||
}
|
||||
#else
|
||||
static int is_not_monotonic(float a, float b, float c)
|
||||
{
|
||||
float ab = a - b;
|
||||
float bc = b - c;
|
||||
if (ab < 0)
|
||||
bc = -bc;
|
||||
return ab == 0 || bc < 0;
|
||||
}
|
||||
#endif
|
||||
return ab == 0 || bc < 0;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -141,23 +127,11 @@ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
|
||||
|
||||
SkScalar* r = roots;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float R = B*B - 4*A*C;
|
||||
if (R < 0 || SkScalarIsNaN(R)) { // complex roots
|
||||
return 0;
|
||||
}
|
||||
R = sk_float_sqrt(R);
|
||||
#else
|
||||
Sk64 RR, tmp;
|
||||
|
||||
RR.setMul(B,B);
|
||||
tmp.setMul(A,C);
|
||||
tmp.shiftLeft(2);
|
||||
RR.sub(tmp);
|
||||
if (RR.isNeg())
|
||||
return 0;
|
||||
SkFixed R = RR.getSqrt();
|
||||
#endif
|
||||
|
||||
SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
|
||||
r += valid_unit_divide(Q, A, r);
|
||||
@ -172,25 +146,8 @@ int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
|
||||
return (int)(r - roots);
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
/** Trim A/B/C down so that they are all <= 32bits
|
||||
and then call SkFindUnitQuadRoots()
|
||||
*/
|
||||
static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
|
||||
{
|
||||
int na = A.shiftToMake32();
|
||||
int nb = B.shiftToMake32();
|
||||
int nc = C.shiftToMake32();
|
||||
|
||||
int shift = SkMax32(na, SkMax32(nb, nc));
|
||||
SkASSERT(shift >= 0);
|
||||
|
||||
return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
|
||||
}
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static SkScalar eval_quad(const SkScalar src[], SkScalar t)
|
||||
{
|
||||
@ -297,11 +254,7 @@ int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
|
||||
/* At + B == 0
|
||||
t = -B / A
|
||||
*/
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
|
||||
#else
|
||||
return valid_unit_divide(a - b, a - b - b + c, tValue);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void flatten_double_quad_extrema(SkScalar coords[14])
|
||||
@ -401,31 +354,7 @@ float SkFindQuadMaxCurvature(const SkPoint src[3]) {
|
||||
SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
|
||||
SkScalar t = 0; // 0 means don't chop
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
(void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
|
||||
#else
|
||||
// !!! should I use SkFloat here? seems like it
|
||||
Sk64 numer, denom, tmp;
|
||||
|
||||
numer.setMul(Ax, -Bx);
|
||||
tmp.setMul(Ay, -By);
|
||||
numer.add(tmp);
|
||||
|
||||
if (numer.isPos()) // do nothing if numer <= 0
|
||||
{
|
||||
denom.setMul(Bx, Bx);
|
||||
tmp.setMul(By, By);
|
||||
denom.add(tmp);
|
||||
SkASSERT(!denom.isNeg());
|
||||
if (numer < denom)
|
||||
{
|
||||
t = numer.getFixedDiv(denom);
|
||||
SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!)
|
||||
if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability
|
||||
t = 0; // ignore the chop
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return t;
|
||||
}
|
||||
|
||||
@ -441,11 +370,7 @@ int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SK_ScalarTwoThirds (0.666666666f)
|
||||
#else
|
||||
#define SK_ScalarTwoThirds ((SkFixed)(43691))
|
||||
#endif
|
||||
#define SK_ScalarTwoThirds (0.666666666f)
|
||||
|
||||
void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
|
||||
const SkScalar scale = SK_ScalarTwoThirds;
|
||||
@ -553,11 +478,6 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tan
|
||||
*/
|
||||
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
|
||||
{
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
if (!is_not_monotonic(a, b, c, d))
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
// we divide A,B,C by 3 to simplify
|
||||
SkScalar A = d - a + 3*(b - c);
|
||||
SkScalar B = 2*(a - b - b + c);
|
||||
@ -747,29 +667,8 @@ int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
|
||||
SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
|
||||
SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
|
||||
SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
|
||||
int count;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
|
||||
#else
|
||||
Sk64 A, B, C, tmp;
|
||||
|
||||
A.setMul(Bx, Cy);
|
||||
tmp.setMul(By, Cx);
|
||||
A.sub(tmp);
|
||||
|
||||
B.setMul(Ax, Cy);
|
||||
tmp.setMul(Ay, Cx);
|
||||
B.sub(tmp);
|
||||
|
||||
C.setMul(Ax, By);
|
||||
tmp.setMul(Ay, Bx);
|
||||
C.sub(tmp);
|
||||
|
||||
count = Sk64FindFixedQuadRoots(A, B, C, tValues);
|
||||
#endif
|
||||
|
||||
return count;
|
||||
return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
|
||||
}
|
||||
|
||||
int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
|
||||
@ -891,10 +790,6 @@ static void test_collaps_duplicates() {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
|
||||
#pragma warning ( disable : 4702 )
|
||||
#endif
|
||||
|
||||
static SkScalar SkScalarCubeRoot(SkScalar x) {
|
||||
return sk_float_pow(x, 0.3333333f);
|
||||
}
|
||||
|
@ -28,7 +28,6 @@ static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) {
|
||||
if (SkScalarNearlyZero(dy)) {
|
||||
return SkScalarAve(src[0].fX, src[1].fX);
|
||||
} else {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// need the extra precision so we don't compute a value that exceeds
|
||||
// our original limits
|
||||
double X0 = src[0].fX;
|
||||
@ -41,10 +40,6 @@ static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) {
|
||||
// when the doubles were added and subtracted, so we have to pin the
|
||||
// answer :(
|
||||
return (float)pin_unsorted(result, X0, X1);
|
||||
#else
|
||||
return src[0].fX + SkScalarMulDiv(Y - src[0].fY, src[1].fX - src[0].fX,
|
||||
dy);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -54,7 +49,6 @@ static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) {
|
||||
if (SkScalarNearlyZero(dx)) {
|
||||
return SkScalarAve(src[0].fY, src[1].fY);
|
||||
} else {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// need the extra precision so we don't compute a value that exceeds
|
||||
// our original limits
|
||||
double X0 = src[0].fX;
|
||||
@ -63,10 +57,6 @@ static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) {
|
||||
double Y1 = src[1].fY;
|
||||
double result = Y0 + ((double)X - X0) * (Y1 - Y0) / (X1 - X0);
|
||||
return (float)result;
|
||||
#else
|
||||
return src[0].fY + SkScalarMulDiv(X - src[0].fX, src[1].fY - src[0].fY,
|
||||
dx);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@ -167,7 +157,6 @@ static bool is_between_unsorted(SkScalar value,
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#ifdef SK_DEBUG
|
||||
// This is an example of why we need to pin the result computed in
|
||||
// sect_with_horizontal. If we didn't explicitly pin, is_between_unsorted would
|
||||
@ -182,11 +171,9 @@ static void sect_with_horizontal_test_for_pin_results() {
|
||||
SkASSERT(is_between_unsorted(x, pts[0].fX, pts[1].fX));
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip,
|
||||
SkPoint lines[]) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#ifdef SK_DEBUG
|
||||
{
|
||||
static bool gOnce;
|
||||
@ -195,7 +182,6 @@ int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip,
|
||||
gOnce = true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
int index0, index1;
|
||||
|
@ -12,11 +12,9 @@
|
||||
#include "Sk64.h"
|
||||
#include "SkScalar.h"
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
const uint32_t gIEEENotANumber = 0x7FFFFFFF;
|
||||
const uint32_t gIEEEInfinity = 0x7F800000;
|
||||
const uint32_t gIEEENegativeInfinity = 0xFF800000;
|
||||
#endif
|
||||
const uint32_t gIEEENotANumber = 0x7FFFFFFF;
|
||||
const uint32_t gIEEEInfinity = 0x7F800000;
|
||||
const uint32_t gIEEENegativeInfinity = 0xFF800000;
|
||||
|
||||
#define sub_shift(zeros, x, n) \
|
||||
zeros -= n; \
|
||||
@ -376,7 +374,6 @@ SkFixed SkFixedMean(SkFixed a, SkFixed b) {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float SkScalarSinCos(float radians, float* cosValue) {
|
||||
float sinValue = sk_float_sin(radians);
|
||||
|
||||
@ -392,7 +389,6 @@ float SkScalarSinCos(float radians, float* cosValue) {
|
||||
}
|
||||
return sinValue;
|
||||
}
|
||||
#endif
|
||||
|
||||
#define INTERP_SINTABLE
|
||||
#define BUILD_TABLE_AT_RUNTIMEx
|
||||
|
@ -11,15 +11,11 @@
|
||||
#include "SkOnce.h"
|
||||
#include "SkString.h"
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define kMatrix22Elem SK_Scalar1
|
||||
#define kMatrix22Elem SK_Scalar1
|
||||
|
||||
static inline float SkDoubleToFloat(double x) {
|
||||
return static_cast<float>(x);
|
||||
}
|
||||
#else
|
||||
#define kMatrix22Elem SK_Fract1
|
||||
#endif
|
||||
static inline float SkDoubleToFloat(double x) {
|
||||
return static_cast<float>(x);
|
||||
}
|
||||
|
||||
/* [scale-x skew-x trans-x] [X] [X']
|
||||
[skew-y scale-y trans-y] * [Y] = [Y']
|
||||
@ -45,13 +41,7 @@ enum {
|
||||
kRectStaysRect_Shift
|
||||
};
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static const int32_t kScalar1Int = 0x3f800000;
|
||||
#else
|
||||
#define scalarAsInt(x) (x)
|
||||
static const int32_t kScalar1Int = (1 << 16);
|
||||
static const int32_t kPersp1Int = (1 << 30);
|
||||
#endif
|
||||
static const int32_t kScalar1Int = 0x3f800000;
|
||||
|
||||
uint8_t SkMatrix::computePerspectiveTypeMask() const {
|
||||
// Benchmarking suggests that replacing this set of SkScalarAs2sCompliment
|
||||
@ -133,8 +123,6 @@ uint8_t SkMatrix::computeTypeMask() const {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
|
||||
bool operator==(const SkMatrix& a, const SkMatrix& b) {
|
||||
const SkScalar* SK_RESTRICT ma = a.fMat;
|
||||
const SkScalar* SK_RESTRICT mb = b.fMat;
|
||||
@ -144,8 +132,6 @@ bool operator==(const SkMatrix& a, const SkMatrix& b) {
|
||||
ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8];
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// helper function to determine if upper-left 2x2 of matrix is degenerate
|
||||
@ -612,71 +598,22 @@ bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static inline int fixmuladdmul(float a, float b, float c, float d,
|
||||
float* result) {
|
||||
*result = SkDoubleToFloat((double)a * b + (double)c * d);
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline bool rowcol3(const float row[], const float col[],
|
||||
static inline int fixmuladdmul(float a, float b, float c, float d,
|
||||
float* result) {
|
||||
*result = row[0] * col[0] + row[1] * col[3] + row[2] * col[6];
|
||||
return true;
|
||||
}
|
||||
*result = SkDoubleToFloat((double)a * b + (double)c * d);
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline int negifaddoverflows(float& result, float a, float b) {
|
||||
result = a + b;
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
static inline bool fixmuladdmul(SkFixed a, SkFixed b, SkFixed c, SkFixed d,
|
||||
SkFixed* result) {
|
||||
Sk64 tmp1, tmp2;
|
||||
tmp1.setMul(a, b);
|
||||
tmp2.setMul(c, d);
|
||||
tmp1.add(tmp2);
|
||||
if (tmp1.isFixed()) {
|
||||
*result = tmp1.getFixed();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
static inline bool rowcol3(const float row[], const float col[],
|
||||
float* result) {
|
||||
*result = row[0] * col[0] + row[1] * col[3] + row[2] * col[6];
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline SkFixed fracmuladdmul(SkFixed a, SkFract b, SkFixed c,
|
||||
SkFract d) {
|
||||
Sk64 tmp1, tmp2;
|
||||
tmp1.setMul(a, b);
|
||||
tmp2.setMul(c, d);
|
||||
tmp1.add(tmp2);
|
||||
return tmp1.getFract();
|
||||
}
|
||||
|
||||
static inline bool rowcol3(const SkFixed row[], const SkFixed col[],
|
||||
SkFixed* result) {
|
||||
Sk64 tmp1, tmp2;
|
||||
|
||||
tmp1.setMul(row[0], col[0]); // N * fixed
|
||||
tmp2.setMul(row[1], col[3]); // N * fixed
|
||||
tmp1.add(tmp2);
|
||||
|
||||
tmp2.setMul(row[2], col[6]); // N * fract
|
||||
tmp2.roundRight(14); // make it fixed
|
||||
tmp1.add(tmp2);
|
||||
|
||||
if (tmp1.isFixed()) {
|
||||
*result = tmp1.getFixed();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline int negifaddoverflows(SkFixed& result, SkFixed a, SkFixed b) {
|
||||
SkFixed c = a + b;
|
||||
result = c;
|
||||
return (c ^ a) & (c ^ b);
|
||||
}
|
||||
#endif
|
||||
static inline int negifaddoverflows(float& result, float a, float b) {
|
||||
result = a + b;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void normalize_perspective(SkScalar mat[9]) {
|
||||
if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > kMatrix22Elem) {
|
||||
@ -793,88 +730,38 @@ bool SkMatrix::postConcat(const SkMatrix& mat) {
|
||||
precision may be most important (here and matrix concat). Hence to avoid
|
||||
bitmap blitting artifacts when walking the inverse, we use doubles for
|
||||
the intermediate math, even though we know that is more expensive.
|
||||
The fixed counter part is us using Sk64 for temp calculations.
|
||||
*/
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
typedef double SkDetScalar;
|
||||
#define SkPerspMul(a, b) SkScalarMul(a, b)
|
||||
#define SkScalarMulShift(a, b, s) SkDoubleToFloat((a) * (b))
|
||||
static double sk_inv_determinant(const float mat[9], int isPerspective,
|
||||
int* /* (only used in Fixed case) */) {
|
||||
double det;
|
||||
typedef double SkDetScalar;
|
||||
#define SkPerspMul(a, b) SkScalarMul(a, b)
|
||||
#define SkScalarMulShift(a, b, s) SkDoubleToFloat((a) * (b))
|
||||
static double sk_inv_determinant(const float mat[9], int isPerspective,
|
||||
int* /* (only used in Fixed case) */) {
|
||||
double det;
|
||||
|
||||
if (isPerspective) {
|
||||
det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) +
|
||||
mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) +
|
||||
mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]);
|
||||
} else {
|
||||
det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY];
|
||||
}
|
||||
|
||||
// Since the determinant is on the order of the cube of the matrix members,
|
||||
// compare to the cube of the default nearly-zero constant (although an
|
||||
// estimate of the condition number would be better if it wasn't so expensive).
|
||||
if (SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
|
||||
return 0;
|
||||
}
|
||||
return 1.0 / det;
|
||||
}
|
||||
// we declar a,b,c,d to all be doubles, because we want to perform
|
||||
// double-precision muls and subtract, even though the original values are
|
||||
// from the matrix, which are floats.
|
||||
static float inline mul_diff_scale(double a, double b, double c, double d,
|
||||
double scale) {
|
||||
return SkDoubleToFloat((a * b - c * d) * scale);
|
||||
}
|
||||
#else
|
||||
typedef SkFixed SkDetScalar;
|
||||
#define SkPerspMul(a, b) SkFractMul(a, b)
|
||||
#define SkScalarMulShift(a, b, s) SkMulShift(a, b, s)
|
||||
static void set_muladdmul(Sk64* dst, int32_t a, int32_t b, int32_t c,
|
||||
int32_t d) {
|
||||
Sk64 tmp;
|
||||
dst->setMul(a, b);
|
||||
tmp.setMul(c, d);
|
||||
dst->add(tmp);
|
||||
if (isPerspective) {
|
||||
det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) +
|
||||
mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) +
|
||||
mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]);
|
||||
} else {
|
||||
det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY];
|
||||
}
|
||||
|
||||
static SkFixed sk_inv_determinant(const SkFixed mat[9], int isPerspective,
|
||||
int* shift) {
|
||||
Sk64 tmp1, tmp2;
|
||||
|
||||
if (isPerspective) {
|
||||
tmp1.setMul(mat[SkMatrix::kMScaleX], fracmuladdmul(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], -mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]));
|
||||
tmp2.setMul(mat[SkMatrix::kMSkewX], fracmuladdmul(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], -mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]));
|
||||
tmp1.add(tmp2);
|
||||
tmp2.setMul(mat[SkMatrix::kMTransX], fracmuladdmul(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], -mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]));
|
||||
tmp1.add(tmp2);
|
||||
} else {
|
||||
tmp1.setMul(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY]);
|
||||
tmp2.setMul(mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]);
|
||||
tmp1.sub(tmp2);
|
||||
}
|
||||
|
||||
int s = tmp1.getClzAbs();
|
||||
*shift = s;
|
||||
|
||||
SkFixed denom;
|
||||
if (s <= 32) {
|
||||
denom = tmp1.getShiftRight(33 - s);
|
||||
} else {
|
||||
denom = (int32_t)tmp1.fLo << (s - 33);
|
||||
}
|
||||
|
||||
if (denom == 0) {
|
||||
return 0;
|
||||
}
|
||||
/** This could perhaps be a special fractdiv function, since both of its
|
||||
arguments are known to have bit 31 clear and bit 30 set (when they
|
||||
are made positive), thus eliminating the need for calling clz()
|
||||
*/
|
||||
return SkFractDiv(SK_Fract1, denom);
|
||||
// Since the determinant is on the order of the cube of the matrix members,
|
||||
// compare to the cube of the default nearly-zero constant (although an
|
||||
// estimate of the condition number would be better if it wasn't so expensive).
|
||||
if (SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
return 1.0 / det;
|
||||
}
|
||||
// we declar a,b,c,d to all be doubles, because we want to perform
|
||||
// double-precision muls and subtract, even though the original values are
|
||||
// from the matrix, which are floats.
|
||||
static float inline mul_diff_scale(double a, double b, double c, double d,
|
||||
double scale) {
|
||||
return SkDoubleToFloat((a * b - c * d) * scale);
|
||||
}
|
||||
|
||||
void SkMatrix::SetAffineIdentity(SkScalar affine[6]) {
|
||||
affine[kAScaleX] = SK_Scalar1;
|
||||
@ -1955,14 +1842,8 @@ void SkMatrix::dump() const {
|
||||
|
||||
void SkMatrix::toString(SkString* str) const {
|
||||
str->appendf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]",
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5],
|
||||
fMat[6], fMat[7], fMat[8]);
|
||||
#else
|
||||
SkFixedToFloat(fMat[0]), SkFixedToFloat(fMat[1]), SkFixedToFloat(fMat[2]),
|
||||
SkFixedToFloat(fMat[3]), SkFixedToFloat(fMat[4]), SkFixedToFloat(fMat[5]),
|
||||
SkFractToFloat(fMat[6]), SkFractToFloat(fMat[7]), SkFractToFloat(fMat[8]));
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -1010,16 +1010,9 @@ static void set_bounds(const SkGlyph& g, SkRect* bounds) {
|
||||
// we don't overflow along the way
|
||||
typedef int64_t Sk48Dot16;
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static inline float Sk48Dot16ToScalar(Sk48Dot16 x) {
|
||||
return (float) (x * 1.5258789e-5); // x * (1 / 65536.0f)
|
||||
}
|
||||
#else
|
||||
static inline SkFixed Sk48Dot16ToScalar(Sk48Dot16 x) {
|
||||
// just return the low 32bits
|
||||
return static_cast<SkFixed>(x);
|
||||
}
|
||||
#endif
|
||||
static inline float Sk48Dot16ToScalar(Sk48Dot16 x) {
|
||||
return (float) (x * 1.5258789e-5); // x * (1 / 65536.0f)
|
||||
}
|
||||
|
||||
static void join_bounds_x(const SkGlyph& g, SkRect* bounds, Sk48Dot16 dx) {
|
||||
SkScalar sx = Sk48Dot16ToScalar(dx);
|
||||
@ -1556,13 +1549,8 @@ static bool tooBigForLCD(const SkScalerContext::Rec& rec) {
|
||||
* typically returns the same looking resuts for tiny changes in the matrix.
|
||||
*/
|
||||
static SkScalar sk_relax(SkScalar x) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
int n = sk_float_round2int(x * 1024);
|
||||
return n / 1024.0f;
|
||||
#else
|
||||
// round to the nearest 10 fractional bits
|
||||
return (x + (1 << 5)) & ~(1024 - 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
void SkScalerContext::MakeRec(const SkPaint& paint,
|
||||
|
@ -23,12 +23,7 @@ enum {
|
||||
|
||||
static inline SkScalar tValue2Scalar(int t) {
|
||||
SkASSERT((unsigned)t <= kMaxTValue);
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
return t * 3.05185e-5f; // t / 32767
|
||||
#else
|
||||
return (t + (t >> 14)) << 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
SkScalar SkPathMeasure::Segment::getScalarT() const {
|
||||
|
@ -338,9 +338,9 @@ void SkPicture::serialize(SkWStream* stream, EncodeBitmap encoder) const {
|
||||
info.fWidth = fWidth;
|
||||
info.fHeight = fHeight;
|
||||
info.fFlags = SkPictInfo::kCrossProcess_Flag;
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// TODO: remove this flag, since we're always float (now)
|
||||
info.fFlags |= SkPictInfo::kScalarIsFloat_Flag;
|
||||
#endif
|
||||
|
||||
if (8 == sizeof(void*)) {
|
||||
info.fFlags |= SkPictInfo::kPtrIs64Bit_Flag;
|
||||
}
|
||||
|
@ -55,21 +55,6 @@ void SkRect::toQuad(SkPoint quad[4]) const {
|
||||
quad[3].set(fLeft, fBottom);
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define SkFLOATCODE(code) code
|
||||
#else
|
||||
#define SkFLOATCODE(code)
|
||||
#endif
|
||||
|
||||
// For float compares (at least on x86, by removing the else from the min/max
|
||||
// computation, we get MAXSS and MINSS instructions, and no branches.
|
||||
// Fixed point has no such opportunity (afaik), so we leave the else in that case
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define MINMAX_ELSE
|
||||
#else
|
||||
#define MINMAX_ELSE else
|
||||
#endif
|
||||
|
||||
bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
|
||||
SkASSERT((pts && count > 0) || count == 0);
|
||||
|
||||
@ -85,17 +70,22 @@ bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
|
||||
|
||||
// If all of the points are finite, accum should stay 0. If we encounter
|
||||
// a NaN or infinity, then accum should become NaN.
|
||||
SkFLOATCODE(float accum = 0;)
|
||||
SkFLOATCODE(accum *= l; accum *= t;)
|
||||
float accum = 0;
|
||||
accum *= l; accum *= t;
|
||||
|
||||
for (int i = 1; i < count; i++) {
|
||||
SkScalar x = pts[i].fX;
|
||||
SkScalar y = pts[i].fY;
|
||||
|
||||
SkFLOATCODE(accum *= x; accum *= y;)
|
||||
accum *= x; accum *= y;
|
||||
|
||||
if (x < l) l = x; MINMAX_ELSE if (x > r) r = x;
|
||||
if (y < t) t = y; MINMAX_ELSE if (y > b) b = y;
|
||||
// we use if instead of if/else, so we can generate min/max
|
||||
// float instructions (at least on SSE)
|
||||
if (x < l) l = x;
|
||||
if (x > r) r = x;
|
||||
|
||||
if (y < t) t = y;
|
||||
if (y > b) b = y;
|
||||
}
|
||||
|
||||
SkASSERT(!accum || !SkScalarIsFinite(accum));
|
||||
|
@ -53,8 +53,6 @@ void SkScan::FillXRect(const SkXRect& xr, const SkRegion* clip,
|
||||
SkScan::FillIRect(r, clip, blitter);
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
|
||||
void SkScan::FillRect(const SkRect& r, const SkRegion* clip,
|
||||
SkBlitter* blitter) {
|
||||
SkIRect ir;
|
||||
@ -63,8 +61,6 @@ void SkScan::FillRect(const SkRect& r, const SkRegion* clip,
|
||||
SkScan::FillIRect(ir, clip, blitter);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void SkScan::FillIRect(const SkIRect& r, const SkRasterClip& clip,
|
||||
@ -97,8 +93,6 @@ void SkScan::FillXRect(const SkXRect& xr, const SkRasterClip& clip,
|
||||
FillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter());
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
|
||||
void SkScan::FillRect(const SkRect& r, const SkRasterClip& clip,
|
||||
SkBlitter* blitter) {
|
||||
if (clip.isEmpty() || r.isEmpty()) {
|
||||
@ -113,5 +107,3 @@ void SkScan::FillRect(const SkRect& r, const SkRasterClip& clip,
|
||||
SkAAClipBlitterWrapper wrapper(clip, blitter);
|
||||
FillRect(r, &wrapper.getRgn(), wrapper.getBlitter());
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -31,19 +31,8 @@ public:
|
||||
|
||||
static void FillIRect(const SkIRect&, const SkRasterClip&, SkBlitter*);
|
||||
static void FillXRect(const SkXRect&, const SkRasterClip&, SkBlitter*);
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
static void FillRect(const SkRect& rect, const SkRasterClip& clip,
|
||||
SkBlitter* blitter) {
|
||||
SkScan::FillXRect(*(const SkXRect*)&rect, clip, blitter);
|
||||
}
|
||||
static void AntiFillRect(const SkRect& rect, const SkRasterClip& clip,
|
||||
SkBlitter* blitter) {
|
||||
SkScan::AntiFillXRect(*(const SkXRect*)&rect, clip, blitter);
|
||||
}
|
||||
#else
|
||||
static void FillRect(const SkRect&, const SkRasterClip&, SkBlitter*);
|
||||
static void AntiFillRect(const SkRect&, const SkRasterClip&, SkBlitter*);
|
||||
#endif
|
||||
static void AntiFillXRect(const SkXRect&, const SkRasterClip&, SkBlitter*);
|
||||
static void FillPath(const SkPath&, const SkRasterClip&, SkBlitter*);
|
||||
static void AntiFillPath(const SkPath&, const SkRasterClip&, SkBlitter*);
|
||||
@ -67,19 +56,8 @@ private:
|
||||
|
||||
static void FillIRect(const SkIRect&, const SkRegion* clip, SkBlitter*);
|
||||
static void FillXRect(const SkXRect&, const SkRegion* clip, SkBlitter*);
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
static void FillRect(const SkRect& rect, const SkRegion* clip,
|
||||
SkBlitter* blitter) {
|
||||
SkScan::FillXRect(*(const SkXRect*)&rect, clip, blitter);
|
||||
}
|
||||
static void AntiFillRect(const SkRect& rect, const SkRegion* clip,
|
||||
SkBlitter* blitter) {
|
||||
SkScan::AntiFillXRect(*(const SkXRect*)&rect, clip, blitter);
|
||||
}
|
||||
#else
|
||||
static void FillRect(const SkRect&, const SkRegion* clip, SkBlitter*);
|
||||
static void AntiFillRect(const SkRect&, const SkRegion* clip, SkBlitter*);
|
||||
#endif
|
||||
static void AntiFillXRect(const SkXRect&, const SkRegion*, SkBlitter*);
|
||||
static void FillPath(const SkPath&, const SkRegion& clip, SkBlitter*);
|
||||
static void AntiFillPath(const SkPath&, const SkRegion& clip, SkBlitter*,
|
||||
|
@ -589,13 +589,8 @@ static int rect_overflows_short_shift(SkIRect rect, int shift) {
|
||||
}
|
||||
|
||||
static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
// the max-int (shifted) is exactly what we want to compare against, to know
|
||||
// if we can survive shifting our fixed-point coordinates
|
||||
const SkFixed maxScalar = maxInt;
|
||||
#else
|
||||
const SkScalar maxScalar = SkIntToScalar(maxInt);
|
||||
#endif
|
||||
|
||||
if (fitsInsideLimit(src, maxScalar)) {
|
||||
src.roundOut(dst);
|
||||
return true;
|
||||
|
@ -602,7 +602,6 @@ void SkScan::AntiHairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
|
||||
|
||||
SkPoint pts[2] = { pt0, pt1 };
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// We have to pre-clip the line to fit in a SkFixed, so we just chop
|
||||
// the line. TODO find a way to actually draw beyond that range.
|
||||
{
|
||||
@ -613,7 +612,6 @@ void SkScan::AntiHairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (clip) {
|
||||
SkRect clipBounds;
|
||||
@ -828,8 +826,6 @@ void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip,
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
|
||||
/* This guy takes a float-rect, but with the key improvement that it has
|
||||
already been clipped, so we know that it is safe to convert it into a
|
||||
XRect (fixedpoint), as it won't overflow.
|
||||
@ -888,8 +884,6 @@ void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip,
|
||||
}
|
||||
}
|
||||
|
||||
#endif // SK_SCALAR_IS_FLOAT
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define SkAlphaMulRound(a, b) SkMulDiv255Round(a, b)
|
||||
@ -902,11 +896,7 @@ static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) {
|
||||
}
|
||||
|
||||
static inline FDot8 SkScalarToFDot8(SkScalar x) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
return (int)(x * 256);
|
||||
#else
|
||||
return x >> 8;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int FDot8Floor(FDot8 x) {
|
||||
|
@ -47,7 +47,6 @@ void SkScan::HairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
|
||||
SkIRect clipR, ptsR;
|
||||
SkPoint pts[2] = { pt0, pt1 };
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// We have to pre-clip the line to fit in a SkFixed, so we just chop
|
||||
// the line. TODO find a way to actually draw beyond that range.
|
||||
{
|
||||
@ -58,7 +57,6 @@ void SkScan::HairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (clip) {
|
||||
// Perform a clip in scalar space, so we catch huge values which might
|
||||
|
@ -153,11 +153,7 @@ static void RoundJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnit
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#define kOneOverSqrt2 (0.707106781f)
|
||||
#else
|
||||
#define kOneOverSqrt2 (46341)
|
||||
#endif
|
||||
#define kOneOverSqrt2 (0.707106781f)
|
||||
|
||||
static void MiterJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
|
||||
const SkPoint& pivot, const SkVector& afterUnitNormal,
|
||||
|
@ -184,25 +184,12 @@ void SkArithmeticMode_scalar::toString(SkString* str) const {
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static bool fitsInBits(SkScalar x, int bits) {
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
x = SkAbs32(x);
|
||||
x += 1 << 7;
|
||||
x >>= 8;
|
||||
return x < (1 << (bits - 1));
|
||||
#else
|
||||
return SkScalarAbs(x) < (1 << (bits - 1));
|
||||
#endif
|
||||
}
|
||||
|
||||
#if 0 // UNUSED
|
||||
static int32_t toDot8(SkScalar x) {
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
x += 1 << 7;
|
||||
x >>= 8;
|
||||
return x;
|
||||
#else
|
||||
return (int32_t)(x * 256);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -52,178 +52,7 @@ void SkSweepGradient::flatten(SkFlattenableWriteBuffer& buffer) const {
|
||||
buffer.writePoint(fCenter);
|
||||
}
|
||||
|
||||
#ifndef SK_SCALAR_IS_FLOAT
|
||||
#ifdef COMPUTE_SWEEP_TABLE
|
||||
#define PI 3.14159265
|
||||
static bool gSweepTableReady;
|
||||
static uint8_t gSweepTable[65];
|
||||
|
||||
/* Our table stores precomputed values for atan: [0...1] -> [0..PI/4]
|
||||
We scale the results to [0..32]
|
||||
*/
|
||||
static const uint8_t* build_sweep_table() {
|
||||
if (!gSweepTableReady) {
|
||||
const int N = 65;
|
||||
const double DENOM = N - 1;
|
||||
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
double arg = i / DENOM;
|
||||
double v = atan(arg);
|
||||
int iv = (int)round(v * DENOM * 2 / PI);
|
||||
// printf("[%d] atan(%g) = %g %d\n", i, arg, v, iv);
|
||||
printf("%d, ", iv);
|
||||
gSweepTable[i] = iv;
|
||||
}
|
||||
gSweepTableReady = true;
|
||||
}
|
||||
return gSweepTable;
|
||||
}
|
||||
#else
|
||||
static const uint8_t gSweepTable[] = {
|
||||
0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9,
|
||||
10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18,
|
||||
19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26,
|
||||
26, 27, 27, 27, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32,
|
||||
32
|
||||
};
|
||||
static const uint8_t* build_sweep_table() { return gSweepTable; }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// divide numer/denom, with a bias of 6bits. Assumes numer <= denom
|
||||
// and denom != 0. Since our table is 6bits big (+1), this is a nice fit.
|
||||
// Same as (but faster than) SkFixedDiv(numer, denom) >> 10
|
||||
|
||||
//unsigned div_64(int numer, int denom);
|
||||
#ifndef SK_SCALAR_IS_FLOAT
|
||||
static unsigned div_64(int numer, int denom) {
|
||||
SkASSERT(numer <= denom);
|
||||
SkASSERT(numer > 0);
|
||||
SkASSERT(denom > 0);
|
||||
|
||||
int nbits = SkCLZ(numer);
|
||||
int dbits = SkCLZ(denom);
|
||||
int bits = 6 - nbits + dbits;
|
||||
SkASSERT(bits <= 6);
|
||||
|
||||
if (bits < 0) { // detect underflow
|
||||
return 0;
|
||||
}
|
||||
|
||||
denom <<= dbits - 1;
|
||||
numer <<= nbits - 1;
|
||||
|
||||
unsigned result = 0;
|
||||
|
||||
// do the first one
|
||||
if ((numer -= denom) >= 0) {
|
||||
result = 1;
|
||||
} else {
|
||||
numer += denom;
|
||||
}
|
||||
|
||||
// Now fall into our switch statement if there are more bits to compute
|
||||
if (bits > 0) {
|
||||
// make room for the rest of the answer bits
|
||||
result <<= bits;
|
||||
switch (bits) {
|
||||
case 6:
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 32;
|
||||
else
|
||||
numer += denom;
|
||||
case 5:
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 16;
|
||||
else
|
||||
numer += denom;
|
||||
case 4:
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 8;
|
||||
else
|
||||
numer += denom;
|
||||
case 3:
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 4;
|
||||
else
|
||||
numer += denom;
|
||||
case 2:
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 2;
|
||||
else
|
||||
numer += denom;
|
||||
case 1:
|
||||
default: // not strictly need, but makes GCC make better ARM code
|
||||
if ((numer = (numer << 1) - denom) >= 0)
|
||||
result |= 1;
|
||||
else
|
||||
numer += denom;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Given x,y in the first quadrant, return 0..63 for the angle [0..90]
|
||||
#ifndef SK_SCALAR_IS_FLOAT
|
||||
static unsigned atan_0_90(SkFixed y, SkFixed x) {
|
||||
#ifdef SK_DEBUG
|
||||
{
|
||||
static bool gOnce;
|
||||
if (!gOnce) {
|
||||
gOnce = true;
|
||||
SkASSERT(div_64(55, 55) == 64);
|
||||
SkASSERT(div_64(128, 256) == 32);
|
||||
SkASSERT(div_64(2326528, 4685824) == 31);
|
||||
SkASSERT(div_64(753664, 5210112) == 9);
|
||||
SkASSERT(div_64(229376, 4882432) == 3);
|
||||
SkASSERT(div_64(2, 64) == 2);
|
||||
SkASSERT(div_64(1, 64) == 1);
|
||||
// test that we handle underflow correctly
|
||||
SkASSERT(div_64(12345, 0x54321234) == 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
SkASSERT(y > 0 && x > 0);
|
||||
const uint8_t* table = build_sweep_table();
|
||||
|
||||
unsigned result;
|
||||
bool swap = (x < y);
|
||||
if (swap) {
|
||||
// first part of the atan(v) = PI/2 - atan(1/v) identity
|
||||
// since our div_64 and table want v <= 1, where v = y/x
|
||||
SkTSwap<SkFixed>(x, y);
|
||||
}
|
||||
|
||||
result = div_64(y, x);
|
||||
|
||||
#ifdef SK_DEBUG
|
||||
{
|
||||
unsigned result2 = SkDivBits(y, x, 6);
|
||||
SkASSERT(result2 == result ||
|
||||
(result == 1 && result2 == 0));
|
||||
}
|
||||
#endif
|
||||
|
||||
SkASSERT(result < SK_ARRAY_COUNT(gSweepTable));
|
||||
result = table[result];
|
||||
|
||||
if (swap) {
|
||||
// complete the atan(v) = PI/2 - atan(1/v) identity
|
||||
result = 64 - result;
|
||||
// pin to 63
|
||||
result -= result >> 6;
|
||||
}
|
||||
|
||||
SkASSERT(result <= 63);
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
// returns angle in a circle [0..2PI) -> [0..255]
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static unsigned SkATan2_255(float y, float x) {
|
||||
// static const float g255Over2PI = 255 / (2 * SK_ScalarPI);
|
||||
static const float g255Over2PI = 40.584510488433314f;
|
||||
@ -239,62 +68,6 @@ static unsigned SkATan2_255(float y, float x) {
|
||||
SkASSERT(ir >= 0 && ir <= 255);
|
||||
return ir;
|
||||
}
|
||||
#else
|
||||
static unsigned SkATan2_255(SkFixed y, SkFixed x) {
|
||||
if (x == 0) {
|
||||
if (y == 0) {
|
||||
return 0;
|
||||
}
|
||||
return y < 0 ? 192 : 64;
|
||||
}
|
||||
if (y == 0) {
|
||||
return x < 0 ? 128 : 0;
|
||||
}
|
||||
|
||||
/* Find the right quadrant for x,y
|
||||
Since atan_0_90 only handles the first quadrant, we rotate x,y
|
||||
appropriately before calling it, and then add the right amount
|
||||
to account for the real quadrant.
|
||||
quadrant 0 : add 0 | x > 0 && y > 0
|
||||
quadrant 1 : add 64 (90 degrees) | x < 0 && y > 0
|
||||
quadrant 2 : add 128 (180 degrees) | x < 0 && y < 0
|
||||
quadrant 3 : add 192 (270 degrees) | x > 0 && y < 0
|
||||
|
||||
map x<0 to (1 << 6)
|
||||
map y<0 to (3 << 6)
|
||||
add = map_x ^ map_y
|
||||
*/
|
||||
int xsign = x >> 31;
|
||||
int ysign = y >> 31;
|
||||
int add = ((-xsign) ^ (ysign & 3)) << 6;
|
||||
|
||||
#ifdef SK_DEBUG
|
||||
if (0 == add)
|
||||
SkASSERT(x > 0 && y > 0);
|
||||
else if (64 == add)
|
||||
SkASSERT(x < 0 && y > 0);
|
||||
else if (128 == add)
|
||||
SkASSERT(x < 0 && y < 0);
|
||||
else if (192 == add)
|
||||
SkASSERT(x > 0 && y < 0);
|
||||
else
|
||||
SkDEBUGFAIL("bad value for add");
|
||||
#endif
|
||||
|
||||
/* This ^ trick makes x, y positive, and the swap<> handles quadrants
|
||||
where we need to rotate x,y by 90 or -90
|
||||
*/
|
||||
x = (x ^ xsign) - xsign;
|
||||
y = (y ^ ysign) - ysign;
|
||||
if (add & 64) { // quads 1 or 3 need to swap x,y
|
||||
SkTSwap<SkFixed>(x, y);
|
||||
}
|
||||
|
||||
unsigned result = add + atan_0_90(y, x);
|
||||
SkASSERT(result < 256);
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
void SkSweepGradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
|
||||
int count) {
|
||||
|
@ -300,19 +300,10 @@ int num_quad_subdivs(const SkPoint p[3]) {
|
||||
// = log4(d*d/tol*tol)/2
|
||||
// = log2(d*d/tol*tol)
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// +1 since we're ignoring the mantissa contribution.
|
||||
int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
|
||||
log = GrMin(GrMax(0, log), kMaxSub);
|
||||
return log;
|
||||
#else
|
||||
SkScalar log = SkScalarLog(
|
||||
SkScalarDiv(dsqd,
|
||||
SkScalarMul(gSubdivTol, gSubdivTol)));
|
||||
static const SkScalar conv = SkScalarInvert(SkScalarLog(2));
|
||||
log = SkScalarMul(log, conv);
|
||||
return GrMin(GrMax(0, SkScalarCeilToInt(log)),kMaxSub);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -187,9 +187,6 @@ int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
|
||||
}
|
||||
|
||||
void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
|
||||
#ifndef SK_SCALAR_IS_FLOAT
|
||||
GrCrash("Expected scalar is float.");
|
||||
#endif
|
||||
SkMatrix m;
|
||||
// We want M such that M * xy_pt = uv_pt
|
||||
// We know M * control_pts = [0 1/2 1]
|
||||
|
@ -87,9 +87,6 @@ static const bool kIsWrapped = false; // The constructor creates the GL path obj
|
||||
|
||||
GrGLPath::GrGLPath(GrGpuGL* gpu, const SkPath& path, const SkStrokeRec& stroke)
|
||||
: INHERITED(gpu, kIsWrapped, path, stroke) {
|
||||
#ifndef SK_SCALAR_IS_FLOAT
|
||||
GrCrash("Assumes scalar is float.");
|
||||
#endif
|
||||
SkASSERT(!path.isEmpty());
|
||||
|
||||
GL_CALL_RET(fPathID, GenPaths(1));
|
||||
|
@ -233,7 +233,6 @@ void GrGLUniformManager::setMatrix4fv(UniformHandle u,
|
||||
}
|
||||
|
||||
void GrGLUniformManager::setSkMatrix(UniformHandle u, const SkMatrix& matrix) const {
|
||||
// GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
|
||||
GrGLfloat mt[] = {
|
||||
matrix.get(SkMatrix::kMScaleX),
|
||||
matrix.get(SkMatrix::kMSkewY),
|
||||
|
@ -140,12 +140,6 @@ void SkPDFScalar::Append(SkScalar value, SkWStream* stream) {
|
||||
// When using floats that are outside the whole value range, we can use
|
||||
// integers instead.
|
||||
|
||||
|
||||
#if defined(SK_SCALAR_IS_FIXED)
|
||||
stream->writeScalarAsText(value);
|
||||
return;
|
||||
#endif // SK_SCALAR_IS_FIXED
|
||||
|
||||
#if !defined(SK_ALLOW_LARGE_PDF_SCALARS)
|
||||
if (value > 32767 || value < -32767) {
|
||||
stream->writeDecAsText(SkScalarRound(value));
|
||||
@ -158,7 +152,7 @@ void SkPDFScalar::Append(SkScalar value, SkWStream* stream) {
|
||||
return;
|
||||
#endif // !SK_ALLOW_LARGE_PDF_SCALARS
|
||||
|
||||
#if defined(SK_SCALAR_IS_FLOAT) && defined(SK_ALLOW_LARGE_PDF_SCALARS)
|
||||
#if defined(SK_ALLOW_LARGE_PDF_SCALARS)
|
||||
// Floats have 24bits of significance, so anything outside that range is
|
||||
// no more precise than an int. (Plus PDF doesn't support scientific
|
||||
// notation, so this clamps to SK_Max/MinS32).
|
||||
@ -185,7 +179,7 @@ void SkPDFScalar::Append(SkScalar value, SkWStream* stream) {
|
||||
}
|
||||
stream->writeText(buffer);
|
||||
return;
|
||||
#endif // SK_SCALAR_IS_FLOAT && SK_ALLOW_LARGE_PDF_SCALARS
|
||||
#endif // SK_ALLOW_LARGE_PDF_SCALARS
|
||||
}
|
||||
|
||||
SkPDFString::SkPDFString(const char value[])
|
||||
|
@ -14,12 +14,7 @@
|
||||
|
||||
// HB_Fixed is a 26.6 fixed point format.
|
||||
static inline HB_Fixed SkScalarToHarfbuzzFixed(SkScalar value) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
return static_cast<HB_Fixed>(value * 64);
|
||||
#else
|
||||
// convert .16 to .6
|
||||
return value >> (16 - 6);
|
||||
#endif
|
||||
}
|
||||
|
||||
static HB_Bool stringToGlyphs(HB_Font hbFont, const HB_UChar16* characters,
|
||||
|
@ -12,7 +12,6 @@
|
||||
static SkScalar SkScalarDotDiv(int count, const SkScalar a[], int step_a,
|
||||
const SkScalar b[], int step_b,
|
||||
SkScalar denom) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float prod = 0;
|
||||
for (int i = 0; i < count; i++) {
|
||||
prod += a[0] * b[0];
|
||||
@ -20,24 +19,10 @@ static SkScalar SkScalarDotDiv(int count, const SkScalar a[], int step_a,
|
||||
b += step_b;
|
||||
}
|
||||
return prod / denom;
|
||||
#else
|
||||
Sk64 prod, tmp;
|
||||
|
||||
prod.set(0);
|
||||
for (int i = 0; i < count; i++) {
|
||||
tmp.setMul(a[0], b[0]);
|
||||
prod.add(tmp);
|
||||
a += step_a;
|
||||
b += step_b;
|
||||
}
|
||||
prod.div(denom, Sk64::kRound_DivOption);
|
||||
return prod.get32();
|
||||
#endif
|
||||
}
|
||||
|
||||
static SkScalar SkScalarDot(int count, const SkScalar a[], int step_a,
|
||||
const SkScalar b[], int step_b) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float prod = 0;
|
||||
for (int i = 0; i < count; i++) {
|
||||
prod += a[0] * b[0];
|
||||
@ -45,24 +30,11 @@ static SkScalar SkScalarDot(int count, const SkScalar a[], int step_a,
|
||||
b += step_b;
|
||||
}
|
||||
return prod;
|
||||
#else
|
||||
Sk64 prod, tmp;
|
||||
|
||||
prod.set(0);
|
||||
for (int i = 0; i < count; i++) {
|
||||
tmp.setMul(a[0], b[0]);
|
||||
prod.add(tmp);
|
||||
a += step_a;
|
||||
b += step_b;
|
||||
}
|
||||
return prod.getFixed();
|
||||
#endif
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
SkUnitScalar SkPoint3D::normalize(SkUnit3D* unit) const {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float mag = sk_float_sqrt(fX*fX + fY*fY + fZ*fZ);
|
||||
if (mag) {
|
||||
float scale = 1.0f / mag;
|
||||
@ -72,26 +44,6 @@ SkUnitScalar SkPoint3D::normalize(SkUnit3D* unit) const {
|
||||
} else {
|
||||
unit->fX = unit->fY = unit->fZ = 0;
|
||||
}
|
||||
#else
|
||||
Sk64 tmp1, tmp2;
|
||||
|
||||
tmp1.setMul(fX, fX);
|
||||
tmp2.setMul(fY, fY);
|
||||
tmp1.add(tmp2);
|
||||
tmp2.setMul(fZ, fZ);
|
||||
tmp1.add(tmp2);
|
||||
|
||||
SkFixed mag = tmp1.getSqrt();
|
||||
if (mag) {
|
||||
// what if mag < SK_Fixed1 ??? we will underflow the fixdiv
|
||||
SkFixed scale = SkFixedDiv(SK_Fract1, mag);
|
||||
unit->fX = SkFixedMul(fX, scale);
|
||||
unit->fY = SkFixedMul(fY, scale);
|
||||
unit->fZ = SkFixedMul(fZ, scale);
|
||||
} else {
|
||||
unit->fX = unit->fY = unit->fZ = 0;
|
||||
}
|
||||
#endif
|
||||
return mag;
|
||||
}
|
||||
|
||||
|
@ -155,11 +155,7 @@ void SkInterpolator::reset(int elemCount, int frameCount) {
|
||||
#define SK_Fixed2Third (SK_Fixed1*2/3)
|
||||
|
||||
static const SkScalar gIdentityBlend[4] = {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
|
||||
#else
|
||||
SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third
|
||||
#endif
|
||||
};
|
||||
|
||||
bool SkInterpolator::setKeyFrame(int index, SkMSec time,
|
||||
|
@ -201,7 +201,7 @@ const char* SkParse::FindMSec(const char str[], SkMSec* value)
|
||||
const char* SkParse::FindScalar(const char str[], SkScalar* value) {
|
||||
SkASSERT(str);
|
||||
str = skip_ws(str);
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
|
||||
char* stop;
|
||||
float v = (float)strtod(str, &stop);
|
||||
if (str == stop) {
|
||||
@ -211,49 +211,6 @@ const char* SkParse::FindScalar(const char str[], SkScalar* value) {
|
||||
*value = v;
|
||||
}
|
||||
return stop;
|
||||
#else
|
||||
int sign = 0;
|
||||
if (*str == '-')
|
||||
{
|
||||
sign = -1;
|
||||
str += 1;
|
||||
}
|
||||
|
||||
if (!is_digit(*str) && *str != '.')
|
||||
return NULL;
|
||||
|
||||
int n = 0;
|
||||
while (is_digit(*str))
|
||||
{
|
||||
n = 10*n + *str - '0';
|
||||
if (n > 0x7FFF)
|
||||
return NULL;
|
||||
str += 1;
|
||||
}
|
||||
n <<= 16;
|
||||
|
||||
if (*str == '.')
|
||||
{
|
||||
static const int gFractions[] = { (1 << 24) / 10, (1 << 24) / 100, (1 << 24) / 1000,
|
||||
(1 << 24) / 10000, (1 << 24) / 100000 };
|
||||
str += 1;
|
||||
int d = 0;
|
||||
const int* fraction = gFractions;
|
||||
const int* end = &fraction[SK_ARRAY_COUNT(gFractions)];
|
||||
while (is_digit(*str) && fraction < end)
|
||||
d += (*str++ - '0') * *fraction++;
|
||||
d += 0x80; // round
|
||||
n += d >> 8;
|
||||
}
|
||||
while (is_digit(*str))
|
||||
str += 1;
|
||||
if (value)
|
||||
{
|
||||
n = (n ^ sign) - sign; // apply the sign
|
||||
*value = SkFixedToScalar(n);
|
||||
}
|
||||
#endif
|
||||
return str;
|
||||
}
|
||||
|
||||
const char* SkParse::FindScalars(const char str[], SkScalar value[], int count)
|
||||
|
@ -188,7 +188,6 @@ bool SkParsePath::FromSVGString(const char data[], SkPath* result) {
|
||||
#include "SkStream.h"
|
||||
|
||||
static void write_scalar(SkWStream* stream, SkScalar value) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
char buffer[64];
|
||||
#ifdef SK_BUILD_FOR_WIN32
|
||||
int len = _snprintf(buffer, sizeof(buffer), "%g", value);
|
||||
@ -196,10 +195,6 @@ static void write_scalar(SkWStream* stream, SkScalar value) {
|
||||
int len = snprintf(buffer, sizeof(buffer), "%g", value);
|
||||
#endif
|
||||
char* stop = buffer + len;
|
||||
#else
|
||||
char buffer[SkStrAppendScalar_MaxSize];
|
||||
char* stop = SkStrAppendScalar(buffer, value);
|
||||
#endif
|
||||
stream->write(buffer, stop - buffer);
|
||||
}
|
||||
|
||||
|
@ -277,11 +277,7 @@ JSBool SkJSDisplayable::GetProperty(JSContext *cx, JSObject *obj, jsval id,
|
||||
if (SkScalarFraction(scalar) == 0)
|
||||
*vp = INT_TO_JSVAL(SkScalarFloor(scalar));
|
||||
else
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
*vp = DOUBLE_TO_JSVAL(scalar);
|
||||
#else
|
||||
*vp = DOUBLE_TO_JSVAL(scalar / 65536.0f );
|
||||
#endif
|
||||
break;
|
||||
case SkType_String:
|
||||
str = JS_NewStringCopyN(cx, string->c_str(), string->size());
|
||||
@ -323,11 +319,7 @@ JSBool SkJSDisplayable::SetProperty(JSContext *cx, JSObject *obj, jsval id, jsva
|
||||
scalar = SkIntToScalar(JSVAL_TO_INT(value));
|
||||
else {
|
||||
SkASSERT(JSVAL_IS_DOUBLE(value));
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
scalar = (float) *(double*) JSVAL_TO_DOUBLE(value);
|
||||
#else
|
||||
scalar = (SkFixed) (*(double*)JSVAL_TO_DOUBLE(value) * 65536.0);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
case SkType_String:
|
||||
|
@ -309,9 +309,7 @@ void SkXMLStreamWriter::UnitTest()
|
||||
w.addAttribute("hello", "world");
|
||||
w.addS32Attribute("dec", 42);
|
||||
w.addHexAttribute("hex", 0x42, 3);
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
w.addScalarAttribute("scalar", -4.2f);
|
||||
#endif
|
||||
w.startElement("elem1");
|
||||
w.endElement();
|
||||
w.startElement("elem1");
|
||||
|
@ -241,7 +241,6 @@ static void test_wacky_bitmapshader(skiatest::Reporter* reporter,
|
||||
* memory allocation limit).
|
||||
*/
|
||||
static void test_giantrepeat_crbug118018(skiatest::Reporter* reporter) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static const struct {
|
||||
int fWidth;
|
||||
int fHeight;
|
||||
@ -258,7 +257,6 @@ static void test_giantrepeat_crbug118018(skiatest::Reporter* reporter) {
|
||||
gTests[i].fWidth, gTests[i].fHeight,
|
||||
gTests[i].fExpectedToDraw);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -181,7 +181,6 @@ static void test_inversepathwithclip() {
|
||||
}
|
||||
|
||||
static void test_bug533() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
/*
|
||||
http://code.google.com/p/skia/issues/detail?id=533
|
||||
This particular test/bug only applies to the float case, where the
|
||||
@ -196,7 +195,6 @@ static void test_bug533() {
|
||||
|
||||
SkAutoTUnref<SkCanvas> canvas(new_canvas(640, 480));
|
||||
canvas.get()->drawPath(path, paint);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void test_crbug_140642() {
|
||||
@ -215,14 +213,11 @@ static void test_crbug_140642() {
|
||||
stroke-dashoffset="-248.135982067">
|
||||
*/
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
const SkScalar vals[] = { 27734, 35660, 2157846850.0f, 247 };
|
||||
SkDashPathEffect dontAssert(vals, 4, -248.135982067f);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void test_crbug_124652() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
/*
|
||||
http://code.google.com/p/chromium/issues/detail?id=124652
|
||||
This particular test/bug only applies to the float case, where
|
||||
@ -231,11 +226,9 @@ static void test_crbug_124652() {
|
||||
SkScalar intervals[2] = {837099584, 33450};
|
||||
SkAutoTUnref<SkDashPathEffect> dash(
|
||||
new SkDashPathEffect(intervals, 2, -10, false));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void test_bigcubic() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkPath path;
|
||||
path.moveTo(64, 3);
|
||||
path.cubicTo(-329936, -100000000, -329936, 100000000, 1153, 330003);
|
||||
@ -245,7 +238,6 @@ static void test_bigcubic() {
|
||||
|
||||
SkAutoTUnref<SkCanvas> canvas(new_canvas(640, 480));
|
||||
canvas.get()->drawPath(path, paint);
|
||||
#endif
|
||||
}
|
||||
|
||||
// we used to assert if the bounds of the device (clip) was larger than 32K
|
||||
|
@ -10,11 +10,9 @@
|
||||
#include "SkRandom.h"
|
||||
#include "SkRect.h"
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static float make_zero() {
|
||||
return sk_float_sin(0);
|
||||
}
|
||||
#endif
|
||||
|
||||
struct RectCenter {
|
||||
SkIRect fRect;
|
||||
@ -59,14 +57,9 @@ static void check_invalid(skiatest::Reporter* reporter,
|
||||
// Tests that isFinite() will reject any rect with +/-inf values
|
||||
// as one of its coordinates.
|
||||
DEF_TEST(InfRect, reporter) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float inf = 1 / make_zero(); // infinity
|
||||
float nan = inf * 0;
|
||||
SkASSERT(!(nan == nan));
|
||||
#else
|
||||
SkFixed inf = SK_FixedNaN;
|
||||
SkFixed nan = SK_FixedNaN;
|
||||
#endif
|
||||
SkScalar small = SkIntToScalar(10);
|
||||
SkScalar big = SkIntToScalar(100);
|
||||
|
||||
|
@ -328,14 +328,11 @@ static void unittest_fastfloat(skiatest::Reporter* reporter) {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static float make_zero() {
|
||||
return sk_float_sin(0);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void unittest_isfinite(skiatest::Reporter* reporter) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
float nan = sk_float_asin(2);
|
||||
float inf = 1.0f / make_zero();
|
||||
float big = 3.40282e+038f;
|
||||
@ -344,10 +341,6 @@ static void unittest_isfinite(skiatest::Reporter* reporter) {
|
||||
REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
|
||||
REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
|
||||
REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
|
||||
#else
|
||||
SkFixed nan = SK_FixedNaN;
|
||||
SkFixed big = SK_FixedMax;
|
||||
#endif
|
||||
|
||||
REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
|
||||
REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
|
||||
@ -607,37 +600,7 @@ DEF_TEST(Math, reporter) {
|
||||
REPORTER_ASSERT(reporter, xr == check || xr == check-1);
|
||||
}
|
||||
|
||||
#if !defined(SK_SCALAR_IS_FLOAT)
|
||||
{
|
||||
SkFixed s, c;
|
||||
s = SkFixedSinCos(0, &c);
|
||||
REPORTER_ASSERT(reporter, s == 0);
|
||||
REPORTER_ASSERT(reporter, c == SK_Fixed1);
|
||||
}
|
||||
|
||||
int maxDiff = 0;
|
||||
for (i = 0; i < 1000; i++) {
|
||||
SkFixed rads = rand.nextS() >> 10;
|
||||
double frads = SkFixedToFloat(rads);
|
||||
|
||||
SkFixed s, c;
|
||||
s = SkScalarSinCos(rads, &c);
|
||||
|
||||
double fs = sin(frads);
|
||||
double fc = cos(frads);
|
||||
|
||||
SkFixed is = SkFloatToFixed(fs);
|
||||
SkFixed ic = SkFloatToFixed(fc);
|
||||
|
||||
maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
|
||||
maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
|
||||
}
|
||||
SkDebugf("SinCos: maximum error = %d\n", maxDiff);
|
||||
#endif
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
test_blend(reporter);
|
||||
#endif
|
||||
|
||||
if (false) test_floor(reporter);
|
||||
|
||||
|
@ -24,14 +24,7 @@ static bool nearly_equal_mscalar(SkMScalar a, SkMScalar b) {
|
||||
}
|
||||
|
||||
static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
|
||||
// Note that we get more compounded error for multiple operations when
|
||||
// SK_SCALAR_IS_FIXED.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
const SkScalar tolerance = SK_Scalar1 / 200000;
|
||||
#else
|
||||
const SkScalar tolerance = SK_Scalar1 / 1024;
|
||||
#endif
|
||||
|
||||
return SkScalarAbs(a - b) <= tolerance;
|
||||
}
|
||||
|
||||
|
@ -13,14 +13,7 @@
|
||||
#include "SkRandom.h"
|
||||
|
||||
static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
|
||||
// Note that we get more compounded error for multiple operations when
|
||||
// SK_SCALAR_IS_FIXED.
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
const SkScalar tolerance = SK_Scalar1 / 200000;
|
||||
#else
|
||||
const SkScalar tolerance = SK_Scalar1 / 1024;
|
||||
#endif
|
||||
|
||||
return SkScalarAbs(a - b) <= tolerance;
|
||||
}
|
||||
|
||||
@ -40,7 +33,6 @@ static bool are_equal(skiatest::Reporter* reporter,
|
||||
bool equal = a == b;
|
||||
bool cheapEqual = a.cheapEqualTo(b);
|
||||
if (equal != cheapEqual) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
if (equal) {
|
||||
bool foundZeroSignDiff = false;
|
||||
for (int i = 0; i < 9; ++i) {
|
||||
@ -70,9 +62,6 @@ static bool are_equal(skiatest::Reporter* reporter,
|
||||
}
|
||||
REPORTER_ASSERT(reporter, foundNaN);
|
||||
}
|
||||
#else
|
||||
REPORTER_ASSERT(reporter, false);
|
||||
#endif
|
||||
}
|
||||
return equal;
|
||||
}
|
||||
@ -299,16 +288,6 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
||||
mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
|
||||
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
/* We bypass the following tests for SK_SCALAR_IS_FIXED build.
|
||||
* The long discussion can be found in this issue:
|
||||
* http://codereview.appspot.com/5999050/
|
||||
* In short, we haven't found a perfect way to fix the precision
|
||||
* issue, i.e. the way we use tolerance in isSimilarityTransformation
|
||||
* is incorrect. The situation becomes worse in fixed build, so
|
||||
* we disabled rotation related tests for fixed build.
|
||||
*/
|
||||
|
||||
// rotate
|
||||
for (int angle = 0; angle < 360; ++angle) {
|
||||
mat.reset();
|
||||
@ -340,7 +319,6 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
||||
mat.setRotate(SkIntToScalar(30));
|
||||
mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
|
||||
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
||||
#endif
|
||||
|
||||
// all zero
|
||||
mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
||||
@ -800,12 +778,7 @@ DEF_TEST(Matrix, reporter) {
|
||||
mat.reset();
|
||||
mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
|
||||
mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
|
||||
// fixed pt doesn't have the property that NaN does not equal itself.
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
|
||||
#else
|
||||
REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
|
||||
#endif
|
||||
|
||||
test_matrix_min_max_stretch(reporter);
|
||||
test_matrix_is_similarity(reporter);
|
||||
|
@ -353,7 +353,6 @@ DEF_TEST(PDFPrimitives, reporter) {
|
||||
SkAutoTUnref<SkPDFScalar> realHalf(new SkPDFScalar(SK_ScalarHalf));
|
||||
SimpleCheckObjectOutput(reporter, realHalf.get(), "0.5");
|
||||
|
||||
#if defined(SK_SCALAR_IS_FLOAT)
|
||||
SkAutoTUnref<SkPDFScalar> bigScalar(new SkPDFScalar(110999.75f));
|
||||
#if !defined(SK_ALLOW_LARGE_PDF_SCALARS)
|
||||
SimpleCheckObjectOutput(reporter, bigScalar.get(), "111000");
|
||||
@ -365,7 +364,6 @@ DEF_TEST(PDFPrimitives, reporter) {
|
||||
|
||||
SkAutoTUnref<SkPDFScalar> smallestScalar(new SkPDFScalar(1.0/65536));
|
||||
SimpleCheckObjectOutput(reporter, smallestScalar.get(), "0.00001526");
|
||||
#endif
|
||||
#endif
|
||||
|
||||
SkAutoTUnref<SkPDFString> stringSimple(
|
||||
|
@ -10,7 +10,6 @@
|
||||
#include "SkPathMeasure.h"
|
||||
|
||||
static void test_small_segment3() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkPath path;
|
||||
const SkPoint pts[] = {
|
||||
{ 0, 0 },
|
||||
@ -25,11 +24,9 @@ static void test_small_segment3() {
|
||||
|
||||
SkPathMeasure meas(path, false);
|
||||
meas.getLength();
|
||||
#endif
|
||||
}
|
||||
|
||||
static void test_small_segment2() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkPath path;
|
||||
const SkPoint pts[] = {
|
||||
{ 0, 0 },
|
||||
@ -43,11 +40,9 @@ static void test_small_segment2() {
|
||||
}
|
||||
SkPathMeasure meas(path, false);
|
||||
meas.getLength();
|
||||
#endif
|
||||
}
|
||||
|
||||
static void test_small_segment() {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
SkPath path;
|
||||
const SkPoint pts[] = {
|
||||
{ 100000, 100000},
|
||||
@ -77,7 +72,6 @@ static void test_small_segment() {
|
||||
because distance >>> d.
|
||||
*/
|
||||
meas.getLength();
|
||||
#endif
|
||||
}
|
||||
|
||||
DEF_TEST(PathMeasure, reporter) {
|
||||
|
@ -830,7 +830,6 @@ static void test_direction(skiatest::Reporter* reporter) {
|
||||
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction);
|
||||
check_direction(reporter, path, SkPath::kCCW_Direction);
|
||||
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
// triangle with one point really far from the origin.
|
||||
path.reset();
|
||||
// the first point is roughly 1.05e10, 1.05e10
|
||||
@ -838,7 +837,6 @@ static void test_direction(skiatest::Reporter* reporter) {
|
||||
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
|
||||
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
|
||||
check_direction(reporter, path, SkPath::kCCW_Direction);
|
||||
#endif
|
||||
|
||||
path.reset();
|
||||
path.conicTo(20, 0, 20, 20, 0.5f);
|
||||
|
@ -20,7 +20,6 @@ struct PointSet {
|
||||
};
|
||||
|
||||
static void test_isRectFinite(skiatest::Reporter* reporter) {
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
static const SkPoint gF0[] = {
|
||||
{ 0, 0 }, { 1, 1 }
|
||||
};
|
||||
@ -61,7 +60,6 @@ static void test_isRectFinite(skiatest::Reporter* reporter) {
|
||||
bool rectIsFinite = !r.isEmpty();
|
||||
REPORTER_ASSERT(reporter, gSets[i].fIsFinite == rectIsFinite);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool isFinite_int(float x) {
|
||||
|
@ -157,7 +157,6 @@ DEF_TEST(String, reporter) {
|
||||
{ SK_Scalar1, "1" },
|
||||
{ -SK_Scalar1, "-1" },
|
||||
{ SK_Scalar1/2, "0.5" },
|
||||
#ifdef SK_SCALAR_IS_FLOAT
|
||||
#ifdef SK_BUILD_FOR_WIN
|
||||
{ 3.4028234e38f, "3.4028235e+038" },
|
||||
{ -3.4028234e38f, "-3.4028235e+038" },
|
||||
@ -165,7 +164,6 @@ DEF_TEST(String, reporter) {
|
||||
{ 3.4028234e38f, "3.4028235e+38" },
|
||||
{ -3.4028234e38f, "-3.4028235e+38" },
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); i++) {
|
||||
a.reset();
|
||||
|
@ -297,7 +297,7 @@ struct CanvasConfig {
|
||||
static const CanvasConfig gCanvasConfigs[] = {
|
||||
{kRaster_DevType, true},
|
||||
{kRaster_DevType, false},
|
||||
#if SK_SUPPORT_GPU && defined(SK_SCALAR_IS_FLOAT)
|
||||
#if SK_SUPPORT_GPU
|
||||
{kGpu_BottomLeft_DevType, true}, // row bytes has no meaning on gpu devices
|
||||
{kGpu_TopLeft_DevType, true}, // row bytes has no meaning on gpu devices
|
||||
#endif
|
||||
|
@ -195,11 +195,6 @@ int tool_main(int argc, char** argv) {
|
||||
header.append(" SK_DEBUG");
|
||||
#else
|
||||
header.append(" SK_RELEASE");
|
||||
#endif
|
||||
#ifdef SK_SCALAR_IS_FIXED
|
||||
header.append(" SK_SCALAR_IS_FIXED");
|
||||
#else
|
||||
header.append(" SK_SCALAR_IS_FLOAT");
|
||||
#endif
|
||||
header.appendf(" skia_arch_width=%d", (int)sizeof(void*) * 8);
|
||||
SkDebugf("%s\n", header.c_str());
|
||||
|
Loading…
Reference in New Issue
Block a user