Cleanup of r2830.

git-svn-id: http://skia.googlecode.com/svn/trunk@2841 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
bsalomon@google.com 2011-12-09 15:55:34 +00:00
parent b6e161937b
commit 8f9cbd62ec
14 changed files with 1070 additions and 951 deletions

View File

@ -602,8 +602,8 @@ void add_line(const SkPoint p[2],
}
bool GrAAHairLinePathRenderer::createGeom(GrDrawState::StageMask stageMask) {
int rtHeight = fTarget->getRenderTarget()->height();
const GrDrawState& drawState = fTarget->getDrawState();
int rtHeight = drawState.getRenderTarget()->height();
GrIRect clip;
if (fTarget->getClip().hasConservativeBounds()) {
@ -617,7 +617,7 @@ bool GrAAHairLinePathRenderer::createGeom(GrDrawState::StageMask stageMask) {
// have changed since last previous path draw then we can reuse the
// previous geoemtry.
if (stageMask == fPreviousStages &&
fPreviousViewMatrix == fTarget->getViewMatrix() &&
fPreviousViewMatrix == drawState.getViewMatrix() &&
fPreviousTranslate == fTranslate &&
rtHeight == fPreviousRTHeight &&
fClipRect == clip) {
@ -631,7 +631,7 @@ bool GrAAHairLinePathRenderer::createGeom(GrDrawState::StageMask stageMask) {
}
}
GrMatrix viewM = fTarget->getViewMatrix();
GrMatrix viewM = drawState.getViewMatrix();
PREALLOC_PTARRAY(128) lines;
PREALLOC_PTARRAY(128) quads;
@ -672,7 +672,7 @@ bool GrAAHairLinePathRenderer::createGeom(GrDrawState::StageMask stageMask) {
}
fPreviousStages = stageMask;
fPreviousViewMatrix = fTarget->getViewMatrix();
fPreviousViewMatrix = drawState.getViewMatrix();
fPreviousRTHeight = rtHeight;
fClipRect = clip;
fPreviousTranslate = fTranslate;
@ -685,14 +685,16 @@ void GrAAHairLinePathRenderer::drawPath(GrDrawState::StageMask stageMask) {
return;
}
GrDrawState* drawState = fTarget->drawState();
GrDrawTarget::AutoStateRestore asr;
if (!fTarget->getViewMatrix().hasPerspective()) {
if (!drawState->getViewMatrix().hasPerspective()) {
asr.set(fTarget);
GrMatrix ivm;
if (fTarget->getViewInverse(&ivm)) {
fTarget->preConcatSamplerMatrices(stageMask, ivm);
if (drawState->getViewInverse(&ivm)) {
drawState->preConcatSamplerMatrices(stageMask, ivm);
}
fTarget->setViewMatrix(GrMatrix::I());
drawState->setViewMatrix(GrMatrix::I());
}
// TODO: See whether rendering lines as degenerate quads improves perf
@ -702,7 +704,7 @@ void GrAAHairLinePathRenderer::drawPath(GrDrawState::StageMask stageMask) {
int nBufLines = fLinesIndexBuffer->maxQuads();
while (lines < fLineSegmentCnt) {
int n = GrMin(fLineSegmentCnt-lines, nBufLines);
fTarget->setVertexEdgeType(GrDrawState::kHairLine_EdgeType);
drawState->setVertexEdgeType(GrDrawState::kHairLine_EdgeType);
fTarget->drawIndexed(kTriangles_PrimitiveType,
kVertsPerLineSeg*lines, // startV
0, // startI
@ -715,7 +717,7 @@ void GrAAHairLinePathRenderer::drawPath(GrDrawState::StageMask stageMask) {
int quads = 0;
while (quads < fQuadCnt) {
int n = GrMin(fQuadCnt-quads, kNumQuadsInIdxBuffer);
fTarget->setVertexEdgeType(GrDrawState::kHairQuad_EdgeType);
drawState->setVertexEdgeType(GrDrawState::kHairQuad_EdgeType);
fTarget->drawIndexed(kTriangles_PrimitiveType,
4*fLineSegmentCnt + kVertsPerQuad*quads, // startV
0, // startI

View File

@ -218,20 +218,22 @@ void gen_stencil_key_values(const GrStencilBuffer* sb,
// they aren't used unless the vertex layout references them.
// It also doesn't set the render target.
void reset_target_state(GrDrawTarget* target){
target->setViewMatrix(GrMatrix::I());
target->setColorFilter(0, SkXfermode::kDst_Mode);
target->disableState(GrDrawTarget::kDither_StateBit |
GrDrawTarget::kHWAntialias_StateBit |
GrDrawTarget::kClip_StateBit |
GrDrawTarget::kNoColorWrites_StateBit |
GrDrawTarget::kEdgeAAConcave_StateBit);
target->setEdgeAAData(NULL, 0);
target->disableStencil();
target->setAlpha(0xFF);
GrDrawState* drawState = target->drawState();
drawState->setViewMatrix(GrMatrix::I());
drawState->setColorFilter(0, SkXfermode::kDst_Mode);
drawState->disableState(GrDrawState::kDither_StateBit |
GrDrawState::kHWAntialias_StateBit |
GrDrawState::kClip_StateBit |
GrDrawState::kNoColorWrites_StateBit |
GrDrawState::kEdgeAAConcave_StateBit);
drawState->setEdgeAAData(NULL, 0);
drawState->disableStencil();
drawState->setAlpha(0xFF);
target->setBlendFunc(kOne_BlendCoeff,
kZero_BlendCoeff);
target->setFirstCoverageStage(GrDrawState::kNumStages);
target->setDrawFace(GrDrawState::kBoth_DrawFace);
drawState->setFirstCoverageStage(GrDrawState::kNumStages);
drawState->setDrawFace(GrDrawState::kBoth_DrawFace);
}
}
@ -353,9 +355,9 @@ GrContext::TextureCacheEntry GrContext::createAndLockTexture(TextureKey key,
if (NULL != texture) {
GrDrawTarget::AutoStateRestore asr(fGpu);
reset_target_state(fGpu);
fGpu->setRenderTarget(texture->asRenderTarget());
fGpu->setTexture(0, clampEntry.texture());
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(texture->asRenderTarget());
drawState->setTexture(0, clampEntry.texture());
GrSamplerState::Filter filter;
// if filtering is not desired then we want to ensure all
@ -368,7 +370,7 @@ GrContext::TextureCacheEntry GrContext::createAndLockTexture(TextureKey key,
}
GrSamplerState stretchSampler(GrSamplerState::kClamp_WrapMode,
filter);
fGpu->setSamplerState(0, stretchSampler);
drawState->setSampler(0, stretchSampler);
static const GrVertexLayout layout =
GrDrawTarget::StageTexCoordVertexLayoutBit(0,0);
@ -601,7 +603,7 @@ const GrClip& GrContext::getClip() const { return fGpu->getClip(); }
void GrContext::setClip(const GrClip& clip) {
fGpu->setClip(clip);
fGpu->enableState(GrDrawTarget::kClip_StateBit);
fGpu->drawState()->enableState(GrDrawState::kClip_StateBit);
}
void GrContext::setClip(const GrIRect& rect) {
@ -624,22 +626,24 @@ void GrContext::drawPaint(const GrPaint& paint) {
r.setLTRB(0, 0,
GrIntToScalar(getRenderTarget()->width()),
GrIntToScalar(getRenderTarget()->height()));
GrAutoMatrix am;
GrMatrix inverse;
SkTLazy<GrPaint> tmpPaint;
const GrPaint* p = &paint;
GrDrawState* drawState = fGpu->drawState();
GrAutoMatrix am;
// We attempt to map r by the inverse matrix and draw that. mapRect will
// map the four corners and bound them with a new rect. This will not
// produce a correct result for some perspective matrices.
if (!this->getMatrix().hasPerspective()) {
if (!fGpu->getViewInverse(&inverse)) {
if (!drawState->getViewInverse(&inverse)) {
GrPrintf("Could not invert matrix");
return;
}
inverse.mapRect(&r);
} else {
if (paint.getActiveMaskStageMask() || paint.getActiveStageMask()) {
if (!fGpu->getViewInverse(&inverse)) {
if (!drawState->getViewInverse(&inverse)) {
GrPrintf("Could not invert matrix");
return;
}
@ -697,7 +701,7 @@ bool GrContext::doOffscreenAA(GrDrawTarget* target,
(!PREFER_MSAA_OFFSCREEN_AA || !fGpu->getCaps().fFSAASupport)) {
return false;
}
if (target->getRenderTarget()->isMultisampled()) {
if (target->getDrawState().getRenderTarget()->isMultisampled()) {
return false;
}
if (disable_coverage_aa_for_blend(target)) {
@ -801,19 +805,20 @@ void GrContext::setupOffscreenAAPass1(GrDrawTarget* target,
GrPaint tempPaint;
tempPaint.reset();
this->setPaint(tempPaint, target);
target->setRenderTarget(offRT0);
GrDrawState* drawState = target->drawState();
drawState->setRenderTarget(offRT0);
#if PREFER_MSAA_OFFSCREEN_AA
target->enableState(GrDrawTarget::kHWAntialias_StateBit);
target->enableState(GrDrawState::kHWAntialias_StateBit);
#endif
GrMatrix transM;
int left = boundRect.fLeft + tileX * record->fTileSizeX;
int top = boundRect.fTop + tileY * record->fTileSizeY;
transM.setTranslate(-left * GR_Scalar1, -top * GR_Scalar1);
target->postConcatViewMatrix(transM);
drawState->viewMatrix()->postConcat(transM);
GrMatrix scaleM;
scaleM.setScale(record->fScale * GR_Scalar1, record->fScale * GR_Scalar1);
target->postConcatViewMatrix(scaleM);
drawState->viewMatrix()->postConcat(scaleM);
int w = (tileX == record->fTileCountX-1) ? boundRect.fRight - left :
record->fTileSizeX;
@ -872,19 +877,21 @@ void GrContext::doOffscreenAAPass2(GrDrawTarget* target,
kOffscreenStage = GrPaint::kTotalStages,
};
GrDrawState* drawState = target->drawState();
if (OffscreenRecord::k4x4TwoPass_Downsample == record->fDownsample) {
GrAssert(NULL != record->fOffscreen1.texture());
scale = 2;
GrRenderTarget* dst = record->fOffscreen1.texture()->asRenderTarget();
// Do 2x2 downsample from first to second
target->setTexture(kOffscreenStage, src);
target->setRenderTarget(dst);
target->setViewMatrix(GrMatrix::I());
drawState->setTexture(kOffscreenStage, src);
drawState->setRenderTarget(dst);
drawState->setViewMatrix(GrMatrix::I());
sampleM.setScale(scale * GR_Scalar1 / src->width(),
scale * GR_Scalar1 / src->height());
sampler.setMatrix(sampleM);
target->setSamplerState(kOffscreenStage, sampler);
drawState->setSampler(kOffscreenStage, sampler);
GrRect rect = SkRect::MakeWH(SkIntToScalar(scale * tileRect.width()),
SkIntToScalar(scale * tileRect.height()));
target->drawSimpleRect(rect, NULL, 1 << kOffscreenStage);
@ -911,24 +918,22 @@ void GrContext::doOffscreenAAPass2(GrDrawTarget* target,
if (stageMask) {
GrMatrix invVM;
if (target->getViewInverse(&invVM)) {
target->preConcatSamplerMatrices(stageMask, invVM);
if (drawState->getViewInverse(&invVM)) {
drawState->preConcatSamplerMatrices(stageMask, invVM);
}
}
// This is important when tiling, otherwise second tile's
// pass 1 view matrix will be incorrect.
GrDrawTarget::AutoViewMatrixRestore avmr(target);
GrDrawState::AutoViewMatrixRestore avmr(drawState, GrMatrix::I());
target->setViewMatrix(GrMatrix::I());
target->setTexture(kOffscreenStage, src);
drawState->setTexture(kOffscreenStage, src);
sampleM.setScale(scale * GR_Scalar1 / src->width(),
scale * GR_Scalar1 / src->height());
sampler.setMatrix(sampleM);
sampleM.setTranslate(SkIntToScalar(-tileRect.fLeft),
SkIntToScalar(-tileRect.fTop));
sampler.preConcatMatrix(sampleM);
target->setSamplerState(kOffscreenStage, sampler);
drawState->setSampler(kOffscreenStage, sampler);
GrRect dstRect;
int stages = (1 << kOffscreenStage) | stageMask;
@ -1040,7 +1045,7 @@ static GrVertexLayout aa_rect_layout(const GrDrawTarget* target,
bool useCoverage) {
GrVertexLayout layout = 0;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (NULL != target->getTexture(s)) {
if (NULL != target->getDrawState().getTexture(s)) {
layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
}
}
@ -1087,7 +1092,7 @@ void GrContext::fillAARect(GrDrawTarget* target,
if (useVertexCoverage) {
innerColor = 0xffffffff;
} else {
innerColor = target->getColor();
innerColor = target->getDrawState().getColor();
}
verts += 4 * vsize;
@ -1158,7 +1163,7 @@ void GrContext::strokeAARect(GrDrawTarget* target,
if (useVertexCoverage) {
innerColor = 0xffffffff;
} else {
innerColor = target->getColor();
innerColor = target->getDrawState().getColor();
}
verts += 4 * vsize;
for (int i = 0; i < 8; ++i) {
@ -1214,8 +1219,8 @@ static bool apply_aa_to_rect(GrDrawTarget* target,
return false;
}
}
if (target->getRenderTarget()->isMultisampled()) {
const GrDrawState& drawState = target->getDrawState();
if (drawState.getRenderTarget()->isMultisampled()) {
return false;
}
@ -1223,7 +1228,7 @@ static bool apply_aa_to_rect(GrDrawTarget* target,
return false;
}
if (!target->getViewMatrix().preservesAxisAlignment()) {
if (!drawState.getViewMatrix().preservesAxisAlignment()) {
return false;
}
@ -1232,7 +1237,7 @@ static bool apply_aa_to_rect(GrDrawTarget* target,
return false;
}
*combinedMatrix = target->getViewMatrix();
*combinedMatrix = drawState.getViewMatrix();
if (NULL != matrix) {
combinedMatrix->preConcat(*matrix);
GrAssert(combinedMatrix->preservesAxisAlignment());
@ -1267,14 +1272,7 @@ void GrContext::drawRect(const GrPaint& paint,
&useVertexCoverage);
if (doAA) {
GrDrawTarget::AutoViewMatrixRestore avm(target);
if (stageMask) {
GrMatrix inv;
if (combinedMatrix.invert(&inv)) {
target->preConcatSamplerMatrices(stageMask, inv);
}
}
target->setViewMatrix(GrMatrix::I());
GrDrawTarget::AutoDeviceCoordDraw adcd(target, stageMask);
if (width >= 0) {
GrVec strokeSize;;
if (width > 0) {
@ -1324,16 +1322,17 @@ void GrContext::drawRect(const GrPaint& paint,
vertex[4].set(rect.fLeft, rect.fTop);
}
GrDrawTarget::AutoViewMatrixRestore avmr;
GrDrawState::AutoViewMatrixRestore avmr;
if (NULL != matrix) {
avmr.set(target);
target->preConcatViewMatrix(*matrix);
target->preConcatSamplerMatrices(stageMask, *matrix);
GrDrawState* drawState = target->drawState();
avmr.set(drawState);
drawState->preConcatViewMatrix(*matrix);
drawState->preConcatSamplerMatrices(stageMask, *matrix);
}
target->drawNonIndexed(primType, 0, vertCount);
} else {
#if GR_STATIC_RECT_VB
#if GR_STATIC_RECT_VB
GrVertexLayout layout = PaintStageVertexLayoutBits(paint, NULL);
const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer();
if (NULL == sqVB) {
@ -1341,7 +1340,8 @@ void GrContext::drawRect(const GrPaint& paint,
return;
}
target->setVertexSourceToBuffer(layout, sqVB);
GrDrawTarget::AutoViewMatrixRestore avmr(target);
GrDrawState* drawState = target->drawState();
GrDrawState::AutoViewMatrixRestore avmr(drawState);
GrMatrix m;
m.setAll(rect.width(), 0, rect.fLeft,
0, rect.height(), rect.fTop,
@ -1350,14 +1350,13 @@ void GrContext::drawRect(const GrPaint& paint,
if (NULL != matrix) {
m.postConcat(*matrix);
}
target->preConcatViewMatrix(m);
target->preConcatSamplerMatrices(stageMask, m);
drawState->preConcatViewMatrix(m);
drawState->preConcatSamplerMatrices(stageMask, m);
target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, 4);
#else
#else
target->drawSimpleRect(rect, matrix, stageMask);
#endif
#endif
}
}
@ -1378,9 +1377,9 @@ void GrContext::drawRectToRect(const GrPaint& paint,
#if GR_STATIC_RECT_VB
GrDrawTarget* target = this->prepareToDraw(paint, kUnbuffered_DrawCategory);
GrDrawState* drawState = target->drawState();
GrVertexLayout layout = PaintStageVertexLayoutBits(paint, NULL);
GrDrawTarget::AutoViewMatrixRestore avmr(target);
GrDrawState::AutoViewMatrixRestore avmr(drawState);
GrMatrix m;
@ -1390,13 +1389,13 @@ void GrContext::drawRectToRect(const GrPaint& paint,
if (NULL != dstMatrix) {
m.postConcat(*dstMatrix);
}
target->preConcatViewMatrix(m);
drawState->preConcatViewMatrix(m);
// srcRect refers to first stage
int otherStageMask = paint.getActiveStageMask() &
(~(1 << GrPaint::kFirstTextureStage));
if (otherStageMask) {
target->preConcatSamplerMatrices(otherStageMask, m);
drawState->preConcatSamplerMatrices(otherStageMask, m);
}
m.setAll(srcRect.width(), 0, srcRect.fLeft,
@ -1405,7 +1404,7 @@ void GrContext::drawRectToRect(const GrPaint& paint,
if (NULL != srcMatrix) {
m.postConcat(*srcMatrix);
}
target->preConcatSamplerMatrix(GrPaint::kFirstTextureStage, m);
drawState->sampler(GrPaint::kFirstTextureStage)->preConcatMatrix(m);
const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer();
if (NULL == sqVB) {
@ -1553,10 +1552,9 @@ void GrContext::drawPath(const GrPaint& paint, const GrPath& path,
if (doOSAA) {
bool needsStencil = pr->requiresStencilPass(target, path, fill);
const GrRenderTarget* rt = target->getDrawState().getRenderTarget();
// compute bounds as intersection of rt size, clip, and path
GrIRect bound = SkIRect::MakeWH(target->getRenderTarget()->width(),
target->getRenderTarget()->height());
GrIRect bound = SkIRect::MakeWH(rt->width(), rt->height());
GrIRect clipIBounds;
if (target->getClip().hasConservativeBounds()) {
target->getClip().getConservativeBounds().roundOut(&clipIBounds);
@ -1564,13 +1562,13 @@ void GrContext::drawPath(const GrPaint& paint, const GrPath& path,
return;
}
}
GrRect pathBounds = path.getBounds();
if (!pathBounds.isEmpty()) {
if (NULL != translate) {
pathBounds.offset(*translate);
}
target->getViewMatrix().mapRect(&pathBounds, pathBounds);
target->getDrawState().getViewMatrix().mapRect(&pathBounds,
pathBounds);
GrIRect pathIBounds;
pathBounds.roundOut(&pathIBounds);
if (!bound.intersect(pathIBounds)) {
@ -1706,7 +1704,7 @@ bool GrContext::internalReadRenderTargetPixels(GrRenderTarget* target,
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fGpu->getRenderTarget();
target = fGpu->drawState()->getRenderTarget();
if (NULL == target) {
return false;
}
@ -1782,8 +1780,8 @@ bool GrContext::internalReadRenderTargetPixels(GrRenderTarget* target,
GrDrawTarget::AutoStateRestore asr(fGpu);
reset_target_state(fGpu);
fGpu->setRenderTarget(target);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(target);
GrMatrix matrix;
if (flipY) {
@ -1799,8 +1797,8 @@ bool GrContext::internalReadRenderTargetPixels(GrRenderTarget* target,
GrSamplerState::kNearest_Filter,
matrix);
sampler.setRAndBSwap(swapRAndB);
fGpu->setSamplerState(0, sampler);
fGpu->setTexture(0, src);
drawState->setSampler(0, sampler);
drawState->setTexture(0, src);
GrRect rect;
rect.setXYWH(0, 0, SK_Scalar1 * width, SK_Scalar1 * height);
fGpu->drawSimpleRect(rect, NULL, 0x1);
@ -1820,14 +1818,15 @@ void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst) {
GrDrawTarget::AutoStateRestore asr(fGpu);
reset_target_state(fGpu);
fGpu->setRenderTarget(dst);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(dst);
GrSamplerState sampler(GrSamplerState::kClamp_WrapMode,
GrSamplerState::kNearest_Filter);
GrMatrix sampleM;
sampleM.setIDiv(src->width(), src->height());
sampler.setMatrix(sampleM);
fGpu->setTexture(0, src);
fGpu->setSamplerState(0, sampler);
drawState->setTexture(0, src);
drawState->setSampler(0, sampler);
SkRect rect = SkRect::MakeXYWH(0, 0, src->width(), src->height());
fGpu->drawSimpleRect(rect, NULL, 1 << 0);
}
@ -1843,7 +1842,7 @@ void GrContext::internalWriteRenderTargetPixels(GrRenderTarget* target,
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fGpu->getRenderTarget();
target = fGpu->drawState()->getRenderTarget();
if (NULL == target) {
return;
}
@ -1890,12 +1889,13 @@ void GrContext::internalWriteRenderTargetPixels(GrRenderTarget* target,
GrDrawTarget::AutoStateRestore asr(fGpu);
reset_target_state(fGpu);
GrDrawState* drawState = fGpu->drawState();
GrMatrix matrix;
matrix.setTranslate(GrIntToScalar(left), GrIntToScalar(top));
fGpu->setViewMatrix(matrix);
fGpu->setRenderTarget(target);
fGpu->setTexture(0, texture);
drawState->setViewMatrix(matrix);
drawState->setRenderTarget(target);
drawState->setTexture(0, texture);
matrix.setIDiv(texture->width(), texture->height());
GrSamplerState sampler;
@ -1903,7 +1903,7 @@ void GrContext::internalWriteRenderTargetPixels(GrRenderTarget* target,
GrSamplerState::kNearest_Filter,
matrix);
sampler.setRAndBSwap(swapRAndB);
fGpu->setSamplerState(0, sampler);
drawState->setSampler(0, sampler);
GrVertexLayout layout = GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(0);
static const int VCOUNT = 4;
@ -1919,37 +1919,38 @@ void GrContext::internalWriteRenderTargetPixels(GrRenderTarget* target,
////////////////////////////////////////////////////////////////////////////////
void GrContext::setPaint(const GrPaint& paint, GrDrawTarget* target) {
GrDrawState* drawState = target->drawState();
for (int i = 0; i < GrPaint::kMaxTextures; ++i) {
int s = i + GrPaint::kFirstTextureStage;
target->setTexture(s, paint.getTexture(i));
drawState->setTexture(s, paint.getTexture(i));
ASSERT_OWNED_RESOURCE(paint.getTexture(i));
target->setSamplerState(s, paint.getTextureSampler(i));
drawState->setSampler(s, paint.getTextureSampler(i));
}
target->setFirstCoverageStage(GrPaint::kFirstMaskStage);
drawState->setFirstCoverageStage(GrPaint::kFirstMaskStage);
for (int i = 0; i < GrPaint::kMaxMasks; ++i) {
int s = i + GrPaint::kFirstMaskStage;
target->setTexture(s, paint.getMask(i));
drawState->setTexture(s, paint.getMask(i));
ASSERT_OWNED_RESOURCE(paint.getMask(i));
target->setSamplerState(s, paint.getMaskSampler(i));
drawState->setSampler(s, paint.getMaskSampler(i));
}
target->setColor(paint.fColor);
drawState->setColor(paint.fColor);
if (paint.fDither) {
target->enableState(GrDrawTarget::kDither_StateBit);
drawState->enableState(GrDrawState::kDither_StateBit);
} else {
target->disableState(GrDrawTarget::kDither_StateBit);
drawState->disableState(GrDrawState::kDither_StateBit);
}
if (paint.fAntiAlias) {
target->enableState(GrDrawTarget::kHWAntialias_StateBit);
drawState->enableState(GrDrawState::kHWAntialias_StateBit);
} else {
target->disableState(GrDrawTarget::kHWAntialias_StateBit);
drawState->disableState(GrDrawState::kHWAntialias_StateBit);
}
target->setBlendFunc(paint.fSrcBlendCoeff, paint.fDstBlendCoeff);
target->setColorFilter(paint.fColorFilterColor, paint.fColorFilterXfermode);
drawState->setColorFilter(paint.fColorFilterColor, paint.fColorFilterXfermode);
if (paint.getActiveMaskStageMask() && !target->canApplyCoverage()) {
GrPrintf("Partial pixel coverage will be incorrectly blended.\n");
@ -2000,27 +2001,27 @@ GrPathRenderer* GrContext::getPathRenderer(const GrPath& path,
void GrContext::setRenderTarget(GrRenderTarget* target) {
ASSERT_OWNED_RESOURCE(target);
this->flush(false);
fGpu->setRenderTarget(target);
fGpu->drawState()->setRenderTarget(target);
}
GrRenderTarget* GrContext::getRenderTarget() {
return fGpu->getRenderTarget();
return fGpu->drawState()->getRenderTarget();
}
const GrRenderTarget* GrContext::getRenderTarget() const {
return fGpu->getRenderTarget();
return fGpu->getDrawState().getRenderTarget();
}
const GrMatrix& GrContext::getMatrix() const {
return fGpu->getViewMatrix();
return fGpu->getDrawState().getViewMatrix();
}
void GrContext::setMatrix(const GrMatrix& m) {
fGpu->setViewMatrix(m);
fGpu->drawState()->setViewMatrix(m);
}
void GrContext::concatMatrix(const GrMatrix& m) const {
fGpu->preConcatViewMatrix(m);
fGpu->drawState()->preConcatViewMatrix(m);
}
static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) {
@ -2149,10 +2150,11 @@ void GrContext::convolve(GrTexture* texture,
sampler.setConvolutionParams(kernelWidth, kernel, imageIncrement);
sampleM.setIDiv(texture->width(), texture->height());
sampler.setMatrix(sampleM);
fGpu->setSamplerState(0, sampler);
fGpu->setViewMatrix(GrMatrix::I());
fGpu->setTexture(0, texture);
fGpu->setColor(0xFFFFFFFF);
GrDrawState* drawState = fGpu->drawState();
drawState->setSampler(0, sampler);
drawState->setViewMatrix(GrMatrix::I());
drawState->setTexture(0, texture);
drawState->setAlpha(0xFF);
fGpu->setBlendFunc(kOne_BlendCoeff, kZero_BlendCoeff);
fGpu->drawSimpleRect(rect, NULL, 1 << 0);
}

View File

@ -190,7 +190,8 @@ static inline bool single_pass_path(const GrDrawTarget& target,
return hint == kConvex_ConvexHint ||
hint == kNonOverlappingConvexPieces_ConvexHint ||
(hint == kSameWindingConvexPieces_ConvexHint &&
!target.drawWillReadDst() && !target.isDitherState());
!target.drawWillReadDst() &&
!target.getDrawState().isDitherState());
}
return false;
@ -384,9 +385,10 @@ FINISHED:
void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
bool stencilOnly) {
GrMatrix viewM = fTarget->getViewMatrix();
GrMatrix viewM = fTarget->getDrawState().getViewMatrix();
GrScalar tol = GR_Scalar1;
tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, fPath->getBounds());
GrDrawState* drawState = fTarget->drawState();
// FIXME: It's really dumb that we recreate the verts for a new vertex
// layout. We only do that because the GrDrawTarget API doesn't allow
@ -405,9 +407,9 @@ void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
GrAssert(NULL != fTarget);
GrDrawTarget::AutoStateRestore asr(fTarget);
bool colorWritesWereDisabled = fTarget->isColorWriteDisabled();
bool colorWritesWereDisabled = drawState->isColorWriteDisabled();
// face culling doesn't make sense here
GrAssert(GrDrawState::kBoth_DrawFace == fTarget->getDrawFace());
GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());
int passCount = 0;
const GrStencilSettings* passes[3];
@ -503,36 +505,36 @@ void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
{
for (int p = 0; p < passCount; ++p) {
fTarget->setDrawFace(drawFace[p]);
drawState->setDrawFace(drawFace[p]);
if (NULL != passes[p]) {
fTarget->setStencil(*passes[p]);
*drawState->stencil() = *passes[p];
}
if (lastPassIsBounds && (p == passCount-1)) {
if (!colorWritesWereDisabled) {
fTarget->disableState(GrDrawTarget::kNoColorWrites_StateBit);
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
}
GrRect bounds;
if (reverse) {
GrAssert(NULL != fTarget->getRenderTarget());
GrAssert(NULL != drawState->getRenderTarget());
// draw over the whole world.
bounds.setLTRB(0, 0,
GrIntToScalar(fTarget->getRenderTarget()->width()),
GrIntToScalar(fTarget->getRenderTarget()->height()));
GrIntToScalar(drawState->getRenderTarget()->width()),
GrIntToScalar(drawState->getRenderTarget()->height()));
GrMatrix vmi;
// mapRect through persp matrix may not be correct
if (!fTarget->getViewMatrix().hasPerspective() &&
fTarget->getViewInverse(&vmi)) {
if (!drawState->getViewMatrix().hasPerspective() &&
drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
} else {
if (stageMask) {
if (!fTarget->getViewInverse(&vmi)) {
if (!drawState->getViewInverse(&vmi)) {
GrPrintf("Could not invert matrix.");
return;
}
fTarget->preConcatSamplerMatrices(stageMask, vmi);
drawState->preConcatSamplerMatrices(stageMask, vmi);
}
fTarget->setViewMatrix(GrMatrix::I());
drawState->setViewMatrix(GrMatrix::I());
}
} else {
bounds = fPath->getBounds();
@ -542,7 +544,7 @@ void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
fTarget->drawSimpleRect(bounds, NULL, stageMask);
} else {
if (passCount > 1) {
fTarget->enableState(GrDrawTarget::kNoColorWrites_StateBit);
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
}
if (fUseIndexedDraw) {
fTarget->drawIndexed(fPrimitiveType, 0, 0,

View File

@ -10,6 +10,7 @@
#include "GrColor.h"
#include "GrMatrix.h"
#include "GrNoncopyable.h"
#include "GrSamplerState.h"
#include "GrStencil.h"
@ -45,13 +46,433 @@ struct GrDrawState {
typedef uint32_t StageMask;
GR_STATIC_ASSERT(sizeof(StageMask)*8 >= GrDrawState::kNumStages);
enum DrawFace {
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
GrDrawState() {
// make sure any pad is zero for memcmp
// all GrDrawState members should default to something
// valid by the memset
memset(this, 0, sizeof(GrDrawState));
// memset exceptions
fColorFilterMode = SkXfermode::kDstIn_Mode;
fFirstCoverageStage = kNumStages;
// pedantic assertion that our ptrs will
// be NULL (0 ptr is mem addr 0)
GrAssert((intptr_t)(void*)NULL == 0LL);
GrAssert(fStencilSettings.isDisabled());
fFirstCoverageStage = kNumStages;
}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param color the color to set.
*/
void setColor(GrColor color) { fColor = color; }
GrColor getColor() const { return fColor; }
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t a) {
this->setColor((a << 24) | (a << 16) | (a << 8) | a);
}
/**
* Add a color filter that can be represented by a color and a mode. Applied
* after color-computing texture stages.
*/
void setColorFilter(GrColor c, SkXfermode::Mode mode) {
fColorFilterColor = c;
fColorFilterMode = mode;
}
GrColor getColorFilterColor() const { return fColorFilterColor; }
SkXfermode::Mode getColorFilterMode() const { return fColorFilterMode; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Textures
////
/**
* Sets the texture used at the next drawing call
*
* @param stage The texture stage for which the texture will be set
*
* @param texture The texture to set. Can be NULL though there is no
* advantage to settings a NULL texture if doing non-textured drawing
*/
void setTexture(int stage, GrTexture* texture) {
GrAssert((unsigned)stage < kNumStages);
fTextures[stage] = texture;
}
/**
* Retrieves the currently set texture.
*
* @return The currently set texture. The return value will be NULL if no
* texture has been set, NULL was most recently passed to
* setTexture, or the last setTexture was destroyed.
*/
const GrTexture* getTexture(int stage) const {
GrAssert((unsigned)stage < kNumStages);
return fTextures[stage];
}
GrTexture* getTexture(int stage) {
GrAssert((unsigned)stage < kNumStages);
return fTextures[stage];
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Samplers
////
/**
* Returns the current sampler for a stage.
*/
const GrSamplerState& getSampler(int stage) const {
GrAssert((unsigned)stage < kNumStages);
return fSamplerStates[stage];
}
/**
* Sets the sampler. This will be removed soon in favor of direct access.
*/
void setSampler(int stage, const GrSamplerState& sampler) {
GrAssert((unsigned)stage < kNumStages);
fSamplerStates[stage] = sampler;
}
/**
* Writable pointer to a stage's sampler.
*/
GrSamplerState* sampler(int stage) {
GrAssert((unsigned)stage < kNumStages);
return fSamplerStates + stage;
}
/**
* Preconcats the matrix of all samplers in the mask with the same matrix.
*/
void preConcatSamplerMatrices(StageMask stageMask, const GrMatrix& matrix) {
GrAssert(!(stageMask & kIllegalStageMaskBits));
for (int i = 0; i < kNumStages; ++i) {
if ((1 << i) & stageMask) {
fSamplerStates[i].preConcatMatrix(matrix);
}
}
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage / Color Stages
////
/**
* A common pattern is to compute a color with the initial stages and then
* modulate that color by a coverage value in later stage(s) (AA, mask-
* filters, glyph mask, etc). Color-filters, xfermodes, etc should be
* computed based on the pre-coverage-modulated color. The division of
* stages between color-computing and coverage-computing is specified by
* this method. Initially this is kNumStages (all stages
* are color-computing).
*/
void setFirstCoverageStage(int firstCoverageStage) {
GrAssert((unsigned)firstCoverageStage <= kNumStages);
fFirstCoverageStage = firstCoverageStage;
}
/**
* Gets the index of the first coverage-computing stage.
*/
int getFirstCoverageStage() const {
return fFirstCoverageStage;
}
///@}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
/**
* Sets the blending function coeffecients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coeffecient applied to the src color.
* @param dstCoef coeffecient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
fSrcBlend = srcCoeff;
fDstBlend = dstCoeff;
#if GR_DEBUG
switch (dstCoeff) {
case kDC_BlendCoeff:
case kIDC_BlendCoeff:
case kDA_BlendCoeff:
case kIDA_BlendCoeff:
GrPrintf("Unexpected dst blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
switch (srcCoeff) {
case kSC_BlendCoeff:
case kISC_BlendCoeff:
case kSA_BlendCoeff:
case kISA_BlendCoeff:
GrPrintf("Unexpected src blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
#endif
}
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fSrcBlend;
*dstBlendCoeff = fDstBlend;
}
/**
* Sets the blending function constant referenced by the following blending
* coeffecients:
* kConstC_BlendCoeff
* kIConstC_BlendCoeff
* kConstA_BlendCoeff
* kIConstA_BlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) { fBlendConstant = constant; }
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fBlendConstant; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Sets the matrix applied to veretx positions.
*
* In the post-view-matrix space the rectangle [0,w]x[0,h]
* fully covers the render target. (w and h are the width and height of the
* the rendertarget.)
*/
void setViewMatrix(const GrMatrix& m) { fViewMatrix = m; }
/**
* Gets a writable pointer to the view matrix.
*/
GrMatrix* viewMatrix() { return &fViewMatrix; }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = V*m where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void preConcatViewMatrix(const GrMatrix& m) { fViewMatrix.preConcat(m); }
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = m*V where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void postConcatViewMatrix(const GrMatrix& m) { fViewMatrix.postConcat(m); }
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const GrMatrix& getViewMatrix() const { return fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(GrMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
GrMatrix inverse;
if (fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
class AutoViewMatrixRestore : public ::GrNoncopyable {
public:
AutoViewMatrixRestore() : fDrawState(NULL) {}
AutoViewMatrixRestore(GrDrawState* ds, const GrMatrix& newMatrix) {
fDrawState = NULL;
this->set(ds, newMatrix);
}
AutoViewMatrixRestore(GrDrawState* ds) {
fDrawState = NULL;
this->set(ds);
}
~AutoViewMatrixRestore() {
this->set(NULL, GrMatrix::I());
}
void set(GrDrawState* ds, const GrMatrix& newMatrix) {
if (NULL != fDrawState) {
fDrawState->setViewMatrix(fSavedMatrix);
}
if (NULL != ds) {
fSavedMatrix = ds->getViewMatrix();
ds->setViewMatrix(newMatrix);
}
fDrawState = ds;
}
void set(GrDrawState* ds) {
if (NULL != fDrawState) {
fDrawState->setViewMatrix(fSavedMatrix);
}
if (NULL != ds) {
fSavedMatrix = ds->getViewMatrix();
}
fDrawState = ds;
}
private:
GrDrawState* fDrawState;
GrMatrix fSavedMatrix;
};
/**
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Sets the rendertarget used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target) { fRenderTarget = target; }
/**
* Retrieves the currently set rendertarget.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget; }
GrRenderTarget* getRenderTarget() { return fRenderTarget; }
class AutoRenderTargetRestore : public ::GrNoncopyable {
public:
AutoRenderTargetRestore() : fDrawState(NULL) {}
AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
fDrawState = NULL;
this->set(ds, newTarget);
}
~AutoRenderTargetRestore() { this->set(NULL, NULL); }
void set(GrDrawState* ds, GrRenderTarget* newTarget) {
if (NULL != fDrawState) {
fDrawState->setRenderTarget(fSavedTarget);
}
if (NULL != ds) {
fSavedTarget = ds->getRenderTarget();
ds->setRenderTarget(newTarget);
}
fDrawState = ds;
}
private:
GrDrawState* fDrawState;
GrRenderTarget* fSavedTarget;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
fStencilSettings = settings;
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
fStencilSettings.setDisabled();
}
const GrStencilSettings& getStencil() const { return fStencilSettings; }
GrStencilSettings* stencil() { return &fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
// @name Edge AA
// There are two ways to perform antialiasing using edge equations. One
// is to specify an (linear or quadratic) edge eq per-vertex. This requires
// splitting vertices shared by primitives.
//
// The other is via setEdgeAAData which sets a set of edges and each
// is tested against all the edges.
////
/**
* When specifying edges as vertex data this enum specifies what type of
* edges are in use. The edges are always 4 GrScalars in memory, even when
* the edge type requires fewer than 4.
@ -65,6 +486,19 @@ struct GrDrawState {
kHairQuad_EdgeType
};
/**
* Determines the interpretation per-vertex edge data when the
* kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges
* are not specified the value of this setting has no effect.
*/
void setVertexEdgeType(VertexEdgeType type) {
fVertexEdgeType = type;
}
VertexEdgeType getVertexEdgeType() const {
return fVertexEdgeType;
}
/**
* The absolute maximum number of edges that may be specified for
* a single draw call when performing edge antialiasing. This is used for
@ -91,53 +525,146 @@ struct GrDrawState {
float fX, fY, fZ;
};
GrDrawState() {
// make sure any pad is zero for memcmp
// all GrDrawState members should default to something
// valid by the memset
memset(this, 0, sizeof(GrDrawState));
// memset exceptions
fColorFilterXfermode = SkXfermode::kDstIn_Mode;
fFirstCoverageStage = kNumStages;
// pedantic assertion that our ptrs will
// be NULL (0 ptr is mem addr 0)
GrAssert((intptr_t)(void*)NULL == 0LL);
// default stencil setting should be disabled
GrAssert(fStencilSettings.isDisabled());
fFirstCoverageStage = kNumStages;
/**
* Sets the edge data required for edge antialiasing.
*
* @param edges 3 * numEdges float values, representing the edge
* equations in Ax + By + C form
*/
void setEdgeAAData(const Edge* edges, int numEdges) {
GrAssert(numEdges <= GrDrawState::kMaxEdges);
memcpy(fEdgeAAEdges, edges, numEdges * sizeof(GrDrawState::Edge));
fEdgeAANumEdges = numEdges;
}
uint8_t fFlagBits;
GrBlendCoeff fSrcBlend : 8;
GrBlendCoeff fDstBlend : 8;
DrawFace fDrawFace : 8;
uint8_t fFirstCoverageStage;
SkXfermode::Mode fColorFilterXfermode : 8;
GrColor fBlendConstant;
GrTexture* fTextures[kNumStages];
GrRenderTarget* fRenderTarget;
GrColor fColor;
GrColor fColorFilterColor;
int getNumAAEdges() const { return fEdgeAANumEdges; }
GrStencilSettings fStencilSettings;
GrMatrix fViewMatrix;
const Edge* getAAEdges() const { return fEdgeAAEdges; }
// @{ Data for GrTesselatedPathRenderer
// TODO: currently ignored in copying & comparison for performance.
// Must be considered if GrTesselatedPathRenderer is being used.
/// @}
int fEdgeAANumEdges;
VertexEdgeType fVertexEdgeType;
Edge fEdgeAAEdges[kMaxEdges];
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
// @}
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported
* by the render target, or smooth-line rendering if a line primitive
* is drawn and line smoothing is supported by the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Modifies the behavior of edge AA specified by setEdgeAA. If set,
* will test edge pairs for convexity when rasterizing. Set this if the
* source polygon is non-convex.
*/
kEdgeAAConcave_StateBit = 0x10,
// This field must be last; it will not be copied or compared
// if the corresponding fTexture[] is NULL.
GrSamplerState fSamplerStates[kNumStages];
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
void resetStateFlags() {
fFlagBits = 0;
}
/**
* Enable render state settings.
*
* @param flags bitfield of StateBits specifing the states to enable
*/
void enableState(uint32_t stateBits) {
fFlagBits |= stateBits;
}
/**
* Disable render state settings.
*
* @param flags bitfield of StateBits specifing the states to disable
*/
void disableState(uint32_t stateBits) {
fFlagBits &= ~(stateBits);
}
bool isDitherState() const {
return 0 != (fFlagBits & kDither_StateBit);
}
bool isHWAntialiasState() const {
return 0 != (fFlagBits & kHWAntialias_StateBit);
}
bool isClipState() const {
return 0 != (fFlagBits & kClip_StateBit);
}
bool isColorWriteDisabled() const {
return 0 != (fFlagBits & kNoColorWrites_StateBit);
}
bool isConcaveEdgeAAState() const {
return 0 != (fFlagBits & kEdgeAAConcave_StateBit);
}
bool isStateFlagEnabled(uint32_t stateBit) const {
return 0 != (stateBit & fFlagBits);
}
void copyStateFlags(const GrDrawState& ds) {
fFlagBits = ds.fFlagBits;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(DrawFace face) {
fDrawFace = face;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const {
return fDrawFace;
}
/// @}
///////////////////////////////////////////////////////////////////////////
// Most stages are usually not used, so conditionals here
// reduce the expected number of bytes touched by 50%.
@ -172,6 +699,33 @@ struct GrDrawState {
}
private:
static const StageMask kIllegalStageMaskBits = ~((1 << kNumStages)-1);
uint8_t fFlagBits;
GrBlendCoeff fSrcBlend : 8;
GrBlendCoeff fDstBlend : 8;
DrawFace fDrawFace : 8;
uint8_t fFirstCoverageStage;
SkXfermode::Mode fColorFilterMode : 8;
GrColor fBlendConstant;
GrTexture* fTextures[kNumStages];
GrRenderTarget* fRenderTarget;
GrColor fColor;
GrColor fColorFilterColor;
GrStencilSettings fStencilSettings;
GrMatrix fViewMatrix;
// @{ Data for GrTesselatedPathRenderer
// TODO: currently ignored in copying & comparison for performance.
// Must be considered if GrTesselatedPathRenderer is being used.
VertexEdgeType fVertexEdgeType;
int fEdgeAANumEdges;
Edge fEdgeAAEdges[kMaxEdges];
// @}
// This field must be last; it will not be copied or compared
// if the corresponding fTexture[] is NULL.
GrSamplerState fSamplerStates[kNumStages];
size_t leadingBytes() const {
// Can't use offsetof() with non-POD types, so stuck with pointer math.
// TODO: ignores GrTesselatedPathRenderer data structures. We don't
@ -184,4 +738,3 @@ private:
};
#endif

View File

@ -10,9 +10,10 @@
#include "GrDrawTarget.h"
#include "GrGpuVertex.h"
#include "GrIndexBuffer.h"
#include "GrRenderTarget.h"
#include "GrTexture.h"
#include "GrVertexBuffer.h"
#include "GrIndexBuffer.h"
namespace {
@ -455,119 +456,6 @@ const GrClip& GrDrawTarget::getClip() const {
return fClip;
}
void GrDrawTarget::setTexture(int stage, GrTexture* tex) {
GrAssert(stage >= 0 && stage < GrDrawState::kNumStages);
fCurrDrawState.fTextures[stage] = tex;
}
const GrTexture* GrDrawTarget::getTexture(int stage) const {
GrAssert(stage >= 0 && stage < GrDrawState::kNumStages);
return fCurrDrawState.fTextures[stage];
}
GrTexture* GrDrawTarget::getTexture(int stage) {
GrAssert(stage >= 0 && stage < GrDrawState::kNumStages);
return fCurrDrawState.fTextures[stage];
}
void GrDrawTarget::setRenderTarget(GrRenderTarget* target) {
fCurrDrawState.fRenderTarget = target;
}
const GrRenderTarget* GrDrawTarget::getRenderTarget() const {
return fCurrDrawState.fRenderTarget;
}
GrRenderTarget* GrDrawTarget::getRenderTarget() {
return fCurrDrawState.fRenderTarget;
}
void GrDrawTarget::setViewMatrix(const GrMatrix& m) {
fCurrDrawState.fViewMatrix = m;
}
void GrDrawTarget::preConcatViewMatrix(const GrMatrix& matrix) {
fCurrDrawState.fViewMatrix.preConcat(matrix);
}
void GrDrawTarget::postConcatViewMatrix(const GrMatrix& matrix) {
fCurrDrawState.fViewMatrix.postConcat(matrix);
}
const GrMatrix& GrDrawTarget::getViewMatrix() const {
return fCurrDrawState.fViewMatrix;
}
bool GrDrawTarget::getViewInverse(GrMatrix* matrix) const {
// Mike: Can we cache this somewhere?
// Brian: Sure, do we use it often?
GrMatrix inverse;
if (fCurrDrawState.fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
void GrDrawTarget::setSamplerState(int stage, const GrSamplerState& state) {
GrAssert(stage >= 0 && stage < GrDrawState::kNumStages);
fCurrDrawState.fSamplerStates[stage] = state;
}
void GrDrawTarget::enableState(uint32_t bits) {
fCurrDrawState.fFlagBits |= bits;
}
void GrDrawTarget::disableState(uint32_t bits) {
fCurrDrawState.fFlagBits &= ~(bits);
}
void GrDrawTarget::setBlendFunc(GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff) {
fCurrDrawState.fSrcBlend = srcCoeff;
fCurrDrawState.fDstBlend = dstCoeff;
#if GR_DEBUG
switch (dstCoeff) {
case kDC_BlendCoeff:
case kIDC_BlendCoeff:
case kDA_BlendCoeff:
case kIDA_BlendCoeff:
GrPrintf("Unexpected dst blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
switch (srcCoeff) {
case kSC_BlendCoeff:
case kISC_BlendCoeff:
case kSA_BlendCoeff:
case kISA_BlendCoeff:
GrPrintf("Unexpected src blend coeff. Won't work correctly with"
"coverage stages.\n");
break;
default:
break;
}
#endif
}
void GrDrawTarget::setColor(GrColor c) {
fCurrDrawState.fColor = c;
}
void GrDrawTarget::setColorFilter(GrColor c, SkXfermode::Mode mode) {
fCurrDrawState.fColorFilterColor = c;
fCurrDrawState.fColorFilterXfermode = mode;
}
void GrDrawTarget::setAlpha(uint8_t a) {
this->setColor((a << 24) | (a << 16) | (a << 8) | a);
}
void GrDrawTarget::saveCurrentDrawState(SavedDrawState* state) const {
state->fState = fCurrDrawState;
}
@ -800,12 +688,13 @@ bool GrDrawTarget::checkDraw(GrPrimitiveType type, int startVertex,
}
}
#endif
if (NULL == this->getRenderTarget()) {
const GrDrawState& drawState = this->getDrawState();
if (NULL == drawState.getRenderTarget()) {
return false;
}
if (GrPixelConfigIsUnpremultiplied(this->getRenderTarget()->config())) {
if (kOne_BlendCoeff != fCurrDrawState.fSrcBlend ||
kZero_BlendCoeff != fCurrDrawState.fDstBlend) {
if (GrPixelConfigIsUnpremultiplied(drawState.getRenderTarget()->config())) {
if (kOne_BlendCoeff != drawState.getSrcBlendCoeff() ||
kZero_BlendCoeff != drawState.getDstBlendCoeff()) {
return false;
}
}
@ -817,8 +706,9 @@ bool GrDrawTarget::checkDraw(GrPrimitiveType type, int startVertex,
// a custom bilerp in the shader. Until Skia itself supports unpremul
// configs there is no pressure to implement this.
if (this->isStageEnabled(s) &&
GrPixelConfigIsUnpremultiplied(fCurrDrawState.fTextures[s]->config()) &&
GrSamplerState::kNearest_Filter != fCurrDrawState.fSamplerStates[s].getFilter()) {
GrPixelConfigIsUnpremultiplied(drawState.getTexture(s)->config()) &&
GrSamplerState::kNearest_Filter !=
drawState.getSampler(s).getFilter()) {
return false;
}
}
@ -861,31 +751,33 @@ bool GrDrawTarget::canTweakAlphaForCoverage() const {
* for Cd we find that only 1, ISA, and ISC produce the correct depth
* coeffecient in terms of S' and D.
*/
return kOne_BlendCoeff == fCurrDrawState.fDstBlend||
kISA_BlendCoeff == fCurrDrawState.fDstBlend ||
kISC_BlendCoeff == fCurrDrawState.fDstBlend;
GrBlendCoeff dstCoeff = this->getDrawState().getDstBlendCoeff();
return kOne_BlendCoeff == dstCoeff ||
kISA_BlendCoeff == dstCoeff ||
kISC_BlendCoeff == dstCoeff;
}
bool GrDrawTarget::srcAlphaWillBeOne() const {
const GrVertexLayout& layout = this->getGeomSrc().fVertexLayout;
const GrDrawState& drawState = this->getDrawState();
// Check if per-vertex or constant color may have partial alpha
if ((layout & kColor_VertexLayoutBit) ||
0xff != GrColorUnpackA(fCurrDrawState.fColor)) {
0xff != GrColorUnpackA(drawState.getColor())) {
return false;
}
// Check if color filter could introduce an alpha
// (TODO: Consider being more aggressive with regards to detecting 0xff
// final alpha from color filter).
if (SkXfermode::kDst_Mode != fCurrDrawState.fColorFilterXfermode) {
if (SkXfermode::kDst_Mode != drawState.getColorFilterMode()) {
return false;
}
// Check if a color stage could create a partial alpha
for (int s = 0; s < fCurrDrawState.fFirstCoverageStage; ++s) {
for (int s = 0; s < drawState.getFirstCoverageStage(); ++s) {
if (StageWillBeUsed(s, layout, fCurrDrawState)) {
GrAssert(NULL != fCurrDrawState.fTextures[s]);
GrPixelConfig config = fCurrDrawState.fTextures[s]->config();
GrAssert(NULL != drawState.getTexture(s));
GrPixelConfig config = drawState.getTexture(s)->config();
if (!GrPixelConfigIsOpaque(config)) {
return false;
}
@ -900,17 +792,18 @@ GrDrawTarget::getBlendOpts(bool forceCoverage,
GrBlendCoeff* dstCoeff) const {
const GrVertexLayout& layout = this->getGeomSrc().fVertexLayout;
const GrDrawState& drawState = this->getDrawState();
GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
if (NULL == srcCoeff) {
srcCoeff = &bogusSrcCoeff;
}
*srcCoeff = fCurrDrawState.fSrcBlend;
*srcCoeff = drawState.getSrcBlendCoeff();
if (NULL == dstCoeff) {
dstCoeff = &bogusDstCoeff;
}
*dstCoeff = fCurrDrawState.fDstBlend;
*dstCoeff = drawState.getDstBlendCoeff();
// We don't ever expect source coeffecients to reference the source
GrAssert(kSA_BlendCoeff != *srcCoeff &&
@ -923,7 +816,7 @@ GrDrawTarget::getBlendOpts(bool forceCoverage,
kDC_BlendCoeff != *dstCoeff &&
kIDC_BlendCoeff != *dstCoeff);
if (SkToBool(kNoColorWrites_StateBit & fCurrDrawState.fFlagBits)) {
if (drawState.isColorWriteDisabled()) {
*srcCoeff = kZero_BlendCoeff;
*dstCoeff = kOne_BlendCoeff;
}
@ -939,7 +832,7 @@ GrDrawTarget::getBlendOpts(bool forceCoverage,
// stenciling is enabled. Having color writes disabled is effectively
// (0,1).
if ((kZero_BlendCoeff == *srcCoeff && dstCoeffIsOne)) {
if (fCurrDrawState.fStencilSettings.doesWrite()) {
if (drawState.getStencil().doesWrite()) {
if (fCaps.fShaderSupport) {
return kDisableBlend_BlendOptFlag |
kEmitTransBlack_BlendOptFlag;
@ -953,10 +846,10 @@ GrDrawTarget::getBlendOpts(bool forceCoverage,
// check for coverage due to edge aa or coverage texture stage
bool hasCoverage = forceCoverage ||
fCurrDrawState.fEdgeAANumEdges > 0 ||
drawState.getNumAAEdges() > 0 ||
(layout & kCoverage_VertexLayoutBit) ||
(layout & kEdge_VertexLayoutBit);
for (int s = fCurrDrawState.fFirstCoverageStage;
for (int s = drawState.getFirstCoverageStage();
!hasCoverage && s < GrDrawState::kNumStages;
++s) {
if (StageWillBeUsed(s, layout, fCurrDrawState)) {
@ -1023,7 +916,7 @@ bool GrDrawTarget::willUseHWAALines() const {
// but not in a premul-alpha way. So we only use them when our alpha
// is 0xff and tweaking the color for partial coverage is OK
if (!fCaps.fHWAALineSupport ||
!(kHWAntialias_StateBit & fCurrDrawState.fFlagBits)) {
!this->getDrawState().isHWAntialiasState()) {
return false;
}
BlendOptFlags opts = this->getBlendOpts();
@ -1043,15 +936,6 @@ bool GrDrawTarget::drawWillReadDst() const {
this->getBlendOpts());
}
///////////////////////////////////////////////////////////////////////////////
void GrDrawTarget::setEdgeAAData(const GrDrawState::Edge* edges, int numEdges) {
GrAssert(numEdges <= GrDrawState::kMaxEdges);
memcpy(fCurrDrawState.fEdgeAAEdges, edges,
numEdges * sizeof(GrDrawState::Edge));
fCurrDrawState.fEdgeAANumEdges = numEdges;
}
////////////////////////////////////////////////////////////////////////////////
@ -1174,32 +1058,34 @@ GrDrawTarget::AutoDeviceCoordDraw::AutoDeviceCoordDraw(
GrDrawTarget* target,
GrDrawState::StageMask stageMask) {
GrAssert(NULL != target);
GrDrawState* drawState = target->drawState();
fDrawTarget = target;
fViewMatrix = target->getViewMatrix();
fViewMatrix = drawState->getViewMatrix();
fStageMask = stageMask;
if (fStageMask) {
GrMatrix invVM;
if (fViewMatrix.invert(&invVM)) {
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (fStageMask & (1 << s)) {
fSamplerMatrices[s] = target->getSamplerMatrix(s);
fSamplerMatrices[s] = drawState->getSampler(s).getMatrix();
}
}
target->preConcatSamplerMatrices(fStageMask, invVM);
drawState->preConcatSamplerMatrices(fStageMask, invVM);
} else {
// sad trombone sound
fStageMask = 0;
}
}
target->setViewMatrix(GrMatrix::I());
drawState->setViewMatrix(GrMatrix::I());
}
GrDrawTarget::AutoDeviceCoordDraw::~AutoDeviceCoordDraw() {
fDrawTarget->setViewMatrix(fViewMatrix);
GrDrawState* drawState = fDrawTarget->drawState();
drawState->setViewMatrix(fViewMatrix);
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (fStageMask & (1 << s)) {
fDrawTarget->setSamplerMatrix(s, fSamplerMatrices[s]);
drawState->sampler(s)->setMatrix(fSamplerMatrices[s]);
}
}
}

View File

@ -16,7 +16,6 @@
#include "GrDrawState.h"
#include "GrMatrix.h"
#include "GrRefCnt.h"
#include "GrRenderTarget.h"
#include "GrSamplerState.h"
#include "GrStencil.h"
#include "GrTexture.h"
@ -57,62 +56,9 @@ public:
int fMaxTextureSize;
};
// for convenience
typedef GrDrawState::StageMask StageMask;
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported
* by the render target, or smooth-line rendering if a line primitive
* is drawn and line smoothing is supported by the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Modifies the behavior of edge AA specified by setEdgeAA. If set,
* will test edge pairs for convexity when rasterizing. Set this if the
* source polygon is non-convex.
*/
kEdgeAAConcave_StateBit = 0x10,
// subclass may use additional bits internally
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1
};
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
fCurrDrawState.fStencilSettings = settings;
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
fCurrDrawState.fStencilSettings.setDisabled();
}
public:
///////////////////////////////////////////////////////////////////////////
GrDrawTarget();
@ -140,285 +86,24 @@ public:
*/
const GrClip& getClip() const;
/**
* Sets the texture used at the next drawing call
*
* @param stage The texture stage for which the texture will be set
*
* @param texture The texture to set. Can be NULL though there is no advantage
* to settings a NULL texture if doing non-textured drawing
*/
void setTexture(int stage, GrTexture* texture);
const GrDrawState& getDrawState() const { return fCurrDrawState; }
GrDrawState* drawState() { return &fCurrDrawState; }
/**
* Retrieves the currently set texture.
*
* @return The currently set texture. The return value will be NULL if no
* texture has been set, NULL was most recently passed to
* setTexture, or the last setTexture was destroyed.
*/
const GrTexture* getTexture(int stage) const;
GrTexture* getTexture(int stage);
/**
* Sets the rendertarget used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target);
/**
* Retrieves the currently set rendertarget.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const;
GrRenderTarget* getRenderTarget();
/**
* Sets the sampler state for a stage used in subsequent draws.
*
* The sampler state determines how texture coordinates are
* intepretted and used to sample the texture.
*
* @param stage the stage of the sampler to set
* @param samplerState Specifies the sampler state.
*/
void setSamplerState(int stage, const GrSamplerState& samplerState);
/**
* Concats the matrix of a stage's sampler.
*
* @param stage the stage of the sampler to set
* @param matrix the matrix to concat
*/
void preConcatSamplerMatrix(int stage, const GrMatrix& matrix) {
GrAssert(stage >= 0 && stage < GrDrawState::kNumStages);
fCurrDrawState.fSamplerStates[stage].preConcatMatrix(matrix);
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
this->drawState()->setBlendFunc(srcCoeff, dstCoeff);
}
/**
* Shortcut for preConcatSamplerMatrix on all stages in mask with same
* matrix
*/
void preConcatSamplerMatrices(StageMask stageMask, const GrMatrix& matrix) {
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
if ((1 << i) & stageMask) {
this->preConcatSamplerMatrix(i, matrix);
}
}
}
/**
* Shortcut for preConcatSamplerMatrix on all enabled stages in mask with
* same matrix
* Shortcut for drawState()->preConcatSamplerMatrices() on all enabled
* stages
*
* @param stage the stage of the sampler to set
* @param matrix the matrix to concat
*/
void preConcatEnabledSamplerMatrices(const GrMatrix& matrix) {
StageMask stageMask = this->enabledStages();
this->preConcatSamplerMatrices(stageMask, matrix);
this->drawState()->preConcatSamplerMatrices(stageMask, matrix);
}
/**
* Gets the matrix of a stage's sampler
*
* @param stage the stage to of sampler to get
* @return the sampler state's matrix
*/
const GrMatrix& getSamplerMatrix(int stage) const {
return fCurrDrawState.fSamplerStates[stage].getMatrix();
}
/**
* Sets the matrix of a stage's sampler
*
* @param stage the stage of sampler set
* @param matrix the matrix to set
*/
void setSamplerMatrix(int stage, const GrMatrix& matrix) {
fCurrDrawState.fSamplerStates[stage].setMatrix(matrix);
}
/**
* Sets the matrix applied to veretx positions.
*
* In the post-view-matrix space the rectangle [0,w]x[0,h]
* fully covers the render target. (w and h are the width and height of the
* the rendertarget.)
*
* @param m the matrix used to transform the vertex positions.
*/
void setViewMatrix(const GrMatrix& m);
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = V*m where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void preConcatViewMatrix(const GrMatrix& m);
/**
* Multiplies the current view matrix by a matrix
*
* After this call V' = m*V where V is the old view matrix,
* m is the parameter to this function, and V' is the new view matrix.
* (We consider positions to be column vectors so position vector p is
* transformed by matrix X as p' = X*p.)
*
* @param m the matrix used to modify the view matrix.
*/
void postConcatViewMatrix(const GrMatrix& m);
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const GrMatrix& getViewMatrix() const;
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(GrMatrix* matrix) const;
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param the color to set.
*/
void setColor(GrColor);
/**
* Gets the currently set color.
* @return the current color.
*/
GrColor getColor() const { return fCurrDrawState.fColor; }
/**
* Add a color filter that can be represented by a color and a mode.
*/
void setColorFilter(GrColor, SkXfermode::Mode);
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t alpha);
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(GrDrawState::DrawFace face) {
fCurrDrawState.fDrawFace = face;
}
/**
* A common pattern is to compute a color with the initial stages and then
* modulate that color by a coverage value in later stage(s) (AA, mask-
* filters, glyph mask, etc). Color-filters, xfermodes, etc should be
* computed based on the pre-coverage-modulated color. The division of
* stages between color-computing and coverage-computing is specified by
* this method. Initially this is GrDrawState::kNumStages (all stages
* are color-computing).
*/
void setFirstCoverageStage(int firstCoverageStage) {
fCurrDrawState.fFirstCoverageStage = firstCoverageStage;
}
/**
* Gets the index of the first coverage-computing stage.
*/
int getFirstCoverageStage() const {
return fCurrDrawState.fFirstCoverageStage;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
GrDrawState::DrawFace getDrawFace() const {
return fCurrDrawState.fDrawFace;
}
/**
* Enable render state settings.
*
* @param flags bitfield of StateBits specifing the states to enable
*/
void enableState(uint32_t stateBits);
/**
* Disable render state settings.
*
* @param flags bitfield of StateBits specifing the states to disable
*/
void disableState(uint32_t stateBits);
bool isDitherState() const {
return 0 != (fCurrDrawState.fFlagBits & kDither_StateBit);
}
bool isHWAntialiasState() const {
return 0 != (fCurrDrawState.fFlagBits & kHWAntialias_StateBit);
}
bool isClipState() const {
return 0 != (fCurrDrawState.fFlagBits & kClip_StateBit);
}
bool isColorWriteDisabled() const {
return 0 != (fCurrDrawState.fFlagBits & kNoColorWrites_StateBit);
}
/**
* Sets the blending function coeffecients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coeffecient applied to the src color.
* @param dstCoef coeffecient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff);
/**
* Sets the blending function constant referenced by the following blending
* coeffecients:
* kConstC_BlendCoeff
* kIConstC_BlendCoeff
* kConstA_BlendCoeff
* kIConstA_BlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) { fCurrDrawState.fBlendConstant = constant; }
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fCurrDrawState.fBlendConstant; }
/**
* Determines if blending will require a read of a dst given the current
* state set on the draw target
@ -448,15 +133,6 @@ public:
*/
bool canTweakAlphaForCoverage() const;
/**
* Determines the interpretation per-vertex edge data when the
* kEdge_VertexLayoutBit is set (see below). When per-vertex edges are not
* specified the value of this setting has no effect.
*/
void setVertexEdgeType(GrDrawState::VertexEdgeType type) {
fCurrDrawState.fVertexEdgeType = type;
}
/**
* Given the current draw state, vertex layout, and hw support, will HW AA
* lines be used (if line primitive type is drawn)? (Note that lines are
@ -464,14 +140,6 @@ public:
*/
bool willUseHWAALines() const;
/**
* Sets the edge data required for edge antialiasing.
*
* @param edges 3 * 6 float values, representing the edge
* equations in Ax + By + C form
*/
void setEdgeAAData(const GrDrawState::Edge* edges, int numEdges);
/**
* Used to save and restore the GrGpu's drawing state
*/
@ -888,39 +556,6 @@ public:
////////////////////////////////////////////////////////////////////////////
class AutoViewMatrixRestore : ::GrNoncopyable {
public:
AutoViewMatrixRestore() {
fDrawTarget = NULL;
}
AutoViewMatrixRestore(GrDrawTarget* target)
: fDrawTarget(target), fMatrix(fDrawTarget->getViewMatrix()) {
GrAssert(NULL != target);
}
void set(GrDrawTarget* target) {
GrAssert(NULL != target);
if (NULL != fDrawTarget) {
fDrawTarget->setViewMatrix(fMatrix);
}
fDrawTarget = target;
fMatrix = target->getViewMatrix();
}
~AutoViewMatrixRestore() {
if (NULL != fDrawTarget) {
fDrawTarget->setViewMatrix(fMatrix);
}
}
private:
GrDrawTarget* fDrawTarget;
GrMatrix fMatrix;
};
////////////////////////////////////////////////////////////////////////////
/**
* Sets the view matrix to I and preconcats all stage matrices enabled in
* mask by the view inverse. Destructor undoes these changes.
@ -1279,7 +914,8 @@ protected:
// given a vertex layout and a draw state, will a stage be used?
static bool StageWillBeUsed(int stage, GrVertexLayout layout,
const GrDrawState& state) {
return NULL != state.fTextures[stage] && VertexUsesStage(stage, layout);
return NULL != state.getTexture(stage) &&
VertexUsesStage(stage, layout);
}
bool isStageEnabled(int stage) const {

View File

@ -185,10 +185,8 @@ bool GrGpu::attachStencilBufferToRenderTarget(GrRenderTarget* rt) {
// We used to clear down in the GL subclass using a special purpose
// FBO. But iOS doesn't allow a stencil-only FBO. It reports unsupported
// FBO status.
GrRenderTarget* oldRT = fCurrDrawState.fRenderTarget;
fCurrDrawState.fRenderTarget = rt;
GrDrawState::AutoRenderTargetRestore artr(this->drawState(), rt);
this->clearStencil();
fCurrDrawState.fRenderTarget = oldRT;
return true;
} else {
return false;
@ -230,7 +228,7 @@ GrIndexBuffer* GrGpu::createIndexBuffer(uint32_t size, bool dynamic) {
}
void GrGpu::clear(const GrIRect* rect, GrColor color) {
if (NULL == this->getRenderTarget()) {
if (NULL == this->getDrawState().getRenderTarget()) {
return;
}
this->handleDirtyContext();
@ -530,16 +528,18 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
const GrIRect* r = NULL;
GrIRect clipRect;
// GrDrawTarget should have filtered this for us
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrDrawState* drawState = this->drawState();
const GrRenderTarget* rt = drawState->getRenderTarget();
if (fCurrDrawState.fFlagBits & kClip_StateBit) {
GrRenderTarget& rt = *fCurrDrawState.fRenderTarget;
// GrDrawTarget should have filtered this for us
GrAssert(NULL != rt);
if (drawState->isClipState()) {
GrRect bounds;
GrRect rtRect;
rtRect.setLTRB(0, 0,
GrIntToScalar(rt.width()), GrIntToScalar(rt.height()));
GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
if (fClip.hasConservativeBounds()) {
bounds = fClip.getConservativeBounds();
if (!bounds.intersect(rtRect)) {
@ -560,15 +560,15 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
!bounds.isEmpty();
// TODO: dynamically attach a SB when needed.
GrStencilBuffer* stencilBuffer = rt.getStencilBuffer();
GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
if (fClipInStencil && NULL == stencilBuffer) {
return false;
}
if (fClipInStencil &&
stencilBuffer->mustRenderClip(fClip, rt.width(), rt.height())) {
stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {
stencilBuffer->setLastClip(fClip, rt.width(), rt.height());
stencilBuffer->setLastClip(fClip, rt->width(), rt->height());
// we set the current clip to the bounds so that our recursive
// draws are scissored to them. We use the copy of the complex clip
@ -580,12 +580,12 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
AutoStateRestore asr(this);
AutoGeometryPush agp(this);
this->setViewMatrix(GrMatrix::I());
drawState->setViewMatrix(GrMatrix::I());
this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
this->enableState(kNoColorWrites_StateBit);
drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
this->disableState(kNoColorWrites_StateBit);
drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
int count = clip.getElementCount();
int clipBit = stencilBuffer->bits();
@ -606,7 +606,7 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
GrPathFill fill;
bool fillInverted;
// enabled at bottom of loop
this->disableState(kModifyStencilClip_StateBit);
drawState->disableState(kModifyStencilClip_StateBit);
bool canRenderDirectToStencil; // can the clip element be drawn
// directly to the stencil buffer
@ -664,11 +664,11 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
};
SET_RANDOM_COLOR
if (kRect_ClipType == clip.getElementType(c)) {
this->setStencil(gDrawToStencil);
*drawState->stencil() = gDrawToStencil;
this->drawSimpleRect(clip.getRect(c), NULL, 0);
} else {
if (canRenderDirectToStencil) {
this->setStencil(gDrawToStencil);
*drawState->stencil() = gDrawToStencil;
pr->drawPath(0);
} else {
pr->drawPathToStencil();
@ -678,9 +678,9 @@ bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
// now we modify the clip bit by rendering either the clip
// element directly or a bounding rect of the entire clip.
this->enableState(kModifyStencilClip_StateBit);
drawState->enableState(kModifyStencilClip_StateBit);
for (int p = 0; p < passes; ++p) {
this->setStencil(stencilSettings[p]);
*drawState->stencil() = stencilSettings[p];
if (canDrawDirectToClip) {
if (kRect_ClipType == clip.getElementType(c)) {
SET_RANDOM_COLOR

View File

@ -327,8 +327,8 @@ public:
}
protected:
enum PrivateStateBits {
kFirstBit = (kLastPublicStateBit << 1),
enum PrivateDrawStateStateBits {
kFirstBit = (GrDrawState::kLastPublicStateBit << 1),
kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify
// stencil bits used for

View File

@ -480,7 +480,7 @@ void GrGpuGL::onResetContext() {
GL_CALL(Disable(GR_GL_CULL_FACE));
GL_CALL(FrontFace(GR_GL_CCW));
fHWDrawState.fDrawFace = GrDrawState::kBoth_DrawFace;
fHWDrawState.setDrawFace(GrDrawState::kBoth_DrawFace);
GL_CALL(Disable(GR_GL_DITHER));
if (kDesktop_GrGLBinding == this->glBinding()) {
@ -492,7 +492,7 @@ void GrGpuGL::onResetContext() {
}
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fFlagBits = 0;
fHWDrawState.resetStateFlags();
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
@ -501,24 +501,22 @@ void GrGpuGL::onResetContext() {
fActiveTextureUnitIdx = -1;
// illegal values
//fHWDrawState.fSrcBlend = (GrBlendCoeff)(uint8_t)-1;
fHWDrawState.fSrcBlend = (GrBlendCoeff)0xFF;
fHWDrawState.fDstBlend = (GrBlendCoeff)(uint8_t)-1;
fHWDrawState.setBlendFunc((GrBlendCoeff)0xFF, (GrBlendCoeff)0xFF);
fHWDrawState.fBlendConstant = 0x00000000;
fHWDrawState.setBlendConstant(0x00000000);
GL_CALL(BlendColor(0,0,0,0));
fHWDrawState.fColor = GrColor_ILLEGAL;
fHWDrawState.setColor(GrColor_ILLEGAL);
fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix();
fHWDrawState.setViewMatrix(GrMatrix::InvalidMatrix());
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
fHWDrawState.fTextures[s] = NULL;
fHWDrawState.fSamplerStates[s].setRadial2Params(-GR_ScalarMax,
-GR_ScalarMax,
true);
fHWDrawState.fSamplerStates[s].setMatrix(GrMatrix::InvalidMatrix());
fHWDrawState.fSamplerStates[s].setConvolutionParams(0, NULL, NULL);
fHWDrawState.setTexture(s, NULL);
fHWDrawState.sampler(s)->setRadial2Params(-GR_ScalarMax,
-GR_ScalarMax,
true);
fHWDrawState.sampler(s)->setMatrix(GrMatrix::InvalidMatrix());
fHWDrawState.sampler(s)->setConvolutionParams(0, NULL, NULL);
}
fHWBounds.fScissorRect.invalidate();
@ -526,7 +524,7 @@ void GrGpuGL::onResetContext() {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fViewportRect.invalidate();
fHWDrawState.fStencilSettings.invalidate();
fHWDrawState.stencil()->invalidate();
fHWStencilClip = false;
fClipInStencil = false;
@ -536,7 +534,7 @@ void GrGpuGL::onResetContext() {
fHWGeometryState.fArrayPtrsDirty = true;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fRenderTarget = NULL;
fHWDrawState.setRenderTarget(NULL);
// we assume these values
if (this->glCaps().fUnpackRowLengthSupport) {
@ -1191,7 +1189,7 @@ bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb,
GrGLStencilBuffer* glsb = (GrGLStencilBuffer*) sb;
GrGLuint rb = glsb->renderbufferID();
fHWDrawState.fRenderTarget = NULL;
fHWDrawState.setRenderTarget(NULL);
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
@ -1276,9 +1274,12 @@ GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) {
}
void GrGpuGL::flushScissor(const GrIRect* rect) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
const GrGLIRect& vp =
((GrGLRenderTarget*)fCurrDrawState.fRenderTarget)->getViewport();
const GrDrawState& drawState = this->getDrawState();
const GrGLRenderTarget* rt =
static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget());
GrAssert(NULL != rt);
const GrGLIRect& vp = rt->getViewport();
GrGLIRect scissor;
if (NULL != rect) {
@ -1307,15 +1308,16 @@ void GrGpuGL::flushScissor(const GrIRect* rect) {
}
void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
// parent class should never let us get here with no RT
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrAssert(NULL != rt);
GrIRect clippedRect;
if (NULL != rect) {
// flushScissor expects rect to be clipped to the target.
clippedRect = *rect;
GrIRect rtRect = SkIRect::MakeWH(fCurrDrawState.fRenderTarget->width(),
fCurrDrawState.fRenderTarget->height());
GrIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height());
if (clippedRect.intersect(rtRect)) {
rect = &clippedRect;
} else {
@ -1329,7 +1331,7 @@ void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
if (GrPixelConfigIsUnpremultiplied(fCurrDrawState.fRenderTarget->config())) {
if (GrPixelConfigIsUnpremultiplied(rt->config())) {
scaleRGB *= a;
}
r = GrColorUnpackR(color) * scaleRGB;
@ -1337,13 +1339,13 @@ void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fFlagBits &= ~kNoColorWrites_StateBit;
fHWDrawState.disableState(GrDrawState::kNoColorWrites_StateBit);
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGpuGL::clearStencil() {
if (NULL == fCurrDrawState.fRenderTarget) {
if (NULL == this->getDrawState().getRenderTarget()) {
return;
}
@ -1356,17 +1358,18 @@ void GrGpuGL::clearStencil() {
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
fHWDrawState.stencil()->invalidate();
}
void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
GrAssert(NULL != rt);
// this should only be called internally when we know we have a
// stencil buffer.
GrAssert(NULL != fCurrDrawState.fRenderTarget->getStencilBuffer());
GrGLint stencilBitCount =
fCurrDrawState.fRenderTarget->getStencilBuffer()->bits();
GrAssert(NULL != rt->getStencilBuffer());
GrGLint stencilBitCount = rt->getStencilBuffer()->bits();
#if 0
GrAssert(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
@ -1389,7 +1392,7 @@ void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) {
GL_CALL(StencilMask(clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
fHWDrawState.stencil()->invalidate();
}
void GrGpuGL::onForceRenderTargetFlush() {
@ -1445,13 +1448,12 @@ bool GrGpuGL::onReadPixels(GrRenderTarget* target,
// resolve the render target if necessary
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target);
GrAutoTPtrValueRestore<GrRenderTarget*> autoTargetRestore;
GrDrawState::AutoRenderTargetRestore artr;
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
autoTargetRestore.save(&fCurrDrawState.fRenderTarget);
fCurrDrawState.fRenderTarget = target;
artr.set(this->drawState(), target);
this->flushRenderTarget(&GrIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
@ -1549,10 +1551,11 @@ bool GrGpuGL::onReadPixels(GrRenderTarget* target,
void GrGpuGL::flushRenderTarget(const GrIRect* bound) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrGLRenderTarget* rt =
static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget());
GrAssert(NULL != rt);
GrGLRenderTarget* rt = (GrGLRenderTarget*)fCurrDrawState.fRenderTarget;
if (fHWDrawState.fRenderTarget != fCurrDrawState.fRenderTarget) {
if (fHWDrawState.getRenderTarget() != rt) {
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
@ -1565,7 +1568,7 @@ void GrGpuGL::flushRenderTarget(const GrIRect* bound) {
}
#endif
fDirtyFlags.fRenderTargetChanged = true;
fHWDrawState.fRenderTarget = fCurrDrawState.fRenderTarget;
fHWDrawState.setRenderTarget(rt);
const GrGLIRect& vp = rt->getViewport();
if (fHWBounds.fViewportRect != vp) {
vp.pushToGLViewport(this->glInterface());
@ -1682,7 +1685,7 @@ void GrGpuGL::resolveRenderTarget(GrGLRenderTarget* rt) {
#endif
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWDrawState.fRenderTarget = NULL;
fHWDrawState.setRenderTarget(NULL);
const GrGLIRect& vp = rt->getViewport();
const GrIRect dirtyRect = rt->getResolveRect();
GrGLIRect r;
@ -1754,21 +1757,25 @@ GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
void GrGpuGL::flushStencil() {
const GrStencilSettings* settings = &fCurrDrawState.fStencilSettings;
const GrDrawState& drawState = this->getDrawState();
const GrStencilSettings* settings = &drawState.getStencil();
// use stencil for clipping if clipping is enabled and the clip
// has been written into the stencil.
bool stencilClip = fClipInStencil &&
(kClip_StateBit & fCurrDrawState.fFlagBits);
bool stencilClip = fClipInStencil && drawState.isClipState();
bool drawClipToStencil =
drawState.isStateFlagEnabled(kModifyStencilClip_StateBit);
bool stencilChange = fHWStencilClip != stencilClip ||
fHWDrawState.fStencilSettings != *settings ||
((fHWDrawState.fFlagBits & kModifyStencilClip_StateBit) !=
(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
fHWDrawState.getStencil() != *settings ||
(fHWDrawState.isStateFlagEnabled(kModifyStencilClip_StateBit) !=
drawClipToStencil);
if (stencilChange) {
// we can't simultaneously perform stencil-clipping and modify the stencil clip
GrAssert(!stencilClip || !(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
// we can't simultaneously perform stencil-clipping and
// modify the stencil clip
GrAssert(!stencilClip || !drawClipToStencil);
if (settings->isDisabled()) {
if (stencilClip) {
@ -1793,15 +1800,14 @@ void GrGpuGL::flushStencil() {
}
#endif
int stencilBits = 0;
GrStencilBuffer* stencilBuffer =
fCurrDrawState.fRenderTarget->getStencilBuffer();
GrStencilBuffer* stencilBuffer =
drawState.getRenderTarget()->getStencilBuffer();
if (NULL != stencilBuffer) {
stencilBits = stencilBuffer->bits();
}
// TODO: dynamically attach a stencil buffer
GrAssert(stencilBits ||
(GrStencilSettings::gDisabled ==
fCurrDrawState.fStencilSettings));
(GrStencilSettings::gDisabled == *settings));
GrGLuint clipStencilMask = 0;
GrGLuint userStencilMask = ~0;
@ -1815,8 +1821,7 @@ void GrGpuGL::flushStencil() {
unsigned int frontWriteMask = settings->fFrontWriteMask;
GrGLenum frontFunc;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
if (drawClipToStencil) {
GrAssert(settings->fFrontFunc < kBasicStencilFuncCount);
frontFunc = grToGLStencilFunc[settings->fFrontFunc];
} else {
@ -1847,7 +1852,7 @@ void GrGpuGL::flushStencil() {
unsigned int backWriteMask = settings->fBackWriteMask;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
if (drawClipToStencil) {
GrAssert(settings->fBackFunc < kBasicStencilFuncCount);
backFunc = grToGLStencilFunc[settings->fBackFunc];
} else {
@ -1885,12 +1890,13 @@ void GrGpuGL::flushStencil() {
grToGLStencilOp[settings->fFrontPassOp]));
}
}
fHWDrawState.fStencilSettings = fCurrDrawState.fStencilSettings;
*fHWDrawState.stencil() = *settings;
fHWStencilClip = stencilClip;
}
}
void GrGpuGL::flushAAState(GrPrimitiveType type) {
const GrRenderTarget* rt = this->getDrawState().getRenderTarget();
if (kDesktop_GrGLBinding == this->glBinding()) {
// ES doesn't support toggling GL_MULTISAMPLE and doesn't have
// smooth lines.
@ -1906,13 +1912,13 @@ void GrGpuGL::flushAAState(GrPrimitiveType type) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = false;
}
if (fCurrDrawState.fRenderTarget->isMultisampled() &&
if (rt->isMultisampled() &&
fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
}
} else if (fCurrDrawState.fRenderTarget->isMultisampled() &&
SkToBool(kHWAntialias_StateBit & fCurrDrawState.fFlagBits) !=
} else if (rt->isMultisampled() &&
this->getDrawState().isHWAntialiasState() !=
fHWAAState.fMSAAEnabled) {
if (fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
@ -1933,12 +1939,11 @@ void GrGpuGL::flushBlend(GrPrimitiveType type,
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendDisabled = false;
}
if (kSA_BlendCoeff != fHWDrawState.fSrcBlend ||
kISA_BlendCoeff != fHWDrawState.fDstBlend) {
if (kSA_BlendCoeff != fHWDrawState.getSrcBlendCoeff() ||
kISA_BlendCoeff != fHWDrawState.getDstBlendCoeff()) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_BlendCoeff],
gXfermodeCoeff2Blend[kISA_BlendCoeff]));
fHWDrawState.fSrcBlend = kSA_BlendCoeff;
fHWDrawState.fDstBlend = kISA_BlendCoeff;
fHWDrawState.setBlendFunc(kSA_BlendCoeff, kISA_BlendCoeff);
}
} else {
// any optimization to disable blending should
@ -1955,25 +1960,25 @@ void GrGpuGL::flushBlend(GrPrimitiveType type,
fHWBlendDisabled = blendOff;
}
if (!blendOff) {
if (fHWDrawState.fSrcBlend != srcCoeff ||
fHWDrawState.fDstBlend != dstCoeff) {
if (fHWDrawState.getSrcBlendCoeff() != srcCoeff ||
fHWDrawState.getDstBlendCoeff() != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWDrawState.fSrcBlend = srcCoeff;
fHWDrawState.fDstBlend = dstCoeff;
fHWDrawState.setBlendFunc(srcCoeff, dstCoeff);
}
GrColor blendConst = fCurrDrawState.getBlendConstant();
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
fHWDrawState.fBlendConstant != fCurrDrawState.fBlendConstant) {
fHWDrawState.getBlendConstant() != blendConst) {
float c[] = {
GrColorUnpackR(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackG(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackB(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackA(fCurrDrawState.fBlendConstant) / 255.f
GrColorUnpackR(blendConst) / 255.f,
GrColorUnpackG(blendConst) / 255.f,
GrColorUnpackB(blendConst) / 255.f,
GrColorUnpackA(blendConst) / 255.f
};
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWDrawState.fBlendConstant = fCurrDrawState.fBlendConstant;
fHWDrawState.setBlendConstant(blendConst);
}
}
}
@ -2031,14 +2036,16 @@ void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) {
bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
GrDrawState* drawState = this->drawState();
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrAssert(NULL != drawState->getRenderTarget());
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
// bind texture and set sampler state
if (this->isStageEnabled(s)) {
GrGLTexture* nextTexture = (GrGLTexture*)fCurrDrawState.fTextures[s];
GrGLTexture* nextTexture =
static_cast<GrGLTexture*>(drawState->getTexture(s));
// true for now, but maybe not with GrEffect.
GrAssert(NULL != nextTexture);
@ -2052,20 +2059,20 @@ bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
resolveRenderTarget(texRT);
}
if (fHWDrawState.fTextures[s] != nextTexture) {
if (fHWDrawState.getTexture(s) != nextTexture) {
setTextureUnit(s);
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, nextTexture->textureID()));
#if GR_COLLECT_STATS
++fStats.fTextureChngCnt;
#endif
//GrPrintf("---- bindtexture %d\n", nextTexture->textureID());
fHWDrawState.fTextures[s] = nextTexture;
fHWDrawState.setTexture(s, nextTexture);
// The texture matrix has to compensate for texture width/height
// and NPOT-embedded-in-POT
fDirtyFlags.fTextureChangedMask |= (1 << s);
}
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
const GrSamplerState& sampler = drawState->getSampler(s);
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams =
nextTexture->getCachedTexParams(&timestamp);
@ -2117,7 +2124,7 @@ bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
GrIRect* rect = NULL;
GrIRect clipBounds;
if ((fCurrDrawState.fFlagBits & kClip_StateBit) &&
if (drawState->isClipState() &&
fClip.hasConservativeBounds()) {
fClip.getConservativeBounds().roundOut(&clipBounds);
rect = &clipBounds;
@ -2125,19 +2132,18 @@ bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
this->flushRenderTarget(rect);
this->flushAAState(type);
if ((fCurrDrawState.fFlagBits & kDither_StateBit) !=
(fHWDrawState.fFlagBits & kDither_StateBit)) {
if (fCurrDrawState.fFlagBits & kDither_StateBit) {
if (drawState->isDitherState() != fHWDrawState.isDitherState()) {
if (drawState->isDitherState()) {
GL_CALL(Enable(GR_GL_DITHER));
} else {
GL_CALL(Disable(GR_GL_DITHER));
}
}
if ((fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) !=
(fHWDrawState.fFlagBits & kNoColorWrites_StateBit)) {
if (drawState->isColorWriteDisabled() !=
fHWDrawState.isColorWriteDisabled()) {
GrGLenum mask;
if (fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) {
if (drawState->isColorWriteDisabled()) {
mask = GR_GL_FALSE;
} else {
mask = GR_GL_TRUE;
@ -2145,8 +2151,8 @@ bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
GL_CALL(ColorMask(mask, mask, mask, mask));
}
if (fHWDrawState.fDrawFace != fCurrDrawState.fDrawFace) {
switch (fCurrDrawState.fDrawFace) {
if (fHWDrawState.getDrawFace() != drawState->getDrawFace()) {
switch (fCurrDrawState.getDrawFace()) {
case GrDrawState::kCCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
@ -2161,24 +2167,26 @@ bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
default:
GrCrash("Unknown draw face.");
}
fHWDrawState.fDrawFace = fCurrDrawState.fDrawFace;
fHWDrawState.setDrawFace(drawState->getDrawFace());
}
#if GR_DEBUG
// check for circular rendering
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrAssert(!this->isStageEnabled(s) ||
NULL == fCurrDrawState.fRenderTarget ||
NULL == fCurrDrawState.fTextures[s] ||
fCurrDrawState.fTextures[s]->asRenderTarget() !=
fCurrDrawState.fRenderTarget);
NULL == drawState->getRenderTarget() ||
NULL == drawState->getTexture(s) ||
drawState->getTexture(s)->asRenderTarget() !=
drawState->getRenderTarget());
}
#endif
flushStencil();
this->flushStencil();
// flushStencil may look at the private state bits, so keep it before this.
fHWDrawState.fFlagBits = fCurrDrawState.fFlagBits;
// This copy must happen after flushStencil() is called. flushStencil()
// relies on detecting when the kModifyStencilClip_StateBit state has
// changed since the last draw.
fHWDrawState.copyStateFlags(*drawState);
return true;
}
@ -2210,22 +2218,24 @@ void GrGpuGL::notifyIndexBufferDelete(const GrGLIndexBuffer* buffer) {
void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) {
GrAssert(NULL != renderTarget);
if (fCurrDrawState.fRenderTarget == renderTarget) {
fCurrDrawState.fRenderTarget = NULL;
GrDrawState* drawState = this->drawState();
if (drawState->getRenderTarget() == renderTarget) {
drawState->setRenderTarget(NULL);
}
if (fHWDrawState.fRenderTarget == renderTarget) {
fHWDrawState.fRenderTarget = NULL;
if (fHWDrawState.getRenderTarget() == renderTarget) {
fHWDrawState.setRenderTarget(NULL);
}
}
void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) {
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (fCurrDrawState.fTextures[s] == texture) {
fCurrDrawState.fTextures[s] = NULL;
GrDrawState* drawState = this->drawState();
if (drawState->getTexture(s) == texture) {
fCurrDrawState.setTexture(s, NULL);
}
if (fHWDrawState.fTextures[s] == texture) {
if (fHWDrawState.getTexture(s) == texture) {
// deleting bound texture does implied bind to 0
fHWDrawState.fTextures[s] = NULL;
fHWDrawState.setTexture(s, NULL);
}
}
}

View File

@ -338,12 +338,33 @@ GrGpuGLShaders::~GrGpuGLShaders() {
delete fProgramCache;
}
const GrMatrix& GrGpuGLShaders::getHWViewMatrix() {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
return fHWDrawState.getViewMatrix();
} else {
return fProgramData->fViewMatrix;
}
}
void GrGpuGLShaders::recordHWViewMatrix(const GrMatrix& matrix) {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
fHWDrawState.setViewMatrix(matrix);
} else {
fProgramData->fViewMatrix = matrix;
}
}
const GrMatrix& GrGpuGLShaders::getHWSamplerMatrix(int stage) {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) {
return fHWDrawState.fSamplerStates[stage].getMatrix();
return fHWDrawState.getSampler(stage).getMatrix();
} else {
return fProgramData->fTextureMatrices[stage];
}
@ -353,7 +374,7 @@ void GrGpuGLShaders::recordHWSamplerMatrix(int stage, const GrMatrix& matrix) {
GrAssert(fProgramData);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fStages[stage].fTextureMatrixUni) {
fHWDrawState.fSamplerStates[stage].setMatrix(matrix);
fHWDrawState.sampler(stage)->setMatrix(matrix);
} else {
fProgramData->fTextureMatrices[stage] = matrix;
}
@ -388,47 +409,53 @@ void GrGpuGLShaders::onResetContext() {
}
void GrGpuGLShaders::flushViewMatrix() {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrMatrix m;
m.setAll(
GrIntToScalar(2) / fCurrDrawState.fRenderTarget->width(), 0, -GR_Scalar1,
0,-GrIntToScalar(2) / fCurrDrawState.fRenderTarget->height(), GR_Scalar1,
0, 0, GrMatrix::I()[8]);
m.setConcat(m, fCurrDrawState.fViewMatrix);
const GrMatrix& vm = this->getDrawState().getViewMatrix();
if (GrGpuGLShaders::getHWViewMatrix() != vm) {
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
const GrRenderTarget* rt = this->getDrawState().getRenderTarget();
GrAssert(NULL != rt);
GrMatrix m;
m.setAll(
GrIntToScalar(2) / rt->width(), 0, -GR_Scalar1,
0,-GrIntToScalar(2) / rt->height(), GR_Scalar1,
0, 0, GrMatrix::I()[8]);
m.setConcat(m, vm);
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
int baseIdx = GrGLProgram::ViewMatrixAttributeIdx();
GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0));
GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3));
GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6));
} else {
GrAssert(GrGLProgram::kUnusedUniform !=
fProgramData->fUniLocations.fViewMatrixUni);
GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni,
1, false, mt));
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
int baseIdx = GrGLProgram::ViewMatrixAttributeIdx();
GL_CALL(VertexAttrib4fv(baseIdx + 0, mt+0));
GL_CALL(VertexAttrib4fv(baseIdx + 1, mt+3));
GL_CALL(VertexAttrib4fv(baseIdx + 2, mt+6));
} else {
GrAssert(GrGLProgram::kUnusedUniform !=
fProgramData->fUniLocations.fViewMatrixUni);
GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni,
1, false, mt));
}
this->recordHWViewMatrix(vm);
}
}
void GrGpuGLShaders::flushTextureDomain(int s) {
const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTexDomUni;
const GrDrawState& drawState = this->getDrawState();
if (GrGLProgram::kUnusedUniform != uni) {
const GrRect &texDom =
fCurrDrawState.fSamplerStates[s].getTextureDomain();
const GrRect &texDom = drawState.getSampler(s).getTextureDomain();
if (((1 << s) & fDirtyFlags.fTextureChangedMask) ||
fProgramData->fTextureDomain[s] != texDom) {
@ -442,7 +469,8 @@ void GrGpuGLShaders::flushTextureDomain(int s) {
GrScalarToFloat(texDom.bottom())
};
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
const GrGLTexture* texture =
static_cast<const GrGLTexture*>(drawState.getTexture(s));
GrGLTexture::Orientation orientation = texture->orientation();
// vertical flip if necessary
@ -461,19 +489,17 @@ void GrGpuGLShaders::flushTextureDomain(int s) {
void GrGpuGLShaders::flushTextureMatrix(int s) {
const GrGLint& uni = fProgramData->fUniLocations.fStages[s].fTextureMatrixUni;
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
const GrDrawState& drawState = this->getDrawState();
const GrGLTexture* texture =
static_cast<const GrGLTexture*>(drawState.getTexture(s));
if (NULL != texture) {
if (GrGLProgram::kUnusedUniform != uni &&
(((1 << s) & fDirtyFlags.fTextureChangedMask) ||
getHWSamplerMatrix(s) != getSamplerMatrix(s))) {
this->getHWSamplerMatrix(s) != drawState.getSampler(s).getMatrix())) {
GrAssert(NULL != fCurrDrawState.fTextures[s]);
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
GrMatrix m = getSamplerMatrix(s);
GrSamplerState::SampleMode mode =
fCurrDrawState.fSamplerStates[s].getSampleMode();
GrMatrix m = drawState.getSampler(s).getMatrix();
GrSamplerState::SampleMode mode =
drawState.getSampler(s).getSampleMode();
AdjustTextureMatrix(texture, mode, &m);
// ES doesn't allow you to pass true to the transpose param,
@ -499,7 +525,7 @@ void GrGpuGLShaders::flushTextureMatrix(int s) {
} else {
GL_CALL(UniformMatrix3fv(uni, 1, false, mt));
}
recordHWSamplerMatrix(s, getSamplerMatrix(s));
this->recordHWSamplerMatrix(s, drawState.getSampler(s).getMatrix());
}
}
}
@ -507,7 +533,7 @@ void GrGpuGLShaders::flushTextureMatrix(int s) {
void GrGpuGLShaders::flushRadial2(int s) {
const int &uni = fProgramData->fUniLocations.fStages[s].fRadial2Uni;
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
const GrSamplerState& sampler = this->getDrawState().getSampler(s);
if (GrGLProgram::kUnusedUniform != uni &&
(fProgramData->fRadial2CenterX1[s] != sampler.getRadial2CenterX1() ||
fProgramData->fRadial2Radius0[s] != sampler.getRadial2Radius0() ||
@ -539,7 +565,7 @@ void GrGpuGLShaders::flushRadial2(int s) {
}
void GrGpuGLShaders::flushConvolution(int s) {
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
const GrSamplerState& sampler = this->getDrawState().getSampler(s);
int kernelUni = fProgramData->fUniLocations.fStages[s].fKernelUni;
if (GrGLProgram::kUnusedUniform != kernelUni) {
GL_CALL(Uniform1fv(kernelUni, sampler.getKernelWidth(),
@ -554,7 +580,8 @@ void GrGpuGLShaders::flushConvolution(int s) {
void GrGpuGLShaders::flushTexelSize(int s) {
const int& uni = fProgramData->fUniLocations.fStages[s].fNormalizedTexelSizeUni;
if (GrGLProgram::kUnusedUniform != uni) {
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
const GrGLTexture* texture =
static_cast<const GrGLTexture*>(this->getDrawState().getTexture(s));
if (texture->width() != fProgramData->fTextureWidth[s] ||
texture->height() != fProgramData->fTextureHeight[s]) {
@ -570,13 +597,13 @@ void GrGpuGLShaders::flushTexelSize(int s) {
void GrGpuGLShaders::flushEdgeAAData() {
const int& uni = fProgramData->fUniLocations.fEdgesUni;
if (GrGLProgram::kUnusedUniform != uni) {
int count = fCurrDrawState.fEdgeAANumEdges;
int count = this->getDrawState().getNumAAEdges();
GrDrawState::Edge edges[GrDrawState::kMaxEdges];
// Flip the edges in Y
float height =
static_cast<float>(fCurrDrawState.fRenderTarget->height());
static_cast<float>(this->getDrawState().getRenderTarget()->height());
for (int i = 0; i < count; ++i) {
edges[i] = fCurrDrawState.fEdgeAAEdges[i];
edges[i] = this->getDrawState().getAAEdges()[i];
float b = edges[i].fY;
edges[i].fY = -b;
edges[i].fZ += b * height;
@ -596,19 +623,21 @@ static const float ONE_OVER_255 = 1.f / 255.f;
void GrGpuGLShaders::flushColor(GrColor color) {
const ProgramDesc& desc = fCurrentProgram.getDesc();
const GrDrawState& drawState = this->getDrawState();
if (this->getGeomSrc().fVertexLayout & kColor_VertexLayoutBit) {
// color will be specified per-vertex as an attribute
// invalidate the const vertex attrib color
fHWDrawState.fColor = GrColor_ILLEGAL;
fHWDrawState.setColor(GrColor_ILLEGAL);
} else {
switch (desc.fColorInput) {
case ProgramDesc::kAttribute_ColorInput:
if (fHWDrawState.fColor != color) {
if (fHWDrawState.getColor() != color) {
// OpenGL ES only supports the float varities of glVertexAttrib
float c[] = GR_COLOR_TO_VEC4(color);
GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(),
c));
fHWDrawState.fColor = color;
fHWDrawState.setColor(color);
}
break;
case ProgramDesc::kUniform_ColorInput:
@ -632,10 +661,10 @@ void GrGpuGLShaders::flushColor(GrColor color) {
if (fProgramData->fUniLocations.fColorFilterUni
!= GrGLProgram::kUnusedUniform
&& fProgramData->fColorFilterColor
!= fCurrDrawState.fColorFilterColor) {
float c[] = GR_COLOR_TO_VEC4(fCurrDrawState.fColorFilterColor);
!= drawState.getColorFilterColor()) {
float c[] = GR_COLOR_TO_VEC4(drawState.getColorFilterColor());
GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorFilterUni, 1, c));
fProgramData->fColorFilterColor = fCurrDrawState.fColorFilterColor;
fProgramData->fColorFilterColor = drawState.getColorFilterColor();
}
}
@ -645,10 +674,12 @@ bool GrGpuGLShaders::flushGraphicsState(GrPrimitiveType type) {
return false;
}
const GrDrawState& drawState = this->getDrawState();
if (fDirtyFlags.fRenderTargetChanged) {
// our coords are in pixel space and the GL matrices map to NDC
// so if the viewport changed, our matrix is now wrong.
fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix();
fHWDrawState.setViewMatrix(GrMatrix::InvalidMatrix());
// we assume all shader matrices may be wrong after viewport changes
fProgramCache->invalidateViewMatrices();
}
@ -680,22 +711,11 @@ bool GrGpuGLShaders::flushGraphicsState(GrPrimitiveType type) {
} else if (blendOpts & kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
} else {
color = fCurrDrawState.fColor;
color = drawState.getColor();
}
this->flushColor(color);
GrMatrix* currViewMatrix;
if (GrGLProgram::kSetAsAttribute ==
fProgramData->fUniLocations.fViewMatrixUni) {
currViewMatrix = &fHWDrawState.fViewMatrix;
} else {
currViewMatrix = &fProgramData->fViewMatrix;
}
if (*currViewMatrix != fCurrDrawState.fViewMatrix) {
flushViewMatrix();
*currViewMatrix = fCurrDrawState.fViewMatrix;
}
this->flushViewMatrix();
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
this->flushTextureMatrix(s);
@ -857,6 +877,7 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
BlendOptFlags blendOpts,
GrBlendCoeff dstCoeff) {
ProgramDesc& desc = fCurrentProgram.fProgramDesc;
const GrDrawState& drawState = this->getDrawState();
// This should already have been caught
GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts));
@ -885,7 +906,7 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
desc.fColorFilterXfermode = skipColor ?
SkXfermode::kDst_Mode :
fCurrDrawState.fColorFilterXfermode;
drawState.getColorFilterMode();
// no reason to do edge aa or look at per-vertex coverage if coverage is
// ignored
@ -897,7 +918,7 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) ||
(!requiresAttributeColors &&
0xffffffff == fCurrDrawState.fColor);
0xffffffff == drawState.getColor());
if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) {
desc.fColorInput = ProgramDesc::kTransBlack_ColorInput;
} else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) {
@ -908,16 +929,15 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
desc.fColorInput = ProgramDesc::kAttribute_ColorInput;
}
desc.fEdgeAANumEdges = skipCoverage ? 0 : fCurrDrawState.fEdgeAANumEdges;
desc.fEdgeAANumEdges = skipCoverage ? 0 : drawState.getNumAAEdges();
desc.fEdgeAAConcave = desc.fEdgeAANumEdges > 0 &&
SkToBool(fCurrDrawState.fFlagBits &
kEdgeAAConcave_StateBit);
drawState.isConcaveEdgeAAState();
int lastEnabledStage = -1;
if (!skipCoverage && (desc.fVertexLayout &
GrDrawTarget::kEdge_VertexLayoutBit)) {
desc.fVertexEdgeType = fCurrDrawState.fVertexEdgeType;
desc.fVertexEdgeType = drawState.getVertexEdgeType();
} else {
// use canonical value when not set to avoid cache misses
desc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType;
@ -929,19 +949,20 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
stage.fOptFlags = 0;
stage.setEnabled(this->isStageEnabled(s));
bool skip = s < fCurrDrawState.fFirstCoverageStage ? skipColor :
bool skip = s < drawState.getFirstCoverageStage() ? skipColor :
skipCoverage;
if (!skip && stage.isEnabled()) {
lastEnabledStage = s;
GrGLTexture* texture = (GrGLTexture*) fCurrDrawState.fTextures[s];
const GrGLTexture* texture =
static_cast<const GrGLTexture*>(drawState.getTexture(s));
GrAssert(NULL != texture);
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
const GrSamplerState& sampler = drawState.getSampler(s);
// we matrix to invert when orientation is TopDown, so make sure
// we aren't in that case before flagging as identity.
if (TextureMatrixIsIdentity(texture, sampler)) {
stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit;
} else if (!getSamplerMatrix(s).hasPerspective()) {
} else if (!sampler.getMatrix().hasPerspective()) {
stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit;
}
switch (sampler.getSampleMode()) {
@ -1024,7 +1045,7 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
}
}
if (GrPixelConfigIsUnpremultiplied(fCurrDrawState.fRenderTarget->config())) {
if (GrPixelConfigIsUnpremultiplied(drawState.getRenderTarget()->config())) {
desc.fOutputPM = ProgramDesc::kNo_OutputPM;
} else {
desc.fOutputPM = ProgramDesc::kYes_OutputPM;
@ -1046,9 +1067,9 @@ void GrGpuGLShaders::buildProgram(GrPrimitiveType type,
// immaterial.
int firstCoverageStage = GrDrawState::kNumStages;
desc.fFirstCoverageStage = GrDrawState::kNumStages;
bool hasCoverage = fCurrDrawState.fFirstCoverageStage <= lastEnabledStage;
bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage;
if (hasCoverage) {
firstCoverageStage = fCurrDrawState.fFirstCoverageStage;
firstCoverageStage = drawState.getFirstCoverageStage();
}
// other coverage inputs

View File

@ -46,6 +46,8 @@ private:
class ProgramCache;
// Helpers to make code more readable
const GrMatrix& getHWViewMatrix();
void recordHWViewMatrix(const GrMatrix& matrix);
const GrMatrix& getHWSamplerMatrix(int stage);
void recordHWSamplerMatrix(int stage, const GrMatrix& matrix);

View File

@ -9,6 +9,7 @@
#include "GrInOrderDrawBuffer.h"
#include "GrRenderTarget.h"
#include "GrTexture.h"
#include "GrBufferAllocPool.h"
#include "GrIndexBuffer.h"
@ -78,6 +79,8 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
GrAssert(!(fDraws.empty() && fCurrQuad));
GrAssert(!(0 != fMaxQuads && NULL == fQuadIndexBuffer));
GrDrawState* drawState = this->drawState();
// if we have a quad IB then either append to the previous run of
// rects or start a new run
if (fMaxQuads) {
@ -89,9 +92,8 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
GrPrintf("Failed to get space for vertices!\n");
return;
}
AutoViewMatrixRestore avmr(this);
GrMatrix combinedMatrix = this->getViewMatrix();
this->setViewMatrix(GrMatrix::I());
GrMatrix combinedMatrix = drawState->getViewMatrix();
GrDrawState::AutoViewMatrixRestore avmr(drawState, GrMatrix::I());
if (NULL != matrix) {
combinedMatrix.preConcat(*matrix);
}
@ -102,14 +104,14 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
// simply because the clip has changed if the clip doesn't affect
// the rect.
bool disabledClip = false;
if (this->isClipState() && fClip.isRect()) {
if (drawState->isClipState() && fClip.isRect()) {
GrRect clipRect = fClip.getRect(0);
// If the clip rect touches the edge of the viewport, extended it
// out (close) to infinity to avoid bogus intersections.
// We might consider a more exact clip to viewport if this
// conservative test fails.
const GrRenderTarget* target = this->getRenderTarget();
const GrRenderTarget* target = drawState->getRenderTarget();
if (0 >= clipRect.fLeft) {
clipRect.fLeft = GR_ScalarMin;
}
@ -132,7 +134,7 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
}
}
if (insideClip) {
this->disableState(kClip_StateBit);
drawState->disableState(GrDrawState::kClip_StateBit);
disabledClip = true;
}
}
@ -176,7 +178,7 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
fLastRectVertexLayout = layout;
}
if (disabledClip) {
this->enableState(kClip_StateBit);
drawState->enableState(GrDrawState::kClip_StateBit);
}
} else {
INHERITED::drawRect(rect, matrix, stageMask, srcRects, srcMatrices);
@ -310,8 +312,8 @@ void GrInOrderDrawBuffer::clear(const GrIRect* rect, GrColor color) {
// the current render target. If we get that smart we have to make sure
// those draws aren't read before this clear (render-to-texture).
r.setLTRB(0, 0,
this->getRenderTarget()->width(),
this->getRenderTarget()->height());
this->getDrawState().getRenderTarget()->width(),
this->getDrawState().getRenderTarget()->height());
rect = &r;
}
Clear& clr = fClears.push_back();
@ -328,9 +330,9 @@ void GrInOrderDrawBuffer::reset() {
for (uint32_t i = 0; i < numStates; ++i) {
const GrDrawState& dstate = this->accessSavedDrawState(fStates[i]);
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrSafeUnref(dstate.fTextures[s]);
GrSafeUnref(dstate.getTexture(s));
}
GrSafeUnref(dstate.fRenderTarget);
GrSafeUnref(dstate.getRenderTarget());
}
int numDraws = fDraws.count();
for (int d = 0; d < numDraws; ++d) {
@ -593,15 +595,16 @@ bool GrInOrderDrawBuffer::needsNewState() const {
}
void GrInOrderDrawBuffer::pushState() {
const GrDrawState& drawState = this->getDrawState();
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrSafeRef(fCurrDrawState.fTextures[s]);
GrSafeRef(drawState.getTexture(s));
}
GrSafeRef(fCurrDrawState.fRenderTarget);
GrSafeRef(drawState.getRenderTarget());
this->saveCurrentDrawState(&fStates.push_back());
}
bool GrInOrderDrawBuffer::needsNewClip() const {
if (fCurrDrawState.fFlagBits & kClip_StateBit) {
if (this->getDrawState().isClipState()) {
if (fClips.empty() || (fClipSet && fClips.back() != fClip)) {
return true;
}

View File

@ -12,6 +12,7 @@
#include "GrDrawState.h"
#include "GrPathUtils.h"
#include "GrPoint.h"
#include "GrRenderTarget.h"
#include "GrTDArray.h"
#include "SkTemplates.h"
@ -348,10 +349,11 @@ static size_t computeEdgesAndIntersect(const GrMatrix& matrix,
void GrTesselatedPathRenderer::drawPath(GrDrawState::StageMask stageMask) {
GrDrawTarget::AutoStateRestore asr(fTarget);
GrDrawState* drawState = fTarget->drawState();
// face culling doesn't make sense here
GrAssert(GrDrawState::kBoth_DrawFace == fTarget->getDrawFace());
GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());
GrMatrix viewM = fTarget->getViewMatrix();
GrMatrix viewM = drawState->getViewMatrix();
GrScalar tol = GR_Scalar1;
tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, fPath->getBounds());
@ -433,12 +435,12 @@ FINISHED:
if (inverted) {
GrRect bounds;
GrAssert(NULL != fTarget->getRenderTarget());
GrAssert(NULL != drawState->getRenderTarget());
bounds.setLTRB(0, 0,
GrIntToScalar(fTarget->getRenderTarget()->width()),
GrIntToScalar(fTarget->getRenderTarget()->height()));
GrIntToScalar(drawState->getRenderTarget()->width()),
GrIntToScalar(drawState->getRenderTarget()->height()));
GrMatrix vmi;
if (fTarget->getViewInverse(&vmi)) {
if (drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
}
*vert++ = GrPoint::Make(bounds.fLeft, bounds.fTop);
@ -460,8 +462,8 @@ FINISHED:
if (subpathCnt == 1 && !inverted && fPath->isConvex()) {
if (fAntiAlias) {
GrEdgeArray edges;
GrMatrix inverse, matrix = fTarget->getViewMatrix();
fTarget->getViewInverse(&inverse);
GrMatrix inverse, matrix = drawState->getViewMatrix();
drawState->getViewInverse(&inverse);
count = computeEdgesAndIntersect(matrix, inverse, base, count, &edges, 0.0f);
size_t maxEdges = fTarget->getMaxEdges();
@ -471,7 +473,7 @@ FINISHED:
if (count <= maxEdges) {
// All edges fit; upload all edges and draw all verts as a fan
fTarget->setVertexSourceToArray(layout, base, count);
fTarget->setEdgeAAData(&edges[0], count);
drawState->setEdgeAAData(&edges[0], count);
fTarget->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
} else {
// Upload "maxEdges" edges and verts at a time, and draw as
@ -481,11 +483,11 @@ FINISHED:
base[i] = base[0];
int size = GR_CT_MIN(count - i, maxEdges);
fTarget->setVertexSourceToArray(layout, &base[i], size);
fTarget->setEdgeAAData(&edges[i], size);
drawState->setEdgeAAData(&edges[i], size);
fTarget->drawNonIndexed(kTriangleFan_PrimitiveType, 0, size);
}
}
fTarget->setEdgeAAData(NULL, 0);
drawState->setEdgeAAData(NULL, 0);
} else {
fTarget->setVertexSourceToArray(layout, base, count);
fTarget->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
@ -498,8 +500,8 @@ FINISHED:
GrBoundaryTess btess(count, fill_type_to_glu_winding_rule(fFill));
btess.addVertices(base, subpathVertCount, subpathCnt);
GrMatrix inverse, matrix = fTarget->getViewMatrix();
if (!fTarget->getViewInverse(&inverse)) {
GrMatrix inverse, matrix = drawState->getViewMatrix();
if (!drawState->getViewInverse(&inverse)) {
return;
}
@ -534,7 +536,7 @@ FINISHED:
}
// Draw the resulting polys and upload their edge data.
fTarget->enableState(GrDrawTarget::kEdgeAAConcave_StateBit);
drawState->enableState(GrDrawState::kEdgeAAConcave_StateBit);
const GrPointArray& vertices = ptess.vertices();
const GrIndexArray& indices = ptess.indices();
const GrDrawState::Edge* edges = ptess.edges();
@ -567,12 +569,12 @@ FINISHED:
tri_edges[t++] = edge4;
tri_edges[t++] = edge5;
}
fTarget->setEdgeAAData(&tri_edges[0], t);
drawState->setEdgeAAData(&tri_edges[0], t);
fTarget->setVertexSourceToArray(layout, &tri_verts[0], 3);
fTarget->drawNonIndexed(kTriangles_PrimitiveType, 0, 3);
}
fTarget->setEdgeAAData(NULL, 0);
fTarget->disableState(GrDrawTarget::kEdgeAAConcave_StateBit);
drawState->setEdgeAAData(NULL, 0);
drawState->disableState(GrDrawState::kEdgeAAConcave_StateBit);
return;
}

View File

@ -25,7 +25,7 @@ enum {
void GrTextContext::flushGlyphs() {
if (fCurrVertex > 0) {
GrDrawTarget::AutoStateRestore asr(fDrawTarget);
GrDrawState* drawState = fDrawTarget->drawState();
// setup our sampler state for our text texture/atlas
GrSamplerState::Filter filter;
if (fExtMatrix.isIdentity()) {
@ -35,12 +35,12 @@ void GrTextContext::flushGlyphs() {
}
GrSamplerState sampler(GrSamplerState::kRepeat_WrapMode,
filter);
fDrawTarget->setSamplerState(kGlyphMaskStage, sampler);
drawState->setSampler(kGlyphMaskStage, sampler);
GrAssert(GrIsALIGN4(fCurrVertex));
int nIndices = fCurrVertex + (fCurrVertex >> 1);
GrAssert(fCurrTexture);
fDrawTarget->setTexture(kGlyphMaskStage, fCurrTexture);
drawState->setTexture(kGlyphMaskStage, fCurrTexture);
if (!GrPixelConfigIsAlphaOnly(fCurrTexture->config())) {
if (kOne_BlendCoeff != fPaint.fSrcBlendCoeff ||
@ -49,15 +49,15 @@ void GrTextContext::flushGlyphs() {
GrPrintf("LCD Text will not draw correctly.\n");
}
// setup blend so that we get mask * paintColor + (1-mask)*dstColor
fDrawTarget->setBlendConstant(fPaint.fColor);
drawState->setBlendConstant(fPaint.fColor);
fDrawTarget->setBlendFunc(kConstC_BlendCoeff, kISC_BlendCoeff);
// don't modulate by the paint's color in the frag since we're
// already doing it via the blend const.
fDrawTarget->setColor(0xffffffff);
drawState->setColor(0xffffffff);
} else {
// set back to normal in case we took LCD path previously.
fDrawTarget->setBlendFunc(fPaint.fSrcBlendCoeff, fPaint.fDstBlendCoeff);
fDrawTarget->setColor(fPaint.fColor);
drawState->setColor(fPaint.fColor);
}
fDrawTarget->setIndexSourceToBuffer(fContext->getQuadIndexBuffer());