[docs] Add back in all images and fix broken image links.
Change-Id: I0ffd838880746dbfe534ea615277fc24cd26b7ec No-Try: true Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.3?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Digests?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Status?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Cluster?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Perf?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.2?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/lemma4?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/IssueHighlight?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/lemma3.1?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/tracing?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/BlameView?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.2.2?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/download?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Isolate?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Search?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/end?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/image?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Grid?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.2.1?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/debugger?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/pdftheory?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/resources?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/playcommands?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/DotDiagram?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Ignores?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/onlinedebugger?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/crosshair?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/frameplayback?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.1?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/buttons?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/ClusterConfig?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/lemma3.2?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/skiaperf?cl=392736 Docs-Preview: https://skia.org/docs/dev/contrib/SuggestedReviewers?cl=392736 Docs-Preview: https://skia.org/docs/user/modules/PathKit_effects?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/Regression?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/ByTest?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/settings?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/conical/lemma1?cl=392736 Docs-Preview: https://skia.org/docs/dev/design/PdfLogicalDocumentStructure?cl=392736 Docs-Preview: https://skia.org/docs/dev/testing/skiagold?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/expand?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/tracing_load?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/layers?cl=392736 Docs-Preview: https://skia.org/docs/dev/tools/gpuop?cl=392736 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/392736 Reviewed-by: Joe Gregorio <jcgregorio@google.com>
BIN
site/docs/dev/contrib/SuggestedReviewers.png
Normal file
After Width: | Height: | Size: 129 KiB |
BIN
site/docs/dev/design/PdfLogicalDocumentStructure.png
Normal file
After Width: | Height: | Size: 48 KiB |
@ -15,11 +15,12 @@ MathJax.Hub.Config({
|
||||
|
||||
(Please refresh the page if you see a lot of dollars instead of math symbols.)
|
||||
|
||||
We present a fast shading algorithm (compared to bruteforcely solving the quadratic equation of
|
||||
gradient $t$) for computing the two-point conical gradient (i.e., `createRadialGradient` in
|
||||
We present a fast shading algorithm (compared to bruteforcely solving the
|
||||
quadratic equation of gradient $t$) for computing the two-point conical gradient
|
||||
(i.e., `createRadialGradient` in
|
||||
[spec](https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-createradialgradient)).
|
||||
It reduced the number of multiplications per pixel from ~10 down to 3, and brought a speedup of up to
|
||||
26% in our nanobenches.
|
||||
It reduced the number of multiplications per pixel from ~10 down to 3, and
|
||||
brought a speedup of up to 26% in our nanobenches.
|
||||
|
||||
This document has 3 parts:
|
||||
|
||||
@ -27,16 +28,19 @@ This document has 3 parts:
|
||||
2. [Algorithm](#algorithm)
|
||||
3. [Appendix](#appendix)
|
||||
|
||||
Part 1 and 2 are self-explanatory. Part 3 shows how to geometrically proves our Theorem 1 in part
|
||||
2; it's more complicated but it gives us a nice picture about what's going on.
|
||||
Part 1 and 2 are self-explanatory. Part 3 shows how to geometrically proves our
|
||||
Theorem 1 in part 2; it's more complicated but it gives us a nice picture about
|
||||
what's going on.
|
||||
|
||||
## <span id="problem-statement">Problem Statement and Setup</span>
|
||||
|
||||
Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any
|
||||
point $P = (x, y)$ we want the shader to quickly compute a gradient $t \in \mathbb R$ such that $p$
|
||||
is on the linearly interpolated circle with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
|
||||
$r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be _positive_). If
|
||||
there are multiple (at most 2) solutions of $t$, choose the bigger one.
|
||||
Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is
|
||||
the radius. For any point $P = (x, y)$ we want the shader to quickly compute a
|
||||
gradient $t \in \mathbb R$ such that $p$ is on the linearly interpolated circle
|
||||
with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
|
||||
$r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be
|
||||
_positive_). If there are multiple (at most 2) solutions of $t$, choose the
|
||||
bigger one.
|
||||
|
||||
There are two degenerated cases:
|
||||
|
||||
@ -45,90 +49,109 @@ There are two degenerated cases:
|
||||
|
||||
<!-- TODO maybe add some fiddle or images here to illustrate the two degenerated cases -->
|
||||
|
||||
They are easy to handle so we won't cover them here. From now on, we assume $C_0 \neq C_1$ and $r_0
|
||||
They are easy to handle so we won't cover them here. From now on, we assume
|
||||
$C_0 \neq C_1$ and $r_0
|
||||
\neq r_1$.
|
||||
|
||||
As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
|
||||
corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$.
|
||||
Solving the latter equation gets us $f = r_0 / (r_0 - r_1)$.
|
||||
As $r_0 \neq r_1$, we can find a focal point
|
||||
$C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its corresponding linearly
|
||||
interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$. Solving the
|
||||
latter equation gets us $f = r_0 / (r_0 - r_1)$.
|
||||
|
||||
As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$. If $r_1 = 0$, we can
|
||||
swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set
|
||||
$t = 1 - t_s$. The only catch here is that with multiple solutions of $t_s$, we shall choose the
|
||||
smaller one (so $t$ could be the bigger one).
|
||||
As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$.
|
||||
If $r_1 = 0$, we can swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient
|
||||
$t_s$ as if $r_1 \neq 0$, and finally set $t = 1 - t_s$. The only catch here is
|
||||
that with multiple solutions of $t_s$, we shall choose the smaller one (so $t$
|
||||
could be the bigger one).
|
||||
|
||||
Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do a linear
|
||||
transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the transformation:
|
||||
Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do
|
||||
a linear transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the
|
||||
transformation:
|
||||
|
||||
1. All centers $C_t = (x_t, 0)$ must be on the $x$ axis
|
||||
2. The radius $r_t$ is $x_t r_1$.
|
||||
3. Given $x_t$ , we can derive $t = f + (1 - f) x_t$
|
||||
|
||||
From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$ so we're only
|
||||
interested positive solution $x_t$. Again, if there are multiple $x_t$ solutions, we may want to
|
||||
find the bigger one if $1 - f > 0$, and smaller one if $1 - f < 0$, so the corresponding $t$ is
|
||||
always the bigger one (note that $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
|
||||
From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$
|
||||
so we're only interested positive solution $x_t$. Again, if there are multiple
|
||||
$x_t$ solutions, we may want to find the bigger one if $1 - f > 0$, and smaller
|
||||
one if $1 - f < 0$, so the corresponding $t$ is always the bigger one (note that
|
||||
$f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
|
||||
|
||||
## <span id="algorithm">Algorithm</span>
|
||||
|
||||
**Theorem 1.** The solution to $x_t$ is
|
||||
|
||||
1. $\frac{x^2 + y^2}{(1 + r_1) x} = \frac{x^2 + y^2}{2 x}$ if $r_1 = 1$
|
||||
2. $\left(\sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if $r_1 > 1$
|
||||
3. $\left(\pm \sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if $r_1 < 1$.
|
||||
2. $\left(\sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if
|
||||
$r_1 > 1$
|
||||
3. $\left(\pm \sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if
|
||||
$r_1 < 1$.
|
||||
|
||||
Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce valid $x_t > 0$. Case
|
||||
3 may have no solution at all if $(r_1^2 - 1) y^2 + r_1^2 x^2 < 0$.
|
||||
Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce
|
||||
valid $x_t > 0$. Case 3 may have no solution at all if
|
||||
$(r_1^2 - 1) y^2 + r_1^2 x^2 < 0$.
|
||||
|
||||
_Proof._ Algebriacally, solving the quadratic equation $(x_t - x)^2 + y^2 = (x_t r_1)^2$ and
|
||||
eliminate negative $x_t$ solutions get us the theorem.
|
||||
_Proof._ Algebriacally, solving the quadratic equation
|
||||
$(x_t - x)^2 + y^2 = (x_t r_1)^2$ and eliminate negative $x_t$ solutions get us
|
||||
the theorem.
|
||||
|
||||
Alternatively, we can also combine Corollary 2., 3., and Lemma 4. in the Appendix to geometrically
|
||||
prove the theorem. $\square$
|
||||
Alternatively, we can also combine Corollary 2., 3., and Lemma 4. in the
|
||||
Appendix to geometrically prove the theorem. $\square$
|
||||
|
||||
Theorem 1 by itself is not sufficient for our shader algorithm because:
|
||||
|
||||
1. we still need to compute $t$ from $x_t$ (remember that $t = f + (1-f) x_t$);
|
||||
2. we still need to handle cases of choosing the bigger/smaller $x_t$;
|
||||
3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$ if $r_1 = 0$);
|
||||
4. there are way too many multiplications and divisions in Theorem 1 that would slow our shader.
|
||||
3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$
|
||||
if $r_1 = 0$);
|
||||
4. there are way too many multiplications and divisions in Theorem 1 that would
|
||||
slow our shader.
|
||||
|
||||
Issue 2 and 3 are solved by generating different shader code based on different situations. So they
|
||||
are mainly correctness issues rather than performance issues. Issue 1 and 4 are performance
|
||||
critical, and they will affect how we handle issue 2 and 3.
|
||||
Issue 2 and 3 are solved by generating different shader code based on different
|
||||
situations. So they are mainly correctness issues rather than performance
|
||||
issues. Issue 1 and 4 are performance critical, and they will affect how we
|
||||
handle issue 2 and 3.
|
||||
|
||||
The key to handle 1 and 4 efficiently is to fold as many multiplications and divisions into the
|
||||
linear transformation matrix, which the shader has to do anyway (remember our linear transformation
|
||||
to map $C_f, C_1$ to $(0, 0), (1, 0)$).
|
||||
The key to handle 1 and 4 efficiently is to fold as many multiplications and
|
||||
divisions into the linear transformation matrix, which the shader has to do
|
||||
anyway (remember our linear transformation to map $C_f, C_1$ to
|
||||
$(0, 0), (1, 0)$).
|
||||
|
||||
For example, let $\hat x, \hat y = |1-f|x, |1-f|y$. Computing $\hat x_t$ with respect to $\hat x,
|
||||
\hat y$ allow us to have $t = f + (1 - f)x_t = f + \text{sign}(1-f) \cdot \hat x_t$. That saves us
|
||||
one multiplication. Applying similar techniques to Theorem 1 gets us:
|
||||
For example, let $\hat x, \hat y = |1-f|x, |1-f|y$. Computing $\hat x_t$ with
|
||||
respect to $\hat x,
|
||||
\hat y$ allow us to have
|
||||
$t = f + (1 - f)x_t = f + \text{sign}(1-f) \cdot \hat x_t$. That saves us one
|
||||
multiplication. Applying similar techniques to Theorem 1 gets us:
|
||||
|
||||
1. If $r_1 = 1$, let $x' = x/2,~ y' = y/2$, then $x_t = (x'^2 + y'^2) / x'$.
|
||||
2. If $r_1 > 1$, let $x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{r_1^2 - 1}}{r_1^2 - 1} y$, then
|
||||
2. If $r_1 > 1$, let
|
||||
$x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{r_1^2 - 1}}{r_1^2 - 1} y$, then
|
||||
$x_t = \sqrt{x'^2 + y'^2} - x' / r_1$
|
||||
3. If $r_1 < 1$, let $x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{1 - r_1^2}}{r_1^2 - 1} y$, then
|
||||
3. If $r_1 < 1$, let
|
||||
$x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{1 - r_1^2}}{r_1^2 - 1} y$, then
|
||||
$x_t = \pm\sqrt{x'^2 - y'^2} - x' / r_1$
|
||||
|
||||
Combining it with the swapping, the equation $t = f + (1-f) x_t$, and the fact that we only want
|
||||
positive $x_t > 0$ and bigger $t$, we have our final algorithm:
|
||||
Combining it with the swapping, the equation $t = f + (1-f) x_t$, and the fact
|
||||
that we only want positive $x_t > 0$ and bigger $t$, we have our final
|
||||
algorithm:
|
||||
|
||||
**Algorithm 1.**
|
||||
|
||||
1. Let $C'_0, r'_0, C'_1, r'_1 = C_0, r_0, C_1, r_1$ if there is no swapping and $C'_0,
|
||||
1. Let $C'_0, r'_0, C'_1, r'_1 = C_0, r_0, C_1, r_1$ if there is no swapping and
|
||||
$C'_0,
|
||||
r'_0, C'_1, r'_1 = C_1, r_1, C_0, r_0$ if there is swapping.
|
||||
2. Let $f = r'_0 / (r'_0 - r'_1)$ and $1 - f = r'_1 / (r'_1 - r'_0)$
|
||||
3. Let $x' = x/2,~ y' = y/2$ if $r_1 = 1$, and
|
||||
$x' = r_1 / (r_1^2 - 1) x,~ y' = \sqrt{|r_1^2 - 1|} / (r_1^2 - 1) y$ if $r_1 \neq 1$
|
||||
$x' = r_1 / (r_1^2 - 1) x,~ y' = \sqrt{|r_1^2 - 1|} / (r_1^2 - 1) y$ if
|
||||
$r_1 \neq 1$
|
||||
4. Let $\hat x = |1 - f|x', \hat y = |1 - f|y'$
|
||||
5. If $r_1 = 1$, let $\hat x_t = (\hat x^2 + \hat y^2) / \hat x$
|
||||
6. If $r_1 > 1$,
|
||||
let $\hat x_t = \sqrt{\hat x^2 + \hat y^2} - \hat x / r_1$
|
||||
6. If $r_1 > 1$, let $\hat x_t = \sqrt{\hat x^2 + \hat y^2} - \hat x / r_1$
|
||||
7. If $r_1 < 1$
|
||||
8. return invalid if $\hat x^2 - \hat y^2 < 0$
|
||||
9. let $\hat x_t = -\sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ if we've swapped $r_0, r_1$,
|
||||
or if $1 - f < 0$
|
||||
9. let $\hat x_t = -\sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ if we've swapped
|
||||
$r_0, r_1$, or if $1 - f < 0$
|
||||
|
||||
10. let $\hat x_t = \sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ otherwise
|
||||
|
||||
@ -136,74 +159,87 @@ positive $x_t > 0$ and bigger $t$, we have our final algorithm:
|
||||
12. Let $t = f + \text{sign}(1 - f) \hat x_t$
|
||||
13. If swapped, let $t = 1 - t$
|
||||
|
||||
In step 7, we try to select either the smaller or bigger $\hat x_t$ based on whether the final $t$
|
||||
has a negative or positive relationship with $\hat x_t$. It's negative if we've swapped, or if
|
||||
$\text{sign}(1 - f)$ is negative (these two cannot both happen).
|
||||
In step 7, we try to select either the smaller or bigger $\hat x_t$ based on
|
||||
whether the final $t$ has a negative or positive relationship with $\hat x_t$.
|
||||
It's negative if we've swapped, or if $\text{sign}(1 - f)$ is negative (these
|
||||
two cannot both happen).
|
||||
|
||||
Note that all the computations and if decisions not involving $\hat x, \hat y$ can be precomputed
|
||||
before the shading stage. The two if decisions $\hat x^2 - \hat y^2 < 0$ and $\hat x^t < 0$ can
|
||||
also be omitted by precomputing the shading area that never violates those conditions.
|
||||
Note that all the computations and if decisions not involving $\hat x, \hat y$
|
||||
can be precomputed before the shading stage. The two if decisions
|
||||
$\hat x^2 - \hat y^2 < 0$ and $\hat x^t < 0$ can also be omitted by precomputing
|
||||
the shading area that never violates those conditions.
|
||||
|
||||
The number of operations per shading is thus:
|
||||
|
||||
- 1 addition, 2 multiplications, and 1 division if $r_1 = 1$
|
||||
- 2 additions, 3 multiplications, and 1 sqrt for $r_1 \neq 1$ (count subtraction as addition;
|
||||
dividing $r_1$ is multiplying $1/r_1$)
|
||||
- 2 additions, 3 multiplications, and 1 sqrt for $r_1 \neq 1$ (count subtraction
|
||||
as addition; dividing $r_1$ is multiplying $1/r_1$)
|
||||
- 1 more addition operation if $f \neq 0$
|
||||
- 1 more addition operation if swapped.
|
||||
|
||||
In comparison, for $r_1 \neq 1$ case, our current raster pipeline shading algorithm (which shall
|
||||
hopefully soon be upgraded to the algorithm described here) mainly uses formula $$t = 0.5 \cdot
|
||||
(1/a) \cdot \left(-b \pm \sqrt{b^2 - 4ac}\right)$$ It precomputes $a = 1 - (r_1 - r_0)^2, 1/a, r1 -
|
||||
r0$. Number $b = -2 \cdot (x + (r1 - r0) \cdot r0)$ costs 2 multiplications and 1 addition. Number
|
||||
$c = x^2 + y^2 - r_0^2$ costs 3 multiplications and 2 additions. And the final $t$ costs 5 more
|
||||
multiplications, 1 more sqrt, and 2 more additions. That's a total of 5 additions, 10
|
||||
multiplications, and 1 sqrt. (Our algorithm has 2-4 additions, 3 multiplications, and 1 sqrt.) Even
|
||||
if it saves the $0.5 \cdot (1/a), 4a, r_0^2$ and $(r_1 - r_0) r_0$ multiplications, there are still
|
||||
6 multiplications. Moreover, it sends in 4 unitofmrs to the shader while our algorithm only needs 2
|
||||
uniforms ($1/r_1$ and $f$).
|
||||
In comparison, for $r_1 \neq 1$ case, our current raster pipeline shading
|
||||
algorithm (which shall hopefully soon be upgraded to the algorithm described
|
||||
here) mainly uses formula
|
||||
$$t = 0.5 \cdot
|
||||
(1/a) \cdot \left(-b \pm \sqrt{b^2 - 4ac}\right)$$ It precomputes
|
||||
$a = 1 - (r_1 - r_0)^2, 1/a, r1 -
|
||||
r0$. Number
|
||||
$b = -2 \cdot (x + (r1 - r0) \cdot r0)$ costs 2 multiplications and 1 addition.
|
||||
Number $c = x^2 + y^2 - r_0^2$ costs 3 multiplications and 2 additions. And the
|
||||
final $t$ costs 5 more multiplications, 1 more sqrt, and 2 more additions.
|
||||
That's a total of 5 additions, 10 multiplications, and 1 sqrt. (Our algorithm
|
||||
has 2-4 additions, 3 multiplications, and 1 sqrt.) Even if it saves the
|
||||
$0.5 \cdot (1/a), 4a, r_0^2$ and $(r_1 - r_0) r_0$ multiplications, there are
|
||||
still 6 multiplications. Moreover, it sends in 4 unitofmrs to the shader while
|
||||
our algorithm only needs 2 uniforms ($1/r_1$ and $f$).
|
||||
|
||||
## <span id="appendix">Appendix</span>
|
||||
|
||||
**Lemma 1.** Draw a ray from $C_f = (0, 0)$ to $P = (x, y)$. For every
|
||||
intersection points $P_1$ between that ray and circle $C_1 = (1, 0), r_1$, there exists an $x_t$
|
||||
that equals to the length of segment $C_f P$ over length of segment $C_f P_1$. That is,
|
||||
$x_t = || C_f P || / ||C_f P_1||$
|
||||
intersection points $P_1$ between that ray and circle $C_1 = (1, 0), r_1$, there
|
||||
exists an $x_t$ that equals to the length of segment $C_f P$ over length of
|
||||
segment $C_f P_1$. That is, $x_t = || C_f P || / ||C_f P_1||$
|
||||
|
||||
_Proof._ Draw a line from $P$ that's parallel to $C_1 P_1$. Let it intersect with $x$-axis on point
|
||||
$C = (x', y')$.
|
||||
_Proof._ Draw a line from $P$ that's parallel to $C_1 P_1$. Let it intersect
|
||||
with $x$-axis on point $C = (x', y')$.
|
||||
|
||||
<img src="conical/lemma1.svg"/>
|
||||
<img src="./lemma1.svg"/>
|
||||
|
||||
Triangle $\triangle C_f C P$ is similar to triangle $\triangle C_f C_1 P_1$.
|
||||
Therefore $||P C|| = ||P_1 C_1|| \cdot (||C_f C|| / ||C_f C_1||) = r_1 x'$. Thus $x'$ is a solution
|
||||
to $x_t$. Because triangle $\triangle C_f C P$ and triangle $\triangle C_f C_1 P_1$ are similar, $x'
|
||||
= ||C_f C_1|| \cdot (||C_f P|| / ||C_f P_1||) = ||C_f P|| / ||C_f P_1||$. $\square$
|
||||
Therefore $||P C|| = ||P_1 C_1|| \cdot (||C_f C|| / ||C_f C_1||) = r_1 x'$. Thus
|
||||
$x'$ is a solution to $x_t$. Because triangle $\triangle C_f C P$ and triangle
|
||||
$\triangle C_f C_1 P_1$ are similar,
|
||||
$x'
|
||||
= ||C_f C_1|| \cdot (||C_f P|| / ||C_f P_1||) = ||C_f P|| / ||C_f P_1||$.
|
||||
$\square$
|
||||
|
||||
**Lemma 2.** For every solution $x_t$, if we extend/shrink segment $C_f P$ to $C_f P_1$ with ratio
|
||||
$1 / x_t$ (i.e., find $P_1$ on ray $C_f P$ such that $||C_f P_1|| / ||C_f P|| = 1 / x_t$), then
|
||||
$P_1$ must be on circle $C_1, r_1$.
|
||||
**Lemma 2.** For every solution $x_t$, if we extend/shrink segment $C_f P$ to
|
||||
$C_f P_1$ with ratio $1 / x_t$ (i.e., find $P_1$ on ray $C_f P$ such that
|
||||
$||C_f P_1|| / ||C_f P|| = 1 / x_t$), then $P_1$ must be on circle $C_1, r_1$.
|
||||
|
||||
_Proof._ Let $C_t = (x_t, 0)$. Triangle $\triangle C_f C_t P$ is similar to $C_f C_1 P_1$. Therefore
|
||||
$||C_1 P_1|| = r_1$ and $P_1$ is on circle $C_1, r_1$. $\square$
|
||||
_Proof._ Let $C_t = (x_t, 0)$. Triangle $\triangle C_f C_t P$ is similar to
|
||||
$C_f C_1 P_1$. Therefore $||C_1 P_1|| = r_1$ and $P_1$ is on circle $C_1, r_1$.
|
||||
$\square$
|
||||
|
||||
**Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions $x_t$ is equal to the
|
||||
number of intersections between ray $C_f P$ and circle $C_1, r_1$. Therefore
|
||||
**Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions
|
||||
$x_t$ is equal to the number of intersections between ray $C_f P$ and circle
|
||||
$C_1, r_1$. Therefore
|
||||
|
||||
- when $r_1 > 1$, there's always one unique intersection/solution; we call this "well-behaved"; this
|
||||
was previously known as the "inside" case;
|
||||
- when $r_1 = 1$, there's either one or zero intersection/solution (excluding $C_f$ which is always
|
||||
on the circle); we call this "focal-on-circle"; this was previously known as the "edge" case;
|
||||
- when $r_1 > 1$, there's always one unique intersection/solution; we call this
|
||||
"well-behaved"; this was previously known as the "inside" case;
|
||||
- when $r_1 = 1$, there's either one or zero intersection/solution (excluding
|
||||
$C_f$ which is always on the circle); we call this "focal-on-circle"; this was
|
||||
previously known as the "edge" case;
|
||||
|
||||
<img src="conical/corollary2.2.1.svg"/>
|
||||
<img src="conical/corollary2.2.2.svg"/>
|
||||
<img src="./corollary2.2.1.svg"/>
|
||||
<img src="./corollary2.2.2.svg"/>
|
||||
|
||||
- when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also previously as the "outside"
|
||||
case.
|
||||
- when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also
|
||||
previously as the "outside" case.
|
||||
|
||||
<img src="conical/corollary2.3.1.svg" width="30%"/>
|
||||
<img src="conical/corollary2.3.2.svg" width="30%"/>
|
||||
<img src="conical/corollary2.3.3.svg" width="30%"/>
|
||||
<img src="./corollary2.3.1.svg" width="30%"/>
|
||||
<img src="./corollary2.3.2.svg" width="30%"/>
|
||||
<img src="./corollary2.3.3.svg" width="30%"/>
|
||||
|
||||
**Lemma 3.** When solution exists, one such solution is
|
||||
|
||||
@ -211,47 +247,48 @@ $$
|
||||
x_t = {|| C_f P || \over ||C_f P_1||} = \frac{x^2 + y^2}{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}
|
||||
$$
|
||||
|
||||
_Proof._ As $C_f = (0, 0), P = (x, y)$, we have $||C_f P|| = \sqrt(x^2 + y^2)$. So we'll mainly
|
||||
focus on how to compute $||C_f P_1||$.
|
||||
_Proof._ As $C_f = (0, 0), P = (x, y)$, we have $||C_f P|| = \sqrt(x^2 + y^2)$.
|
||||
So we'll mainly focus on how to compute $||C_f P_1||$.
|
||||
|
||||
**When $x \geq 0$:**
|
||||
|
||||
<img src="conical/lemma3.1.svg"/>
|
||||
<img src="./lemma3.1.svg"/>
|
||||
|
||||
Let $X_P = (x, 0)$ and $H$ be a point on $C_f P_1$ such that $C_1 H$ is perpendicular to $C_1
|
||||
P_1$. Triangle $\triangle C_1 H C_f$ is similar to triangle $\triangle P X_P C_f$. Thus
|
||||
Let $X_P = (x, 0)$ and $H$ be a point on $C_f P_1$ such that $C_1 H$ is
|
||||
perpendicular to $C_1
|
||||
P_1$. Triangle $\triangle C_1 H C_f$ is similar to triangle
|
||||
$\triangle P X_P C_f$. Thus
|
||||
$$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = x / \sqrt{x^2 + y^2}$$
|
||||
$$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$
|
||||
|
||||
Triangle $\triangle C_1 H P_1$ is a right triangle with hypotenuse $r_1$. Hence
|
||||
$$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$
|
||||
|
||||
We have
|
||||
\begin{align}
|
||||
||C_f P_1|| &= ||C_f H|| + ||H P_1|| \\\\\\
|
||||
&= x / \sqrt{x^2 + y^2} + \sqrt{r_1^2 - y^2 / (x^2 + y^2)} \\\\\\
|
||||
&= \frac{x + \sqrt{r_1^2 (x^2 + y^2) - y^2}}{\sqrt{x^2 + y^2}} \\\\\\
|
||||
&= \frac{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}}
|
||||
\end{align}
|
||||
We have \begin{align} ||C_f P_1|| &= ||C_f H|| + ||H P_1|| \\\\\\ &= x /
|
||||
\sqrt{x^2 + y^2} + \sqrt{r_1^2 - y^2 / (x^2 + y^2)} \\\\\\ &= \frac{x +
|
||||
\sqrt{r_1^2 (x^2 + y^2) - y^2}}{\sqrt{x^2 + y^2}} \\\\\\ &= \frac{x +
|
||||
\sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}} \end{align}
|
||||
|
||||
**When $x < 0$:**
|
||||
|
||||
Define $X_P$ and $H$ similarly as before except that now $H$ is on ray $P_1 C_f$ instead of
|
||||
$C_f P_1$.
|
||||
Define $X_P$ and $H$ similarly as before except that now $H$ is on ray $P_1 C_f$
|
||||
instead of $C_f P_1$.
|
||||
|
||||
<img src="conical/lemma3.2.svg"/>
|
||||
<img src="./lemma3.2.svg"/>
|
||||
|
||||
As before, triangle $\triangle C_1 H C_f$ is similar to triangle $\triangle P X_P C_f$, and triangle
|
||||
$\triangle C_1 H P_1$ is a right triangle, so we have
|
||||
As before, triangle $\triangle C_1 H C_f$ is similar to triangle
|
||||
$\triangle P X_P C_f$, and triangle $\triangle C_1 H P_1$ is a right triangle,
|
||||
so we have
|
||||
$$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = -x / \sqrt{x^2 + y^2}$$
|
||||
$$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$
|
||||
$$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$
|
||||
|
||||
Note that the only difference is changing $x$ to $-x$ because $x$ is negative.
|
||||
|
||||
Also note that now $||C_f P_1|| = -||C_f H|| + ||H P_1||$ and we have $-||C_f H||$ instead of
|
||||
$||C_f H||$. That negation cancels out the negation of $-x$ so we get the same equation
|
||||
of $||C_f P_1||$ for both $x \geq 0$ and $x < 0$ cases:
|
||||
Also note that now $||C_f P_1|| = -||C_f H|| + ||H P_1||$ and we have
|
||||
$-||C_f H||$ instead of $||C_f H||$. That negation cancels out the negation of
|
||||
$-x$ so we get the same equation of $||C_f P_1||$ for both $x \geq 0$ and
|
||||
$x < 0$ cases:
|
||||
|
||||
$$
|
||||
||C_f P_1|| = \frac{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}}
|
||||
@ -312,7 +349,7 @@ $x_t > 0 \Leftrightarrow x > 0$ if the solution exists.)
|
||||
|
||||
*Proof.* Case 1 follows naturally from Lemma 3. and Corollary 1.
|
||||
|
||||
<img src="conical/lemma4.svg"/>
|
||||
<img src="./lemma4.svg"/>
|
||||
|
||||
For case 2, we notice that $||C_f P_1||$ could be
|
||||
|
||||
|
233
site/docs/dev/design/conical/corollary2.2.1.svg
Normal file
@ -0,0 +1,233 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="337px"
|
||||
height="327px"
|
||||
viewBox="0 0 337 327"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:11:08 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 C 238.88348923828713 192.00518957402107 199.0151481419891 231.87353067031938 149.83505704565925 231.87353067031938 C 100.65496594932941 231.87353067031938 60.786624853031384 192.00518957402107 60.786624853031384 142.82509847769097 C 60.786624853031384 93.64500738136084 100.65496594932941 53.776666285062575 149.83505704565925 53.776666285062575 C 199.0151481419891 53.776666285062575 238.88348923828713 93.64500738136084 238.88348923828713 142.82509847769097 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 15.9375 33.4375 Q 15.75 33.34375 15.53125 33.296875 Q 15.328125 33.234375 15.0625 33.234375 Q 14.15625 33.234375 13.65625 33.828125 Q 13.171875 34.421875 13.171875 35.546875 L 13.171875 39 L 12.09375 39 L 12.09375 32.4375 L 13.171875 32.4375 L 13.171875 33.453125 Q 13.515625 32.859375 14.0625 32.578125 Q 14.609375 32.28125 15.390625 32.28125 Q 15.5 32.28125 15.625 32.296875 Q 15.765625 32.3125 15.921875 32.34375 L 15.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 17.16796875 43.171875 L 18.79296875 43.171875 L 18.79296875 37.609375 L 17.02734375 37.953125 L 17.02734375 37.0625 L 18.77734375 36.703125 L 19.76171875 36.703125 L 19.76171875 43.171875 L 21.37109375 43.171875 L 21.37109375 44 L 17.16796875 44 L 17.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 27.3759765625 33.546875 L 34.8916015625 33.546875 L 34.8916015625 34.53125 L 27.3759765625 34.53125 L 27.3759765625 33.546875 z M 27.3759765625 35.9375 L 34.8916015625 35.9375 L 34.8916015625 36.9375 L 27.3759765625 36.9375 L 27.3759765625 35.9375 z M 41.4638671875 38 L 43.4013671875 38 L 43.4013671875 31.328125 L 41.2919921875 31.75 L 41.2919921875 30.671875 L 43.3857421875 30.25 L 44.5732421875 30.25 L 44.5732421875 38 L 46.5107421875 38 L 46.5107421875 39 L 41.4638671875 39 L 41.4638671875 38 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 265 4.751810368390778"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 136 94 C 136 95.65685424949238 134.65685424949237 97 133 97 C 131.34314575050763 97 130 95.65685424949238 130 94 C 130 92.34314575050762 131.34314575050763 91 133 91 C 134.65685424949237 91 136 92.34314575050762 136 94 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 136 94 C 136 95.65685424949238 134.65685424949237 97 133 97 C 131.34314575050763 97 130 95.65685424949238 130 94 C 130 92.34314575050762 131.34314575050763 91 133 91 C 134.65685424949237 91 136 92.34314575050762 136 94 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 139.359375 80.21875 L 139.359375 83.515625 L 140.84375 83.515625 Q 141.671875 83.515625 142.125 83.09375 Q 142.578125 82.65625 142.578125 81.859375 Q 142.578125 81.078125 142.125 80.65625 Q 141.671875 80.21875 140.84375 80.21875 L 139.359375 80.21875 z M 138.171875 79.25 L 140.84375 79.25 Q 142.328125 79.25 143.078125 79.921875 Q 143.828125 80.578125 143.828125 81.859375 Q 143.828125 83.15625 143.078125 83.828125 Q 142.328125 84.484375 140.84375 84.484375 L 139.359375 84.484375 L 139.359375 88 L 138.171875 88 L 138.171875 79.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 186 60 C 186 61.65685424949238 184.65685424949237 63 183 63 C 181.34314575050763 63 180 61.65685424949238 180 60 C 180 58.34314575050762 181.34314575050763 57 183 57 C 184.65685424949237 57 186 58.34314575050762 186 60 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 186 60 C 186 61.65685424949238 184.65685424949237 63 183 63 C 181.34314575050763 63 180 61.65685424949238 180 60 C 180 58.34314575050762 181.34314575050763 57 183 57 C 184.65685424949237 57 186 58.34314575050762 186 60 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 189.359375 46.21875 L 189.359375 49.515625 L 190.84375 49.515625 Q 191.671875 49.515625 192.125 49.09375 Q 192.578125 48.65625 192.578125 47.859375 Q 192.578125 47.078125 192.125 46.65625 Q 191.671875 46.21875 190.84375 46.21875 L 189.359375 46.21875 z M 188.171875 45.25 L 190.84375 45.25 Q 192.328125 45.25 193.078125 45.921875 Q 193.828125 46.578125 193.828125 47.859375 Q 193.828125 49.15625 193.078125 49.828125 Q 192.328125 50.484375 190.84375 50.484375 L 189.359375 50.484375 L 189.359375 54 L 188.171875 54 L 188.171875 45.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 195.470703125 58.171875 L 197.095703125 58.171875 L 197.095703125 52.609375 L 195.330078125 52.953125 L 195.330078125 52.0625 L 197.080078125 51.703125 L 198.064453125 51.703125 L 198.064453125 58.171875 L 199.673828125 58.171875 L 199.673828125 59 L 195.470703125 59 L 195.470703125 58.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 21 KiB |
213
site/docs/dev/design/conical/corollary2.2.2.svg
Normal file
@ -0,0 +1,213 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="337px"
|
||||
height="327px"
|
||||
viewBox="0 0 337 327"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:12:44 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 C 238.88348923828713 192.00518957402107 199.0151481419891 231.87353067031938 149.83505704565925 231.87353067031938 C 100.65496594932941 231.87353067031938 60.786624853031384 192.00518957402107 60.786624853031384 142.82509847769097 C 60.786624853031384 93.64500738136084 100.65496594932941 53.776666285062575 149.83505704565925 53.776666285062575 C 199.0151481419891 53.776666285062575 238.88348923828713 93.64500738136084 238.88348923828713 142.82509847769097 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 15.9375 33.4375 Q 15.75 33.34375 15.53125 33.296875 Q 15.328125 33.234375 15.0625 33.234375 Q 14.15625 33.234375 13.65625 33.828125 Q 13.171875 34.421875 13.171875 35.546875 L 13.171875 39 L 12.09375 39 L 12.09375 32.4375 L 13.171875 32.4375 L 13.171875 33.453125 Q 13.515625 32.859375 14.0625 32.578125 Q 14.609375 32.28125 15.390625 32.28125 Q 15.5 32.28125 15.625 32.296875 Q 15.765625 32.3125 15.921875 32.34375 L 15.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 17.16796875 43.171875 L 18.79296875 43.171875 L 18.79296875 37.609375 L 17.02734375 37.953125 L 17.02734375 37.0625 L 18.77734375 36.703125 L 19.76171875 36.703125 L 19.76171875 43.171875 L 21.37109375 43.171875 L 21.37109375 44 L 17.16796875 44 L 17.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 27.3759765625 33.546875 L 34.8916015625 33.546875 L 34.8916015625 34.53125 L 27.3759765625 34.53125 L 27.3759765625 33.546875 z M 27.3759765625 35.9375 L 34.8916015625 35.9375 L 34.8916015625 36.9375 L 27.3759765625 36.9375 L 27.3759765625 35.9375 z M 41.4638671875 38 L 43.4013671875 38 L 43.4013671875 31.328125 L 41.2919921875 31.75 L 41.2919921875 30.671875 L 43.3857421875 30.25 L 44.5732421875 30.25 L 44.5732421875 38 L 46.5107421875 38 L 46.5107421875 39 L 41.4638671875 39 L 41.4638671875 38 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L -26.259375880414986 0"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 48.359375 98.21875 L 48.359375 101.515625 L 49.84375 101.515625 Q 50.671875 101.515625 51.125 101.09375 Q 51.578125 100.65625 51.578125 99.859375 Q 51.578125 99.078125 51.125 98.65625 Q 50.671875 98.21875 49.84375 98.21875 L 48.359375 98.21875 z M 47.171875 97.25 L 49.84375 97.25 Q 51.328125 97.25 52.078125 97.921875 Q 52.828125 98.578125 52.828125 99.859375 Q 52.828125 101.15625 52.078125 101.828125 Q 51.328125 102.484375 49.84375 102.484375 L 48.359375 102.484375 L 48.359375 106 L 47.171875 106 L 47.171875 97.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 19 KiB |
213
site/docs/dev/design/conical/corollary2.3.1.svg
Normal file
@ -0,0 +1,213 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="337px"
|
||||
height="327px"
|
||||
viewBox="0 0 337 327"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:14:25 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L -26.259375880414986 0"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 48.359375 98.21875 L 48.359375 101.515625 L 49.84375 101.515625 Q 50.671875 101.515625 51.125 101.09375 Q 51.578125 100.65625 51.578125 99.859375 Q 51.578125 99.078125 51.125 98.65625 Q 50.671875 98.21875 49.84375 98.21875 L 48.359375 98.21875 z M 47.171875 97.25 L 49.84375 97.25 Q 51.328125 97.25 52.078125 97.921875 Q 52.828125 98.578125 52.828125 99.859375 Q 52.828125 101.15625 52.078125 101.828125 Q 51.328125 102.484375 49.84375 102.484375 L 48.359375 102.484375 L 48.359375 106 L 47.171875 106 L 47.171875 97.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 21 KiB |
233
site/docs/dev/design/conical/corollary2.3.2.svg
Normal file
@ -0,0 +1,233 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="337px"
|
||||
height="327px"
|
||||
viewBox="0 0 337 327"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:15:24 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 168.9065303237307 0"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 128 58 C 128 59.65685424949238 126.65685424949238 61 125 61 C 123.34314575050762 61 122 59.65685424949238 122 58 C 122 56.34314575050762 123.34314575050762 55 125 55 C 126.65685424949238 55 128 56.34314575050762 128 58 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 128 58 C 128 59.65685424949238 126.65685424949238 61 125 61 C 123.34314575050762 61 122 59.65685424949238 122 58 C 122 56.34314575050762 123.34314575050762 55 125 55 C 126.65685424949238 55 128 56.34314575050762 128 58 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 131.359375 44.21875 L 131.359375 47.515625 L 132.84375 47.515625 Q 133.671875 47.515625 134.125 47.09375 Q 134.578125 46.65625 134.578125 45.859375 Q 134.578125 45.078125 134.125 44.65625 Q 133.671875 44.21875 132.84375 44.21875 L 131.359375 44.21875 z M 130.171875 43.25 L 132.84375 43.25 Q 134.328125 43.25 135.078125 43.921875 Q 135.828125 44.578125 135.828125 45.859375 Q 135.828125 47.15625 135.078125 47.828125 Q 134.328125 48.484375 132.84375 48.484375 L 131.359375 48.484375 L 131.359375 52 L 130.171875 52 L 130.171875 43.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 93 105 C 93 106.65685424949238 91.65685424949238 108 90 108 C 88.34314575050762 108 87 106.65685424949238 87 105 C 87 103.34314575050762 88.34314575050762 102 90 102 C 91.65685424949238 102 93 103.34314575050762 93 105 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 93 105 C 93 106.65685424949238 91.65685424949238 108 90 108 C 88.34314575050762 108 87 106.65685424949238 87 105 C 87 103.34314575050762 88.34314575050762 102 90 102 C 91.65685424949238 102 93 103.34314575050762 93 105 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 96.359375 91.21875 L 96.359375 94.515625 L 97.84375 94.515625 Q 98.671875 94.515625 99.125 94.09375 Q 99.578125 93.65625 99.578125 92.859375 Q 99.578125 92.078125 99.125 91.65625 Q 98.671875 91.21875 97.84375 91.21875 L 96.359375 91.21875 z M 95.171875 90.25 L 97.84375 90.25 Q 99.328125 90.25 100.078125 90.921875 Q 100.828125 91.578125 100.828125 92.859375 Q 100.828125 94.15625 100.078125 94.828125 Q 99.328125 95.484375 97.84375 95.484375 L 96.359375 95.484375 L 96.359375 99 L 95.171875 99 L 95.171875 90.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 102.470703125 103.171875 L 104.095703125 103.171875 L 104.095703125 97.609375 L 102.330078125 97.953125 L 102.330078125 97.0625 L 104.080078125 96.703125 L 105.064453125 96.703125 L 105.064453125 103.171875 L 106.673828125 103.171875 L 106.673828125 104 L 102.470703125 104 L 102.470703125 103.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 23 KiB |
253
site/docs/dev/design/conical/corollary2.3.3.svg
Normal file
@ -0,0 +1,253 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="337px"
|
||||
height="327px"
|
||||
viewBox="0 0 337 327"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:23:26 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60.78662485303139 142.82509847769097 L 265 -42.99129391401277"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 168 48 C 168 49.65685424949238 166.65685424949237 51 165 51 C 163.34314575050763 51 162 49.65685424949238 162 48 C 162 46.34314575050762 163.34314575050763 45 165 45 C 166.65685424949237 45 168 46.34314575050762 168 48 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 168 48 C 168 49.65685424949238 166.65685424949237 51 165 51 C 163.34314575050763 51 162 49.65685424949238 162 48 C 162 46.34314575050762 163.34314575050763 45 165 45 C 166.65685424949237 45 168 46.34314575050762 168 48 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 171.359375 34.21875 L 171.359375 37.515625 L 172.84375 37.515625 Q 173.671875 37.515625 174.125 37.09375 Q 174.578125 36.65625 174.578125 35.859375 Q 174.578125 35.078125 174.125 34.65625 Q 173.671875 34.21875 172.84375 34.21875 L 171.359375 34.21875 z M 170.171875 33.25 L 172.84375 33.25 Q 174.328125 33.25 175.078125 33.921875 Q 175.828125 34.578125 175.828125 35.859375 Q 175.828125 37.15625 175.078125 37.828125 Q 174.328125 38.484375 172.84375 38.484375 L 171.359375 38.484375 L 171.359375 42 L 170.171875 42 L 170.171875 33.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 141 73 C 141 74.65685424949238 139.65685424949237 76 138 76 C 136.34314575050763 76 135 74.65685424949238 135 73 C 135 71.34314575050762 136.34314575050763 70 138 70 C 139.65685424949237 70 141 71.34314575050762 141 73 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 141 73 C 141 74.65685424949238 139.65685424949237 76 138 76 C 136.34314575050763 76 135 74.65685424949238 135 73 C 135 71.34314575050762 136.34314575050763 70 138 70 C 139.65685424949237 70 141 71.34314575050762 141 73 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 144.359375 59.21875 L 144.359375 62.515625 L 145.84375 62.515625 Q 146.671875 62.515625 147.125 62.09375 Q 147.578125 61.65625 147.578125 60.859375 Q 147.578125 60.078125 147.125 59.65625 Q 146.671875 59.21875 145.84375 59.21875 L 144.359375 59.21875 z M 143.171875 58.25 L 145.84375 58.25 Q 147.328125 58.25 148.078125 58.921875 Q 148.828125 59.578125 148.828125 60.859375 Q 148.828125 62.15625 148.078125 62.828125 Q 147.328125 63.484375 145.84375 63.484375 L 144.359375 63.484375 L 144.359375 67 L 143.171875 67 L 143.171875 58.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 150.470703125 71.171875 L 152.095703125 71.171875 L 152.095703125 65.609375 L 150.330078125 65.953125 L 150.330078125 65.0625 L 152.080078125 64.703125 L 153.064453125 64.703125 L 153.064453125 71.171875 L 154.673828125 71.171875 L 154.673828125 72 L 150.470703125 72 L 150.470703125 71.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 84 124 C 84 125.65685424949238 82.65685424949238 127 81 127 C 79.34314575050762 127 78 125.65685424949238 78 124 C 78 122.34314575050762 79.34314575050762 121 81 121 C 82.65685424949238 121 84 122.34314575050762 84 124 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 84 124 C 84 125.65685424949238 82.65685424949238 127 81 127 C 79.34314575050762 127 78 125.65685424949238 78 124 C 78 122.34314575050762 79.34314575050762 121 81 121 C 82.65685424949238 121 84 122.34314575050762 84 124 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 87.359375 110.21875 L 87.359375 113.515625 L 88.84375 113.515625 Q 89.671875 113.515625 90.125 113.09375 Q 90.578125 112.65625 90.578125 111.859375 Q 90.578125 111.078125 90.125 110.65625 Q 89.671875 110.21875 88.84375 110.21875 L 87.359375 110.21875 z M 86.171875 109.25 L 88.84375 109.25 Q 90.328125 109.25 91.078125 109.921875 Q 91.828125 110.578125 91.828125 111.859375 Q 91.828125 113.15625 91.078125 113.828125 Q 90.328125 114.484375 88.84375 114.484375 L 87.359375 114.484375 L 87.359375 118 L 86.171875 118 L 86.171875 109.25 z M 94.595703125 110.21875 L 94.595703125 113.515625 L 96.080078125 113.515625 Q 96.908203125 113.515625 97.361328125 113.09375 Q 97.814453125 112.65625 97.814453125 111.859375 Q 97.814453125 111.078125 97.361328125 110.65625 Q 96.908203125 110.21875 96.080078125 110.21875 L 94.595703125 110.21875 z M 93.408203125 109.25 L 96.080078125 109.25 Q 97.564453125 109.25 98.314453125 109.921875 Q 99.064453125 110.578125 99.064453125 111.859375 Q 99.064453125 113.15625 98.314453125 113.828125 Q 97.564453125 114.484375 96.080078125 114.484375 L 94.595703125 114.484375 L 94.595703125 118 L 93.408203125 118 L 93.408203125 109.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 100.70703125 122.171875 L 102.33203125 122.171875 L 102.33203125 116.609375 L 100.56640625 116.953125 L 100.56640625 116.0625 L 102.31640625 115.703125 L 103.30078125 115.703125 L 103.30078125 122.171875 L 104.91015625 122.171875 L 104.91015625 123 L 100.70703125 123 L 100.70703125 122.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 26 KiB |
298
site/docs/dev/design/conical/lemma1.svg
Normal file
@ -0,0 +1,298 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="562px"
|
||||
height="514px"
|
||||
viewBox="0 0 562 514"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 3:02:35 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 442 0 L 442 404 L 0 404 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 49.484375 212.859375 L 52.125 212.859375 L 52.125 213.65625 L 49.484375 213.65625 L 49.484375 212.859375 z M 53.8427734375 215.171875 L 55.4677734375 215.171875 L 55.4677734375 209.609375 L 53.7021484375 209.953125 L 53.7021484375 209.0625 L 55.4521484375 208.703125 L 56.4365234375 208.703125 L 56.4365234375 215.171875 L 58.0458984375 215.171875 L 58.0458984375 216 L 53.8427734375 216 L 53.8427734375 215.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 53.73819266040353 202.82509847769083 L 53.73819266040353 206.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 151.171875 209.359375 Q 150.421875 209.359375 150.03125 210.109375 Q 149.65625 210.859375 149.65625 212.359375 Q 149.65625 213.859375 150.03125 214.609375 Q 150.421875 215.359375 151.171875 215.359375 Q 151.953125 215.359375 152.328125 214.609375 Q 152.71875 213.859375 152.71875 212.359375 Q 152.71875 210.859375 152.328125 210.109375 Q 151.953125 209.359375 151.171875 209.359375 z M 151.171875 208.578125 Q 152.40625 208.578125 153.046875 209.546875 Q 153.703125 210.515625 153.703125 212.359375 Q 153.703125 214.203125 153.046875 215.171875 Q 152.40625 216.140625 151.171875 216.140625 Q 149.953125 216.140625 149.296875 215.171875 Q 148.65625 214.203125 148.65625 212.359375 Q 148.65625 210.515625 149.296875 209.546875 Q 149.953125 208.578125 151.171875 208.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 142.7866248530314 202.82509847769083 L 142.7866248530314 206.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 230.234375 215.171875 L 231.859375 215.171875 L 231.859375 209.609375 L 230.09375 209.953125 L 230.09375 209.0625 L 231.84375 208.703125 L 232.828125 208.703125 L 232.828125 215.171875 L 234.4375 215.171875 L 234.4375 216 L 230.234375 216 L 230.234375 215.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 231.8350570456593 202.82509847769083 L 231.8350570456593 206.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 319.921875 215.171875 L 323.359375 215.171875 L 323.359375 216 L 318.734375 216 L 318.734375 215.171875 Q 319.296875 214.59375 320.265625 213.609375 Q 321.234375 212.625 321.484375 212.34375 Q 321.953125 211.8125 322.140625 211.453125 Q 322.328125 211.078125 322.328125 210.71875 Q 322.328125 210.140625 321.921875 209.78125 Q 321.515625 209.40625 320.859375 209.40625 Q 320.390625 209.40625 319.875 209.578125 Q 319.375 209.734375 318.78125 210.0625 L 318.78125 209.0625 Q 319.375 208.828125 319.890625 208.703125 Q 320.40625 208.578125 320.84375 208.578125 Q 321.96875 208.578125 322.640625 209.140625 Q 323.328125 209.703125 323.328125 210.65625 Q 323.328125 211.109375 323.15625 211.515625 Q 322.984375 211.90625 322.546875 212.453125 Q 322.421875 212.59375 321.765625 213.28125 Q 321.109375 213.953125 319.921875 215.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 320.8834892382872 202.82509847769083 L 320.8834892382872 206.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 411.0625 212.0625 Q 411.765625 212.21875 412.15625 212.703125 Q 412.5625 213.171875 412.5625 213.875 Q 412.5625 214.953125 411.8125 215.546875 Q 411.078125 216.140625 409.703125 216.140625 Q 409.25 216.140625 408.765625 216.046875 Q 408.28125 215.953125 407.765625 215.78125 L 407.765625 214.828125 Q 408.171875 215.0625 408.65625 215.1875 Q 409.15625 215.3125 409.6875 215.3125 Q 410.609375 215.3125 411.09375 214.953125 Q 411.578125 214.578125 411.578125 213.875 Q 411.578125 213.234375 411.125 212.875 Q 410.671875 212.515625 409.875 212.515625 L 409.015625 212.515625 L 409.015625 211.703125 L 409.90625 211.703125 Q 410.640625 211.703125 411.015625 211.40625 Q 411.40625 211.109375 411.40625 210.5625 Q 411.40625 210.015625 411 209.71875 Q 410.609375 209.40625 409.875 209.40625 Q 409.46875 209.40625 409 209.5 Q 408.53125 209.578125 407.984375 209.765625 L 407.984375 208.890625 Q 408.546875 208.734375 409.03125 208.65625 Q 409.53125 208.578125 409.953125 208.578125 Q 411.078125 208.578125 411.734375 209.09375 Q 412.390625 209.59375 412.390625 210.46875 Q 412.390625 211.078125 412.046875 211.5 Q 411.703125 211.90625 411.0625 212.0625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 409.9319214309151 202.82509847769083 L 409.9319214309151 206.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 202.82509847769083 L 440 202.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 441 203.32509847769083 L 438 199.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 441 202.32509847769083 L 438 205.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 126.484375 380.859375 L 129.125 380.859375 L 129.125 381.65625 L 126.484375 381.65625 L 126.484375 380.859375 z M 131.5302734375 383.171875 L 134.9677734375 383.171875 L 134.9677734375 384 L 130.3427734375 384 L 130.3427734375 383.171875 Q 130.9052734375 382.59375 131.8740234375 381.609375 Q 132.8427734375 380.625 133.0927734375 380.34375 Q 133.5615234375 379.8125 133.7490234375 379.453125 Q 133.9365234375 379.078125 133.9365234375 378.71875 Q 133.9365234375 378.140625 133.5302734375 377.78125 Q 133.1240234375 377.40625 132.4677734375 377.40625 Q 131.9990234375 377.40625 131.4833984375 377.578125 Q 130.9833984375 377.734375 130.3896484375 378.0625 L 130.3896484375 377.0625 Q 130.9833984375 376.828125 131.4990234375 376.703125 Q 132.0146484375 376.578125 132.4521484375 376.578125 Q 133.5771484375 376.578125 134.2490234375 377.140625 Q 134.9365234375 377.703125 134.9365234375 378.65625 Q 134.9365234375 379.109375 134.7646484375 379.515625 Q 134.5927734375 379.90625 134.1552734375 380.453125 Q 134.0302734375 380.59375 133.3740234375 381.28125 Q 132.7177734375 381.953125 131.5302734375 383.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 138.7866248530314 380.9219628629475 L 142.7866248530314 380.9219628629475"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 126.484375 291.859375 L 129.125 291.859375 L 129.125 292.65625 L 126.484375 292.65625 L 126.484375 291.859375 z M 130.8427734375 294.171875 L 132.4677734375 294.171875 L 132.4677734375 288.609375 L 130.7021484375 288.953125 L 130.7021484375 288.0625 L 132.4521484375 287.703125 L 133.4365234375 287.703125 L 133.4365234375 294.171875 L 135.0458984375 294.171875 L 135.0458984375 295 L 130.8427734375 295 L 130.8427734375 294.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 138.7866248530314 291.87353067031916 L 142.7866248530314 291.87353067031916"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 133.171875 193.359375 Q 132.421875 193.359375 132.03125 194.109375 Q 131.65625 194.859375 131.65625 196.359375 Q 131.65625 197.859375 132.03125 198.609375 Q 132.421875 199.359375 133.171875 199.359375 Q 133.953125 199.359375 134.328125 198.609375 Q 134.71875 197.859375 134.71875 196.359375 Q 134.71875 194.859375 134.328125 194.109375 Q 133.953125 193.359375 133.171875 193.359375 z M 133.171875 192.578125 Q 134.40625 192.578125 135.046875 193.546875 Q 135.703125 194.515625 135.703125 196.359375 Q 135.703125 198.203125 135.046875 199.171875 Q 134.40625 200.140625 133.171875 200.140625 Q 131.953125 200.140625 131.296875 199.171875 Q 130.65625 198.203125 130.65625 196.359375 Q 130.65625 194.515625 131.296875 193.546875 Q 131.953125 192.578125 133.171875 192.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 138.7866248530314 202.8250984776908 L 142.7866248530314 202.8250984776908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 131.234375 116.171875 L 132.859375 116.171875 L 132.859375 110.609375 L 131.09375 110.953125 L 131.09375 110.0625 L 132.84375 109.703125 L 133.828125 109.703125 L 133.828125 116.171875 L 135.4375 116.171875 L 135.4375 117 L 131.234375 117 L 131.234375 116.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 138.7866248530314 113.77666628506246 L 142.7866248530314 113.77666628506246"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 131.921875 27.171875 L 135.359375 27.171875 L 135.359375 28 L 130.734375 28 L 130.734375 27.171875 Q 131.296875 26.59375 132.265625 25.609375 Q 133.234375 24.625 133.484375 24.34375 Q 133.953125 23.8125 134.140625 23.453125 Q 134.328125 23.078125 134.328125 22.71875 Q 134.328125 22.140625 133.921875 21.78125 Q 133.515625 21.40625 132.859375 21.40625 Q 132.390625 21.40625 131.875 21.578125 Q 131.375 21.734375 130.78125 22.0625 L 130.78125 21.0625 Q 131.375 20.828125 131.890625 20.703125 Q 132.40625 20.578125 132.84375 20.578125 Q 133.96875 20.578125 134.640625 21.140625 Q 135.328125 21.703125 135.328125 22.65625 Q 135.328125 23.109375 135.15625 23.515625 Q 134.984375 23.90625 134.546875 24.453125 Q 134.421875 24.59375 133.765625 25.28125 Q 133.109375 25.953125 131.921875 27.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 138.7866248530314 24.72823409243412 L 142.7866248530314 24.72823409243412"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 142.7866248530314 2 L 142.7866248530314 404"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 143.2866248530314 1 L 139.7866248530314 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 142.2866248530314 1 L 145.7866248530314 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 418.8367646501779 202.82509847769083 C 418.8367646501779 306.10328977998404 335.113248347952 389.82680608221034 231.8350570456593 389.82680608221034 C 128.5568657433666 389.82680608221034 44.83334944114074 306.10328977998404 44.83334944114074 202.82509847769083 C 44.83334944114074 99.5469071753976 128.5568657433666 15.82339087317132 231.8350570456593 15.82339087317132 C 335.113248347952 15.82339087317132 418.8367646501779 99.5469071753976 418.8367646501779 202.82509847769083 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 78 22 C 78 23.65685424949238 76.65685424949238 25 75 25 C 73.34314575050762 25 72 23.65685424949238 72 22 C 72 20.34314575050762 73.34314575050762 19 75 19 C 76.65685424949238 19 78 20.34314575050762 78 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 78 22 C 78 23.65685424949238 76.65685424949238 25 75 25 C 73.34314575050762 25 72 23.65685424949238 72 22 C 72 20.34314575050762 73.34314575050762 19 75 19 C 76.65685424949238 19 78 20.34314575050762 78 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 68.9375 6.4375 Q 68.75 6.34375 68.53125 6.296875 Q 68.328125 6.234375 68.0625 6.234375 Q 67.15625 6.234375 66.65625 6.828125 Q 66.171875 7.421875 66.171875 8.546875 L 66.171875 12 L 65.09375 12 L 65.09375 5.4375 L 66.171875 5.4375 L 66.171875 6.453125 Q 66.515625 5.859375 67.0625 5.578125 Q 67.609375 5.28125 68.390625 5.28125 Q 68.5 5.28125 68.625 5.296875 Q 68.765625 5.3125 68.921875 5.34375 L 68.9375 6.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 70.16796875 16.171875 L 71.79296875 16.171875 L 71.79296875 10.609375 L 70.02734375 10.953125 L 70.02734375 10.0625 L 71.77734375 9.703125 L 72.76171875 9.703125 L 72.76171875 16.171875 L 74.37109375 16.171875 L 74.37109375 17 L 70.16796875 17 L 70.16796875 16.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 80.3759765625 6.546875 L 87.8916015625 6.546875 L 87.8916015625 7.53125 L 80.3759765625 7.53125 L 80.3759765625 6.546875 z M 80.3759765625 8.9375 L 87.8916015625 8.9375 L 87.8916015625 9.9375 L 80.3759765625 9.9375 L 80.3759765625 8.9375 z M 95.2763671875 11 L 99.4169921875 11 L 99.4169921875 12 L 93.8544921875 12 L 93.8544921875 11 Q 94.5263671875 10.3125 95.6826171875 9.140625 Q 96.8544921875 7.953125 97.1513671875 7.609375 Q 97.7294921875 6.984375 97.9482421875 6.546875 Q 98.1826171875 6.09375 98.1826171875 5.671875 Q 98.1826171875 4.96875 97.6826171875 4.53125 Q 97.1982421875 4.09375 96.4169921875 4.09375 Q 95.8544921875 4.09375 95.2294921875 4.28125 Q 94.6201171875 4.46875 93.9169921875 4.875 L 93.9169921875 3.671875 Q 94.6357421875 3.390625 95.2451171875 3.25 Q 95.8701171875 3.09375 96.3857421875 3.09375 Q 97.7451171875 3.09375 98.5576171875 3.78125 Q 99.3701171875 4.453125 99.3701171875 5.59375 Q 99.3701171875 6.125 99.1669921875 6.609375 Q 98.9638671875 7.09375 98.4326171875 7.75 Q 98.2763671875 7.921875 97.4951171875 8.734375 Q 96.7138671875 9.546875 95.2763671875 11 z M 101.8955078125 10.515625 L 103.1298828125 10.515625 L 103.1298828125 12 L 101.8955078125 12 L 101.8955078125 10.515625 z M 105.9130859375 11 L 107.8505859375 11 L 107.8505859375 4.328125 L 105.7412109375 4.75 L 105.7412109375 3.671875 L 107.8349609375 3.25 L 109.0224609375 3.25 L 109.0224609375 11 L 110.9599609375 11 L 110.9599609375 12 L 105.9130859375 12 L 105.9130859375 11 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-dasharray="5,4" stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 3.451104209809671 409 L 389.1354963935821 -5"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 142.7866248530314 202.82509847769083 L 442 13.738868350091622"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 359.30328095086816 65.9986005269738 L 231.8350570456593 202.82509847769083"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 235 203 C 235 204.65685424949237 233.65685424949237 206 232 206 C 230.34314575050763 206 229 204.65685424949237 229 203 C 229 201.34314575050763 230.34314575050763 200 232 200 C 233.65685424949237 200 235 201.34314575050763 235 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 235 203 C 235 204.65685424949237 233.65685424949237 206 232 206 C 230.34314575050763 206 229 204.65685424949237 229 203 C 229 201.34314575050763 230.34314575050763 200 232 200 C 233.65685424949237 200 235 201.34314575050763 235 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 243.734375 188.921875 L 243.734375 190.171875 Q 243.125 189.609375 242.453125 189.34375 Q 241.78125 189.0625 241.015625 189.0625 Q 239.515625 189.0625 238.71875 189.984375 Q 237.921875 190.90625 237.921875 192.640625 Q 237.921875 194.359375 238.71875 195.28125 Q 239.515625 196.203125 241.015625 196.203125 Q 241.78125 196.203125 242.453125 195.921875 Q 243.125 195.640625 243.734375 195.09375 L 243.734375 196.328125 Q 243.109375 196.75 242.40625 196.96875 Q 241.71875 197.171875 240.953125 197.171875 Q 238.953125 197.171875 237.8125 195.953125 Q 236.671875 194.734375 236.671875 192.640625 Q 236.671875 190.53125 237.8125 189.3125 Q 238.953125 188.09375 240.953125 188.09375 Q 241.734375 188.09375 242.421875 188.3125 Q 243.125 188.515625 243.734375 188.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 245.61328125 201.171875 L 247.23828125 201.171875 L 247.23828125 195.609375 L 245.47265625 195.953125 L 245.47265625 195.0625 L 247.22265625 194.703125 L 248.20703125 194.703125 L 248.20703125 201.171875 L 249.81640625 201.171875 L 249.81640625 202 L 245.61328125 202 L 245.61328125 201.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 274 122 C 274 123.65685424949238 272.65685424949237 125 271 125 C 269.34314575050763 125 268 123.65685424949238 268 122 C 268 120.34314575050762 269.34314575050763 119 271 119 C 272.65685424949237 119 274 120.34314575050762 274 122 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 274 122 C 274 123.65685424949238 272.65685424949237 125 271 125 C 269.34314575050763 125 268 123.65685424949238 268 122 C 268 120.34314575050762 269.34314575050763 119 271 119 C 272.65685424949237 119 274 120.34314575050762 274 122 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 277.359375 108.21875 L 277.359375 111.515625 L 278.84375 111.515625 Q 279.671875 111.515625 280.125 111.09375 Q 280.578125 110.65625 280.578125 109.859375 Q 280.578125 109.078125 280.125 108.65625 Q 279.671875 108.21875 278.84375 108.21875 L 277.359375 108.21875 z M 276.171875 107.25 L 278.84375 107.25 Q 280.328125 107.25 281.078125 107.921875 Q 281.828125 108.578125 281.828125 109.859375 Q 281.828125 111.15625 281.078125 111.828125 Q 280.328125 112.484375 278.84375 112.484375 L 277.359375 112.484375 L 277.359375 116 L 276.171875 116 L 276.171875 107.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 146 203 C 146 204.65685424949237 144.65685424949237 206 143 206 C 141.34314575050763 206 140 204.65685424949237 140 203 C 140 201.34314575050763 141.34314575050763 200 143 200 C 144.65685424949237 200 146 201.34314575050763 146 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 146 203 C 146 204.65685424949237 144.65685424949237 206 143 206 C 141.34314575050763 206 140 204.65685424949237 140 203 C 140 201.34314575050763 141.34314575050763 200 143 200 C 144.65685424949237 200 146 201.34314575050763 146 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 154.734375 188.921875 L 154.734375 190.171875 Q 154.125 189.609375 153.453125 189.34375 Q 152.78125 189.0625 152.015625 189.0625 Q 150.515625 189.0625 149.71875 189.984375 Q 148.921875 190.90625 148.921875 192.640625 Q 148.921875 194.359375 149.71875 195.28125 Q 150.515625 196.203125 152.015625 196.203125 Q 152.78125 196.203125 153.453125 195.921875 Q 154.125 195.640625 154.734375 195.09375 L 154.734375 196.328125 Q 154.109375 196.75 153.40625 196.96875 Q 152.71875 197.171875 151.953125 197.171875 Q 149.953125 197.171875 148.8125 195.953125 Q 147.671875 194.734375 147.671875 192.640625 Q 147.671875 190.53125 148.8125 189.3125 Q 149.953125 188.09375 151.953125 188.09375 Q 152.734375 188.09375 153.421875 188.3125 Q 154.125 188.515625 154.734375 188.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 159.09765625 194.40625 L 159.09765625 195.15625 L 158.23828125 195.15625 Q 157.75390625 195.15625 157.56640625 195.359375 Q 157.37890625 195.546875 157.37890625 196.046875 L 157.37890625 196.53125 L 158.84765625 196.53125 L 158.84765625 197.234375 L 157.37890625 197.234375 L 157.37890625 202 L 156.47265625 202 L 156.47265625 197.234375 L 155.61328125 197.234375 L 155.61328125 196.53125 L 156.47265625 196.53125 L 156.47265625 196.15625 Q 156.47265625 195.234375 156.89453125 194.828125 Q 157.31640625 194.40625 158.23828125 194.40625 L 159.09765625 194.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 362 66 C 362 67.65685424949238 360.65685424949237 69 359 69 C 357.34314575050763 69 356 67.65685424949238 356 66 C 356 64.34314575050762 357.34314575050763 63 359 63 C 360.65685424949237 63 362 64.34314575050762 362 66 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 362 66 C 362 67.65685424949238 360.65685424949237 69 359 69 C 357.34314575050763 69 356 67.65685424949238 356 66 C 356 64.34314575050762 357.34314575050763 63 359 63 C 360.65685424949237 63 362 64.34314575050762 362 66 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 365.359375 52.21875 L 365.359375 55.515625 L 366.84375 55.515625 Q 367.671875 55.515625 368.125 55.09375 Q 368.578125 54.65625 368.578125 53.859375 Q 368.578125 53.078125 368.125 52.65625 Q 367.671875 52.21875 366.84375 52.21875 L 365.359375 52.21875 z M 364.171875 51.25 L 366.84375 51.25 Q 368.328125 51.25 369.078125 51.921875 Q 369.828125 52.578125 369.828125 53.859375 Q 369.828125 55.15625 369.078125 55.828125 Q 368.328125 56.484375 366.84375 56.484375 L 365.359375 56.484375 L 365.359375 60 L 364.171875 60 L 364.171875 51.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 371.470703125 64.171875 L 373.095703125 64.171875 L 373.095703125 58.609375 L 371.330078125 58.953125 L 371.330078125 58.0625 L 373.080078125 57.703125 L 374.064453125 57.703125 L 374.064453125 64.171875 L 375.673828125 64.171875 L 375.673828125 65 L 371.470703125 65 L 371.470703125 64.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 199 203 C 199 204.65685424949237 197.65685424949237 206 196 206 C 194.34314575050763 206 193 204.65685424949237 193 203 C 193 201.34314575050763 194.34314575050763 200 196 200 C 197.65685424949237 200 199 201.34314575050763 199 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 199 203 C 199 204.65685424949237 197.65685424949237 206 196 206 C 194.34314575050763 206 193 204.65685424949237 193 203 C 193 201.34314575050763 194.34314575050763 200 196 200 C 197.65685424949237 200 199 201.34314575050763 199 203 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 207.734375 188.921875 L 207.734375 190.171875 Q 207.125 189.609375 206.453125 189.34375 Q 205.78125 189.0625 205.015625 189.0625 Q 203.515625 189.0625 202.71875 189.984375 Q 201.921875 190.90625 201.921875 192.640625 Q 201.921875 194.359375 202.71875 195.28125 Q 203.515625 196.203125 205.015625 196.203125 Q 205.78125 196.203125 206.453125 195.921875 Q 207.125 195.640625 207.734375 195.09375 L 207.734375 196.328125 Q 207.109375 196.75 206.40625 196.96875 Q 205.71875 197.171875 204.953125 197.171875 Q 202.953125 197.171875 201.8125 195.953125 Q 200.671875 194.734375 200.671875 192.640625 Q 200.671875 190.53125 201.8125 189.3125 Q 202.953125 188.09375 204.953125 188.09375 Q 205.734375 188.09375 206.421875 188.3125 Q 207.125 188.515625 207.734375 188.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 30 KiB |
328
site/docs/dev/design/conical/lemma3.1.svg
Normal file
@ -0,0 +1,328 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="357px"
|
||||
height="247px"
|
||||
viewBox="0 0 357 247"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:53:23 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 405 0 L 405 280 L 0 280 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 45.484375 235.859375 L 48.125 235.859375 L 48.125 236.65625 L 45.484375 236.65625 L 45.484375 235.859375 z M 51.7802734375 232.359375 Q 51.0302734375 232.359375 50.6396484375 233.109375 Q 50.2646484375 233.859375 50.2646484375 235.359375 Q 50.2646484375 236.859375 50.6396484375 237.609375 Q 51.0302734375 238.359375 51.7802734375 238.359375 Q 52.5615234375 238.359375 52.9365234375 237.609375 Q 53.3271484375 236.859375 53.3271484375 235.359375 Q 53.3271484375 233.859375 52.9365234375 233.109375 Q 52.5615234375 232.359375 51.7802734375 232.359375 z M 51.7802734375 231.578125 Q 53.0146484375 231.578125 53.6552734375 232.546875 Q 54.3115234375 233.515625 54.3115234375 235.359375 Q 54.3115234375 237.203125 53.6552734375 238.171875 Q 53.0146484375 239.140625 51.7802734375 239.140625 Q 50.5615234375 239.140625 49.9052734375 238.171875 Q 49.2646484375 237.203125 49.2646484375 235.359375 Q 49.2646484375 233.515625 49.9052734375 232.546875 Q 50.5615234375 231.578125 51.7802734375 231.578125 z M 56.033203125 237.765625 L 57.064453125 237.765625 L 57.064453125 239 L 56.033203125 239 L 56.033203125 237.765625 z M 59.2275390625 231.703125 L 63.1025390625 231.703125 L 63.1025390625 232.546875 L 60.1337890625 232.546875 L 60.1337890625 234.328125 Q 60.3525390625 234.25 60.5556640625 234.21875 Q 60.7744140625 234.1875 60.9931640625 234.1875 Q 62.2119140625 234.1875 62.9150390625 234.859375 Q 63.6337890625 235.515625 63.6337890625 236.65625 Q 63.6337890625 237.84375 62.8994140625 238.5 Q 62.1806640625 239.140625 60.8369140625 239.140625 Q 60.3837890625 239.140625 59.8994140625 239.0625 Q 59.4306640625 238.984375 58.9150390625 238.828125 L 58.9150390625 237.84375 Q 59.3681640625 238.078125 59.8369140625 238.203125 Q 60.3056640625 238.3125 60.8212890625 238.3125 Q 61.6650390625 238.3125 62.1494140625 237.875 Q 62.6494140625 237.421875 62.6494140625 236.65625 Q 62.6494140625 235.90625 62.1494140625 235.46875 Q 61.6650390625 235.015625 60.8212890625 235.015625 Q 60.4306640625 235.015625 60.0244140625 235.109375 Q 59.6337890625 235.1875 59.2275390625 235.375 L 59.2275390625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 54.41565157552739 225.13443114482905 L 54.41565157552739 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 127.171875 232.359375 Q 126.421875 232.359375 126.03125 233.109375 Q 125.65625 233.859375 125.65625 235.359375 Q 125.65625 236.859375 126.03125 237.609375 Q 126.421875 238.359375 127.171875 238.359375 Q 127.953125 238.359375 128.328125 237.609375 Q 128.71875 236.859375 128.71875 235.359375 Q 128.71875 233.859375 128.328125 233.109375 Q 127.953125 232.359375 127.171875 232.359375 z M 127.171875 231.578125 Q 128.40625 231.578125 129.046875 232.546875 Q 129.703125 233.515625 129.703125 235.359375 Q 129.703125 237.203125 129.046875 238.171875 Q 128.40625 239.140625 127.171875 239.140625 Q 125.953125 239.140625 125.296875 238.171875 Q 124.65625 237.203125 124.65625 235.359375 Q 124.65625 233.515625 125.296875 232.546875 Q 125.953125 231.578125 127.171875 231.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.66669502231808 225.13443114482905 L 118.66669502231808 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 178.171875 232.359375 Q 177.421875 232.359375 177.03125 233.109375 Q 176.65625 233.859375 176.65625 235.359375 Q 176.65625 236.859375 177.03125 237.609375 Q 177.421875 238.359375 178.171875 238.359375 Q 178.953125 238.359375 179.328125 237.609375 Q 179.71875 236.859375 179.71875 235.359375 Q 179.71875 233.859375 179.328125 233.109375 Q 178.953125 232.359375 178.171875 232.359375 z M 178.171875 231.578125 Q 179.40625 231.578125 180.046875 232.546875 Q 180.703125 233.515625 180.703125 235.359375 Q 180.703125 237.203125 180.046875 238.171875 Q 179.40625 239.140625 178.171875 239.140625 Q 176.953125 239.140625 176.296875 238.171875 Q 175.65625 237.203125 175.65625 235.359375 Q 175.65625 233.515625 176.296875 232.546875 Q 176.953125 231.578125 178.171875 231.578125 z M 182.4248046875 237.765625 L 183.4560546875 237.765625 L 183.4560546875 239 L 182.4248046875 239 L 182.4248046875 237.765625 z M 185.619140625 231.703125 L 189.494140625 231.703125 L 189.494140625 232.546875 L 186.525390625 232.546875 L 186.525390625 234.328125 Q 186.744140625 234.25 186.947265625 234.21875 Q 187.166015625 234.1875 187.384765625 234.1875 Q 188.603515625 234.1875 189.306640625 234.859375 Q 190.025390625 235.515625 190.025390625 236.65625 Q 190.025390625 237.84375 189.291015625 238.5 Q 188.572265625 239.140625 187.228515625 239.140625 Q 186.775390625 239.140625 186.291015625 239.0625 Q 185.822265625 238.984375 185.306640625 238.828125 L 185.306640625 237.84375 Q 185.759765625 238.078125 186.228515625 238.203125 Q 186.697265625 238.3125 187.212890625 238.3125 Q 188.056640625 238.3125 188.541015625 237.875 Q 189.041015625 237.421875 189.041015625 236.65625 Q 189.041015625 235.90625 188.541015625 235.46875 Q 188.056640625 235.015625 187.212890625 235.015625 Q 186.822265625 235.015625 186.416015625 235.109375 Q 186.025390625 235.1875 185.619140625 235.375 L 185.619140625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 182.91773846910877 225.13443114482905 L 182.91773846910877 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 245.234375 238.171875 L 246.859375 238.171875 L 246.859375 232.609375 L 245.09375 232.953125 L 245.09375 232.0625 L 246.84375 231.703125 L 247.828125 231.703125 L 247.828125 238.171875 L 249.4375 238.171875 L 249.4375 239 L 245.234375 239 L 245.234375 238.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 247.16878191589944 225.13443114482905 L 247.16878191589944 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 305.234375 238.171875 L 306.859375 238.171875 L 306.859375 232.609375 L 305.09375 232.953125 L 305.09375 232.0625 L 306.84375 231.703125 L 307.828125 231.703125 L 307.828125 238.171875 L 309.4375 238.171875 L 309.4375 239 L 305.234375 239 L 305.234375 238.171875 z M 311.4248046875 237.765625 L 312.4560546875 237.765625 L 312.4560546875 239 L 311.4248046875 239 L 311.4248046875 237.765625 z M 314.619140625 231.703125 L 318.494140625 231.703125 L 318.494140625 232.546875 L 315.525390625 232.546875 L 315.525390625 234.328125 Q 315.744140625 234.25 315.947265625 234.21875 Q 316.166015625 234.1875 316.384765625 234.1875 Q 317.603515625 234.1875 318.306640625 234.859375 Q 319.025390625 235.515625 319.025390625 236.65625 Q 319.025390625 237.84375 318.291015625 238.5 Q 317.572265625 239.140625 316.228515625 239.140625 Q 315.775390625 239.140625 315.291015625 239.0625 Q 314.822265625 238.984375 314.306640625 238.828125 L 314.306640625 237.84375 Q 314.759765625 238.078125 315.228515625 238.203125 Q 315.697265625 238.3125 316.212890625 238.3125 Q 317.056640625 238.3125 317.541015625 237.875 Q 318.041015625 237.421875 318.041015625 236.65625 Q 318.041015625 235.90625 317.541015625 235.46875 Q 317.056640625 235.015625 316.212890625 235.015625 Q 315.822265625 235.015625 315.416015625 235.109375 Q 315.025390625 235.1875 314.619140625 235.375 L 314.619140625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 311.4198253626901 225.13443114482905 L 311.4198253626901 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 374.921875 238.171875 L 378.359375 238.171875 L 378.359375 239 L 373.734375 239 L 373.734375 238.171875 Q 374.296875 237.59375 375.265625 236.609375 Q 376.234375 235.625 376.484375 235.34375 Q 376.953125 234.8125 377.140625 234.453125 Q 377.328125 234.078125 377.328125 233.71875 Q 377.328125 233.140625 376.921875 232.78125 Q 376.515625 232.40625 375.859375 232.40625 Q 375.390625 232.40625 374.875 232.578125 Q 374.375 232.734375 373.78125 233.0625 L 373.78125 232.0625 Q 374.375 231.828125 374.890625 231.703125 Q 375.40625 231.578125 375.84375 231.578125 Q 376.96875 231.578125 377.640625 232.140625 Q 378.328125 232.703125 378.328125 233.65625 Q 378.328125 234.109375 378.15625 234.515625 Q 377.984375 234.90625 377.546875 235.453125 Q 377.421875 235.59375 376.765625 236.28125 Q 376.109375 236.953125 374.921875 238.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 375.6708688094808 225.13443114482905 L 375.6708688094808 229.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 225.13443114482905 L 403 225.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 404 225.63443114482905 L 401 222.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 404 224.63443114482905 L 401 228.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 109.171875 216.359375 Q 108.421875 216.359375 108.03125 217.109375 Q 107.65625 217.859375 107.65625 219.359375 Q 107.65625 220.859375 108.03125 221.609375 Q 108.421875 222.359375 109.171875 222.359375 Q 109.953125 222.359375 110.328125 221.609375 Q 110.71875 220.859375 110.71875 219.359375 Q 110.71875 217.859375 110.328125 217.109375 Q 109.953125 216.359375 109.171875 216.359375 z M 109.171875 215.578125 Q 110.40625 215.578125 111.046875 216.546875 Q 111.703125 217.515625 111.703125 219.359375 Q 111.703125 221.203125 111.046875 222.171875 Q 110.40625 223.140625 109.171875 223.140625 Q 107.953125 223.140625 107.296875 222.171875 Q 106.65625 221.203125 106.65625 219.359375 Q 106.65625 217.515625 107.296875 216.546875 Q 107.953125 215.578125 109.171875 215.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231808 225.13443114482905 L 118.66669502231808 225.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 99.171875 157.359375 Q 98.421875 157.359375 98.03125 158.109375 Q 97.65625 158.859375 97.65625 160.359375 Q 97.65625 161.859375 98.03125 162.609375 Q 98.421875 163.359375 99.171875 163.359375 Q 99.953125 163.359375 100.328125 162.609375 Q 100.71875 161.859375 100.71875 160.359375 Q 100.71875 158.859375 100.328125 158.109375 Q 99.953125 157.359375 99.171875 157.359375 z M 99.171875 156.578125 Q 100.40625 156.578125 101.046875 157.546875 Q 101.703125 158.515625 101.703125 160.359375 Q 101.703125 162.203125 101.046875 163.171875 Q 100.40625 164.140625 99.171875 164.140625 Q 97.953125 164.140625 97.296875 163.171875 Q 96.65625 162.203125 96.65625 160.359375 Q 96.65625 158.515625 97.296875 157.546875 Q 97.953125 156.578125 99.171875 156.578125 z M 103.4248046875 162.765625 L 104.4560546875 162.765625 L 104.4560546875 164 L 103.4248046875 164 L 103.4248046875 162.765625 z M 106.619140625 156.703125 L 110.494140625 156.703125 L 110.494140625 157.546875 L 107.525390625 157.546875 L 107.525390625 159.328125 Q 107.744140625 159.25 107.947265625 159.21875 Q 108.166015625 159.1875 108.384765625 159.1875 Q 109.603515625 159.1875 110.306640625 159.859375 Q 111.025390625 160.515625 111.025390625 161.65625 Q 111.025390625 162.84375 110.291015625 163.5 Q 109.572265625 164.140625 108.228515625 164.140625 Q 107.775390625 164.140625 107.291015625 164.0625 Q 106.822265625 163.984375 106.306640625 163.828125 L 106.306640625 162.84375 Q 106.759765625 163.078125 107.228515625 163.203125 Q 107.697265625 163.3125 108.212890625 163.3125 Q 109.056640625 163.3125 109.541015625 162.875 Q 110.041015625 162.421875 110.041015625 161.65625 Q 110.041015625 160.90625 109.541015625 160.46875 Q 109.056640625 160.015625 108.212890625 160.015625 Q 107.822265625 160.015625 107.416015625 160.109375 Q 107.025390625 160.1875 106.619140625 160.375 L 106.619140625 156.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231808 160.88338769803818 L 118.66669502231808 160.88338769803818"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 107.234375 99.171875 L 108.859375 99.171875 L 108.859375 93.609375 L 107.09375 93.953125 L 107.09375 93.0625 L 108.84375 92.703125 L 109.828125 92.703125 L 109.828125 99.171875 L 111.4375 99.171875 L 111.4375 100 L 107.234375 100 L 107.234375 99.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231808 96.63234425124729 L 118.66669502231808 96.63234425124729"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 97.234375 35.171875 L 98.859375 35.171875 L 98.859375 29.609375 L 97.09375 29.953125 L 97.09375 29.0625 L 98.84375 28.703125 L 99.828125 28.703125 L 99.828125 35.171875 L 101.4375 35.171875 L 101.4375 36 L 97.234375 36 L 97.234375 35.171875 z M 103.4248046875 34.765625 L 104.4560546875 34.765625 L 104.4560546875 36 L 103.4248046875 36 L 103.4248046875 34.765625 z M 106.619140625 28.703125 L 110.494140625 28.703125 L 110.494140625 29.546875 L 107.525390625 29.546875 L 107.525390625 31.328125 Q 107.744140625 31.25 107.947265625 31.21875 Q 108.166015625 31.1875 108.384765625 31.1875 Q 109.603515625 31.1875 110.306640625 31.859375 Q 111.025390625 32.515625 111.025390625 33.65625 Q 111.025390625 34.84375 110.291015625 35.5 Q 109.572265625 36.140625 108.228515625 36.140625 Q 107.775390625 36.140625 107.291015625 36.0625 Q 106.822265625 35.984375 106.306640625 35.828125 L 106.306640625 34.84375 Q 106.759765625 35.078125 107.228515625 35.203125 Q 107.697265625 35.3125 108.212890625 35.3125 Q 109.056640625 35.3125 109.541015625 34.875 Q 110.041015625 34.421875 110.041015625 33.65625 Q 110.041015625 32.90625 109.541015625 32.46875 Q 109.056640625 32.015625 108.212890625 32.015625 Q 107.822265625 32.015625 107.416015625 32.109375 Q 107.025390625 32.1875 106.619140625 32.375 L 106.619140625 28.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231808 32.3813008044564 L 118.66669502231808 32.3813008044564"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.66669502231808 2 L 118.66669502231808 280"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 119.16669502231808 1 L 115.66669502231808 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.16669502231808 1 L 121.66669502231808 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 452.7721209456297 225.13443114482905 C 452.7721209456297 338.6860198052397 360.72037057630973 430.7377701745599 247.16878191589944 430.7377701745599 C 133.6171932554891 430.7377701745599 41.56544288616922 338.6860198052397 41.56544288616922 225.13443114482905 C 41.56544288616922 111.58284248441836 133.6171932554891 19.531092115098204 247.16878191589944 19.531092115098204 C 360.72037057630973 19.531092115098204 452.7721209456297 111.58284248441836 452.7721209456297 225.13443114482905 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 27.9375 33.4375 Q 27.75 33.34375 27.53125 33.296875 Q 27.328125 33.234375 27.0625 33.234375 Q 26.15625 33.234375 25.65625 33.828125 Q 25.171875 34.421875 25.171875 35.546875 L 25.171875 39 L 24.09375 39 L 24.09375 32.4375 L 25.171875 32.4375 L 25.171875 33.453125 Q 25.515625 32.859375 26.0625 32.578125 Q 26.609375 32.28125 27.390625 32.28125 Q 27.5 32.28125 27.625 32.296875 Q 27.765625 32.3125 27.921875 32.34375 L 27.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 29.16796875 43.171875 L 30.79296875 43.171875 L 30.79296875 37.609375 L 29.02734375 37.953125 L 29.02734375 37.0625 L 30.77734375 36.703125 L 31.76171875 36.703125 L 31.76171875 43.171875 L 33.37109375 43.171875 L 33.37109375 44 L 29.16796875 44 L 29.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 39.3759765625 33.546875 L 46.8916015625 33.546875 L 46.8916015625 34.53125 L 39.3759765625 34.53125 L 39.3759765625 33.546875 z M 39.3759765625 35.9375 L 46.8916015625 35.9375 L 46.8916015625 36.9375 L 39.3759765625 36.9375 L 39.3759765625 35.9375 z M 53.4638671875 38 L 55.4013671875 38 L 55.4013671875 31.328125 L 53.2919921875 31.75 L 53.2919921875 30.671875 L 55.3857421875 30.25 L 56.5732421875 30.25 L 56.5732421875 38 L 58.5107421875 38 L 58.5107421875 39 L 53.4638671875 39 L 53.4638671875 38 z M 60.8955078125 37.515625 L 62.1298828125 37.515625 L 62.1298828125 39 L 60.8955078125 39 L 60.8955078125 37.515625 z M 67.3974609375 34.15625 Q 66.6005859375 34.15625 66.1318359375 34.703125 Q 65.6630859375 35.25 65.6630859375 36.1875 Q 65.6630859375 37.140625 66.1318359375 37.6875 Q 66.6005859375 38.234375 67.3974609375 38.234375 Q 68.1943359375 38.234375 68.6474609375 37.6875 Q 69.1162109375 37.140625 69.1162109375 36.1875 Q 69.1162109375 35.25 68.6474609375 34.703125 Q 68.1943359375 34.15625 67.3974609375 34.15625 z M 69.7412109375 30.4375 L 69.7412109375 31.515625 Q 69.2880859375 31.3125 68.8349609375 31.203125 Q 68.3818359375 31.09375 67.9443359375 31.09375 Q 66.7724609375 31.09375 66.1474609375 31.890625 Q 65.5380859375 32.671875 65.4443359375 34.265625 Q 65.7880859375 33.765625 66.3037109375 33.5 Q 66.8349609375 33.21875 67.4599609375 33.21875 Q 68.7724609375 33.21875 69.5380859375 34.015625 Q 70.3037109375 34.8125 70.3037109375 36.1875 Q 70.3037109375 37.546875 69.5068359375 38.359375 Q 68.7099609375 39.171875 67.3974609375 39.171875 Q 65.8662109375 39.171875 65.0693359375 38.015625 Q 64.2724609375 36.84375 64.2724609375 34.640625 Q 64.2724609375 32.5625 65.2568359375 31.328125 Q 66.2412109375 30.09375 67.8974609375 30.09375 Q 68.3349609375 30.09375 68.7880859375 30.1875 Q 69.2412109375 30.265625 69.7412109375 30.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
|
||||
<path d="M 211.6416473388672 167.66152954101562 L 193.5975799560547 178.8155517578125 L 204.75160217285156 196.85960388183594 L 222.795654296875 185.70558166503906 L 211.6416473388672 167.66152954101562"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
|
||||
<path d="M 211.6416473388672 167.66152954101562 L 193.5975799560547 178.8155517578125 L 204.75160217285156 196.85960388183594 L 222.795654296875 185.70558166503906 L 211.6416473388672 167.66152954101562"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.66669502231808 225.13443114482905 L 405 48.136155148760366"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 211.64164002930823 167.6615326346497 L 247.16878191589944 225.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 290.818181818182 118.7181818181819 L 290.818181818182 225.13443114482905"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 258.734375 210.921875 L 258.734375 212.171875 Q 258.125 211.609375 257.453125 211.34375 Q 256.78125 211.0625 256.015625 211.0625 Q 254.515625 211.0625 253.71875 211.984375 Q 252.921875 212.90625 252.921875 214.640625 Q 252.921875 216.359375 253.71875 217.28125 Q 254.515625 218.203125 256.015625 218.203125 Q 256.78125 218.203125 257.453125 217.921875 Q 258.125 217.640625 258.734375 217.09375 L 258.734375 218.328125 Q 258.109375 218.75 257.40625 218.96875 Q 256.71875 219.171875 255.953125 219.171875 Q 253.953125 219.171875 252.8125 217.953125 Q 251.671875 216.734375 251.671875 214.640625 Q 251.671875 212.53125 252.8125 211.3125 Q 253.953125 210.09375 255.953125 210.09375 Q 256.734375 210.09375 257.421875 210.3125 Q 258.125 210.515625 258.734375 210.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 260.61328125 223.171875 L 262.23828125 223.171875 L 262.23828125 217.609375 L 260.47265625 217.953125 L 260.47265625 217.0625 L 262.22265625 216.703125 L 263.20703125 216.703125 L 263.20703125 223.171875 L 264.81640625 223.171875 L 264.81640625 224 L 260.61328125 224 L 260.61328125 223.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 294 119 C 294 120.65685424949238 292.65685424949237 122 291 122 C 289.34314575050763 122 288 120.65685424949238 288 119 C 288 117.34314575050762 289.34314575050763 116 291 116 C 292.65685424949237 116 294 117.34314575050762 294 119 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 294 119 C 294 120.65685424949238 292.65685424949237 122 291 122 C 289.34314575050763 122 288 120.65685424949238 288 119 C 288 117.34314575050762 289.34314575050763 116 291 116 C 292.65685424949237 116 294 117.34314575050762 294 119 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 297.359375 105.21875 L 297.359375 108.515625 L 298.84375 108.515625 Q 299.671875 108.515625 300.125 108.09375 Q 300.578125 107.65625 300.578125 106.859375 Q 300.578125 106.078125 300.125 105.65625 Q 299.671875 105.21875 298.84375 105.21875 L 297.359375 105.21875 z M 296.171875 104.25 L 298.84375 104.25 Q 300.328125 104.25 301.078125 104.921875 Q 301.828125 105.578125 301.828125 106.859375 Q 301.828125 108.15625 301.078125 108.828125 Q 300.328125 109.484375 298.84375 109.484375 L 297.359375 109.484375 L 297.359375 113 L 296.171875 113 L 296.171875 104.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 130.734375 210.921875 L 130.734375 212.171875 Q 130.125 211.609375 129.453125 211.34375 Q 128.78125 211.0625 128.015625 211.0625 Q 126.515625 211.0625 125.71875 211.984375 Q 124.921875 212.90625 124.921875 214.640625 Q 124.921875 216.359375 125.71875 217.28125 Q 126.515625 218.203125 128.015625 218.203125 Q 128.78125 218.203125 129.453125 217.921875 Q 130.125 217.640625 130.734375 217.09375 L 130.734375 218.328125 Q 130.109375 218.75 129.40625 218.96875 Q 128.71875 219.171875 127.953125 219.171875 Q 125.953125 219.171875 124.8125 217.953125 Q 123.671875 216.734375 123.671875 214.640625 Q 123.671875 212.53125 124.8125 211.3125 Q 125.953125 210.09375 127.953125 210.09375 Q 128.734375 210.09375 129.421875 210.3125 Q 130.125 210.515625 130.734375 210.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 135.09765625 216.40625 L 135.09765625 217.15625 L 134.23828125 217.15625 Q 133.75390625 217.15625 133.56640625 217.359375 Q 133.37890625 217.546875 133.37890625 218.046875 L 133.37890625 218.53125 L 134.84765625 218.53125 L 134.84765625 219.234375 L 133.37890625 219.234375 L 133.37890625 224 L 132.47265625 224 L 132.47265625 219.234375 L 131.61328125 219.234375 L 131.61328125 218.53125 L 132.47265625 218.53125 L 132.47265625 218.15625 Q 132.47265625 217.234375 132.89453125 216.828125 Q 133.31640625 216.40625 134.23828125 216.40625 L 135.09765625 216.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 380 66 C 380 67.65685424949238 378.65685424949237 69 377 69 C 375.34314575050763 69 374 67.65685424949238 374 66 C 374 64.34314575050762 375.34314575050763 63 377 63 C 378.65685424949237 63 380 64.34314575050762 380 66 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 380 66 C 380 67.65685424949238 378.65685424949237 69 377 69 C 375.34314575050763 69 374 67.65685424949238 374 66 C 374 64.34314575050762 375.34314575050763 63 377 63 C 378.65685424949237 63 380 64.34314575050762 380 66 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 383.359375 52.21875 L 383.359375 55.515625 L 384.84375 55.515625 Q 385.671875 55.515625 386.125 55.09375 Q 386.578125 54.65625 386.578125 53.859375 Q 386.578125 53.078125 386.125 52.65625 Q 385.671875 52.21875 384.84375 52.21875 L 383.359375 52.21875 z M 382.171875 51.25 L 384.84375 51.25 Q 386.328125 51.25 387.078125 51.921875 Q 387.828125 52.578125 387.828125 53.859375 Q 387.828125 55.15625 387.078125 55.828125 Q 386.328125 56.484375 384.84375 56.484375 L 383.359375 56.484375 L 383.359375 60 L 382.171875 60 L 382.171875 51.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 389.470703125 64.171875 L 391.095703125 64.171875 L 391.095703125 58.609375 L 389.330078125 58.953125 L 389.330078125 58.0625 L 391.080078125 57.703125 L 392.064453125 57.703125 L 392.064453125 64.171875 L 393.673828125 64.171875 L 393.673828125 65 L 389.470703125 65 L 389.470703125 64.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 215 168 C 215 169.65685424949237 213.65685424949237 171 212 171 C 210.34314575050763 171 209 169.65685424949237 209 168 C 209 166.34314575050763 210.34314575050763 165 212 165 C 213.65685424949237 165 215 166.34314575050763 215 168 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 215 168 C 215 169.65685424949237 213.65685424949237 171 212 171 C 210.34314575050763 171 209 169.65685424949237 209 168 C 209 166.34314575050763 210.34314575050763 165 212 165 C 213.65685424949237 165 215 166.34314575050763 215 168 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 217.171875 153.25 L 218.359375 153.25 L 218.359375 156.84375 L 222.65625 156.84375 L 222.65625 153.25 L 223.84375 153.25 L 223.84375 162 L 222.65625 162 L 222.65625 157.828125 L 218.359375 157.828125 L 218.359375 162 L 217.171875 162 L 217.171875 153.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 294 225 C 294 226.65685424949237 292.65685424949237 228 291 228 C 289.34314575050763 228 288 226.65685424949237 288 225 C 288 223.34314575050763 289.34314575050763 222 291 222 C 292.65685424949237 222 294 223.34314575050763 294 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 294 225 C 294 226.65685424949237 292.65685424949237 228 291 228 C 289.34314575050763 228 288 226.65685424949237 288 225 C 288 223.34314575050763 289.34314575050763 222 291 222 C 292.65685424949237 222 294 223.34314575050763 294 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 295.75 210.25 L 297.03125 210.25 L 299.203125 213.5 L 301.390625 210.25 L 302.65625 210.25 L 299.84375 214.453125 L 302.84375 219 L 301.578125 219 L 299.109375 215.28125 L 296.640625 219 L 295.359375 219 L 298.484375 214.328125 L 295.75 210.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 305.189453125 217.515625 L 305.189453125 220.265625 L 306.423828125 220.265625 Q 307.111328125 220.265625 307.486328125 219.90625 Q 307.876953125 219.546875 307.876953125 218.890625 Q 307.876953125 218.234375 307.486328125 217.875 Q 307.111328125 217.515625 306.423828125 217.515625 L 305.189453125 217.515625 z M 304.205078125 216.703125 L 306.423828125 216.703125 Q 307.658203125 216.703125 308.283203125 217.265625 Q 308.908203125 217.8125 308.908203125 218.890625 Q 308.908203125 219.96875 308.283203125 220.515625 Q 307.658203125 221.0625 306.423828125 221.0625 L 305.189453125 221.0625 L 305.189453125 224 L 304.205078125 224 L 304.205078125 216.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 38 KiB |
328
site/docs/dev/design/conical/lemma3.2.svg
Normal file
@ -0,0 +1,328 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="312px"
|
||||
height="279px"
|
||||
viewBox="0 0 312 279"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Wednesday, December 27, 2017 9:52:32 AM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 354 0 L 354 317 L 0 317 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 45.484375 235.859375 L 48.125 235.859375 L 48.125 236.65625 L 45.484375 236.65625 L 45.484375 235.859375 z M 51.7802734375 232.359375 Q 51.0302734375 232.359375 50.6396484375 233.109375 Q 50.2646484375 233.859375 50.2646484375 235.359375 Q 50.2646484375 236.859375 50.6396484375 237.609375 Q 51.0302734375 238.359375 51.7802734375 238.359375 Q 52.5615234375 238.359375 52.9365234375 237.609375 Q 53.3271484375 236.859375 53.3271484375 235.359375 Q 53.3271484375 233.859375 52.9365234375 233.109375 Q 52.5615234375 232.359375 51.7802734375 232.359375 z M 51.7802734375 231.578125 Q 53.0146484375 231.578125 53.6552734375 232.546875 Q 54.3115234375 233.515625 54.3115234375 235.359375 Q 54.3115234375 237.203125 53.6552734375 238.171875 Q 53.0146484375 239.140625 51.7802734375 239.140625 Q 50.5615234375 239.140625 49.9052734375 238.171875 Q 49.2646484375 237.203125 49.2646484375 235.359375 Q 49.2646484375 233.515625 49.9052734375 232.546875 Q 50.5615234375 231.578125 51.7802734375 231.578125 z M 56.033203125 237.765625 L 57.064453125 237.765625 L 57.064453125 239 L 56.033203125 239 L 56.033203125 237.765625 z M 59.2275390625 231.703125 L 63.1025390625 231.703125 L 63.1025390625 232.546875 L 60.1337890625 232.546875 L 60.1337890625 234.328125 Q 60.3525390625 234.25 60.5556640625 234.21875 Q 60.7744140625 234.1875 60.9931640625 234.1875 Q 62.2119140625 234.1875 62.9150390625 234.859375 Q 63.6337890625 235.515625 63.6337890625 236.65625 Q 63.6337890625 237.84375 62.8994140625 238.5 Q 62.1806640625 239.140625 60.8369140625 239.140625 Q 60.3837890625 239.140625 59.8994140625 239.0625 Q 59.4306640625 238.984375 58.9150390625 238.828125 L 58.9150390625 237.84375 Q 59.3681640625 238.078125 59.8369140625 238.203125 Q 60.3056640625 238.3125 60.8212890625 238.3125 Q 61.6650390625 238.3125 62.1494140625 237.875 Q 62.6494140625 237.421875 62.6494140625 236.65625 Q 62.6494140625 235.90625 62.1494140625 235.46875 Q 61.6650390625 235.015625 60.8212890625 235.015625 Q 60.4306640625 235.015625 60.0244140625 235.109375 Q 59.6337890625 235.1875 59.2275390625 235.375 L 59.2275390625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 54.41565157552735 225.13443114482908 L 54.41565157552735 229.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 127.171875 232.359375 Q 126.421875 232.359375 126.03125 233.109375 Q 125.65625 233.859375 125.65625 235.359375 Q 125.65625 236.859375 126.03125 237.609375 Q 126.421875 238.359375 127.171875 238.359375 Q 127.953125 238.359375 128.328125 237.609375 Q 128.71875 236.859375 128.71875 235.359375 Q 128.71875 233.859375 128.328125 233.109375 Q 127.953125 232.359375 127.171875 232.359375 z M 127.171875 231.578125 Q 128.40625 231.578125 129.046875 232.546875 Q 129.703125 233.515625 129.703125 235.359375 Q 129.703125 237.203125 129.046875 238.171875 Q 128.40625 239.140625 127.171875 239.140625 Q 125.953125 239.140625 125.296875 238.171875 Q 124.65625 237.203125 124.65625 235.359375 Q 124.65625 233.515625 125.296875 232.546875 Q 125.953125 231.578125 127.171875 231.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.66669502231811 225.13443114482908 L 118.66669502231811 229.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 178.171875 232.359375 Q 177.421875 232.359375 177.03125 233.109375 Q 176.65625 233.859375 176.65625 235.359375 Q 176.65625 236.859375 177.03125 237.609375 Q 177.421875 238.359375 178.171875 238.359375 Q 178.953125 238.359375 179.328125 237.609375 Q 179.71875 236.859375 179.71875 235.359375 Q 179.71875 233.859375 179.328125 233.109375 Q 178.953125 232.359375 178.171875 232.359375 z M 178.171875 231.578125 Q 179.40625 231.578125 180.046875 232.546875 Q 180.703125 233.515625 180.703125 235.359375 Q 180.703125 237.203125 180.046875 238.171875 Q 179.40625 239.140625 178.171875 239.140625 Q 176.953125 239.140625 176.296875 238.171875 Q 175.65625 237.203125 175.65625 235.359375 Q 175.65625 233.515625 176.296875 232.546875 Q 176.953125 231.578125 178.171875 231.578125 z M 182.4248046875 237.765625 L 183.4560546875 237.765625 L 183.4560546875 239 L 182.4248046875 239 L 182.4248046875 237.765625 z M 185.619140625 231.703125 L 189.494140625 231.703125 L 189.494140625 232.546875 L 186.525390625 232.546875 L 186.525390625 234.328125 Q 186.744140625 234.25 186.947265625 234.21875 Q 187.166015625 234.1875 187.384765625 234.1875 Q 188.603515625 234.1875 189.306640625 234.859375 Q 190.025390625 235.515625 190.025390625 236.65625 Q 190.025390625 237.84375 189.291015625 238.5 Q 188.572265625 239.140625 187.228515625 239.140625 Q 186.775390625 239.140625 186.291015625 239.0625 Q 185.822265625 238.984375 185.306640625 238.828125 L 185.306640625 237.84375 Q 185.759765625 238.078125 186.228515625 238.203125 Q 186.697265625 238.3125 187.212890625 238.3125 Q 188.056640625 238.3125 188.541015625 237.875 Q 189.041015625 237.421875 189.041015625 236.65625 Q 189.041015625 235.90625 188.541015625 235.46875 Q 188.056640625 235.015625 187.212890625 235.015625 Q 186.822265625 235.015625 186.416015625 235.109375 Q 186.025390625 235.1875 185.619140625 235.375 L 185.619140625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 182.91773846910888 225.13443114482908 L 182.91773846910888 229.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 245.234375 238.171875 L 246.859375 238.171875 L 246.859375 232.609375 L 245.09375 232.953125 L 245.09375 232.0625 L 246.84375 231.703125 L 247.828125 231.703125 L 247.828125 238.171875 L 249.4375 238.171875 L 249.4375 239 L 245.234375 239 L 245.234375 238.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 247.16878191589964 225.13443114482908 L 247.16878191589964 229.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 305.234375 238.171875 L 306.859375 238.171875 L 306.859375 232.609375 L 305.09375 232.953125 L 305.09375 232.0625 L 306.84375 231.703125 L 307.828125 231.703125 L 307.828125 238.171875 L 309.4375 238.171875 L 309.4375 239 L 305.234375 239 L 305.234375 238.171875 z M 311.4248046875 237.765625 L 312.4560546875 237.765625 L 312.4560546875 239 L 311.4248046875 239 L 311.4248046875 237.765625 z M 314.619140625 231.703125 L 318.494140625 231.703125 L 318.494140625 232.546875 L 315.525390625 232.546875 L 315.525390625 234.328125 Q 315.744140625 234.25 315.947265625 234.21875 Q 316.166015625 234.1875 316.384765625 234.1875 Q 317.603515625 234.1875 318.306640625 234.859375 Q 319.025390625 235.515625 319.025390625 236.65625 Q 319.025390625 237.84375 318.291015625 238.5 Q 317.572265625 239.140625 316.228515625 239.140625 Q 315.775390625 239.140625 315.291015625 239.0625 Q 314.822265625 238.984375 314.306640625 238.828125 L 314.306640625 237.84375 Q 314.759765625 238.078125 315.228515625 238.203125 Q 315.697265625 238.3125 316.212890625 238.3125 Q 317.056640625 238.3125 317.541015625 237.875 Q 318.041015625 237.421875 318.041015625 236.65625 Q 318.041015625 235.90625 317.541015625 235.46875 Q 317.056640625 235.015625 316.212890625 235.015625 Q 315.822265625 235.015625 315.416015625 235.109375 Q 315.025390625 235.1875 314.619140625 235.375 L 314.619140625 231.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 311.4198253626904 225.13443114482908 L 311.4198253626904 229.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 225.13443114482908 L 352 225.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 353 225.63443114482908 L 350 222.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 353 224.63443114482908 L 350 228.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 93.484375 289.859375 L 96.125 289.859375 L 96.125 290.65625 L 93.484375 290.65625 L 93.484375 289.859375 z M 99.7802734375 286.359375 Q 99.0302734375 286.359375 98.6396484375 287.109375 Q 98.2646484375 287.859375 98.2646484375 289.359375 Q 98.2646484375 290.859375 98.6396484375 291.609375 Q 99.0302734375 292.359375 99.7802734375 292.359375 Q 100.5615234375 292.359375 100.9365234375 291.609375 Q 101.3271484375 290.859375 101.3271484375 289.359375 Q 101.3271484375 287.859375 100.9365234375 287.109375 Q 100.5615234375 286.359375 99.7802734375 286.359375 z M 99.7802734375 285.578125 Q 101.0146484375 285.578125 101.6552734375 286.546875 Q 102.3115234375 287.515625 102.3115234375 289.359375 Q 102.3115234375 291.203125 101.6552734375 292.171875 Q 101.0146484375 293.140625 99.7802734375 293.140625 Q 98.5615234375 293.140625 97.9052734375 292.171875 Q 97.2646484375 291.203125 97.2646484375 289.359375 Q 97.2646484375 287.515625 97.9052734375 286.546875 Q 98.5615234375 285.578125 99.7802734375 285.578125 z M 104.033203125 291.765625 L 105.064453125 291.765625 L 105.064453125 293 L 104.033203125 293 L 104.033203125 291.765625 z M 107.2275390625 285.703125 L 111.1025390625 285.703125 L 111.1025390625 286.546875 L 108.1337890625 286.546875 L 108.1337890625 288.328125 Q 108.3525390625 288.25 108.5556640625 288.21875 Q 108.7744140625 288.1875 108.9931640625 288.1875 Q 110.2119140625 288.1875 110.9150390625 288.859375 Q 111.6337890625 289.515625 111.6337890625 290.65625 Q 111.6337890625 291.84375 110.8994140625 292.5 Q 110.1806640625 293.140625 108.8369140625 293.140625 Q 108.3837890625 293.140625 107.8994140625 293.0625 Q 107.4306640625 292.984375 106.9150390625 292.828125 L 106.9150390625 291.84375 Q 107.3681640625 292.078125 107.8369140625 292.203125 Q 108.3056640625 292.3125 108.8212890625 292.3125 Q 109.6650390625 292.3125 110.1494140625 291.875 Q 110.6494140625 291.421875 110.6494140625 290.65625 Q 110.6494140625 289.90625 110.1494140625 289.46875 Q 109.6650390625 289.015625 108.8212890625 289.015625 Q 108.4306640625 289.015625 108.0244140625 289.109375 Q 107.6337890625 289.1875 107.2275390625 289.375 L 107.2275390625 285.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231811 289.3854745916199 L 118.66669502231811 289.3854745916199"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 109.171875 216.359375 Q 108.421875 216.359375 108.03125 217.109375 Q 107.65625 217.859375 107.65625 219.359375 Q 107.65625 220.859375 108.03125 221.609375 Q 108.421875 222.359375 109.171875 222.359375 Q 109.953125 222.359375 110.328125 221.609375 Q 110.71875 220.859375 110.71875 219.359375 Q 110.71875 217.859375 110.328125 217.109375 Q 109.953125 216.359375 109.171875 216.359375 z M 109.171875 215.578125 Q 110.40625 215.578125 111.046875 216.546875 Q 111.703125 217.515625 111.703125 219.359375 Q 111.703125 221.203125 111.046875 222.171875 Q 110.40625 223.140625 109.171875 223.140625 Q 107.953125 223.140625 107.296875 222.171875 Q 106.65625 221.203125 106.65625 219.359375 Q 106.65625 217.515625 107.296875 216.546875 Q 107.953125 215.578125 109.171875 215.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231811 225.13443114482908 L 118.66669502231811 225.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 99.171875 157.359375 Q 98.421875 157.359375 98.03125 158.109375 Q 97.65625 158.859375 97.65625 160.359375 Q 97.65625 161.859375 98.03125 162.609375 Q 98.421875 163.359375 99.171875 163.359375 Q 99.953125 163.359375 100.328125 162.609375 Q 100.71875 161.859375 100.71875 160.359375 Q 100.71875 158.859375 100.328125 158.109375 Q 99.953125 157.359375 99.171875 157.359375 z M 99.171875 156.578125 Q 100.40625 156.578125 101.046875 157.546875 Q 101.703125 158.515625 101.703125 160.359375 Q 101.703125 162.203125 101.046875 163.171875 Q 100.40625 164.140625 99.171875 164.140625 Q 97.953125 164.140625 97.296875 163.171875 Q 96.65625 162.203125 96.65625 160.359375 Q 96.65625 158.515625 97.296875 157.546875 Q 97.953125 156.578125 99.171875 156.578125 z M 103.4248046875 162.765625 L 104.4560546875 162.765625 L 104.4560546875 164 L 103.4248046875 164 L 103.4248046875 162.765625 z M 106.619140625 156.703125 L 110.494140625 156.703125 L 110.494140625 157.546875 L 107.525390625 157.546875 L 107.525390625 159.328125 Q 107.744140625 159.25 107.947265625 159.21875 Q 108.166015625 159.1875 108.384765625 159.1875 Q 109.603515625 159.1875 110.306640625 159.859375 Q 111.025390625 160.515625 111.025390625 161.65625 Q 111.025390625 162.84375 110.291015625 163.5 Q 109.572265625 164.140625 108.228515625 164.140625 Q 107.775390625 164.140625 107.291015625 164.0625 Q 106.822265625 163.984375 106.306640625 163.828125 L 106.306640625 162.84375 Q 106.759765625 163.078125 107.228515625 163.203125 Q 107.697265625 163.3125 108.212890625 163.3125 Q 109.056640625 163.3125 109.541015625 162.875 Q 110.041015625 162.421875 110.041015625 161.65625 Q 110.041015625 160.90625 109.541015625 160.46875 Q 109.056640625 160.015625 108.212890625 160.015625 Q 107.822265625 160.015625 107.416015625 160.109375 Q 107.025390625 160.1875 106.619140625 160.375 L 106.619140625 156.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231811 160.88338769803823 L 118.66669502231811 160.88338769803823"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 107.234375 99.171875 L 108.859375 99.171875 L 108.859375 93.609375 L 107.09375 93.953125 L 107.09375 93.0625 L 108.84375 92.703125 L 109.828125 92.703125 L 109.828125 99.171875 L 111.4375 99.171875 L 111.4375 100 L 107.234375 100 L 107.234375 99.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231811 96.63234425124739 L 118.66669502231811 96.63234425124739"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 97.234375 35.171875 L 98.859375 35.171875 L 98.859375 29.609375 L 97.09375 29.953125 L 97.09375 29.0625 L 98.84375 28.703125 L 99.828125 28.703125 L 99.828125 35.171875 L 101.4375 35.171875 L 101.4375 36 L 97.234375 36 L 97.234375 35.171875 z M 103.4248046875 34.765625 L 104.4560546875 34.765625 L 104.4560546875 36 L 103.4248046875 36 L 103.4248046875 34.765625 z M 106.619140625 28.703125 L 110.494140625 28.703125 L 110.494140625 29.546875 L 107.525390625 29.546875 L 107.525390625 31.328125 Q 107.744140625 31.25 107.947265625 31.21875 Q 108.166015625 31.1875 108.384765625 31.1875 Q 109.603515625 31.1875 110.306640625 31.859375 Q 111.025390625 32.515625 111.025390625 33.65625 Q 111.025390625 34.84375 110.291015625 35.5 Q 109.572265625 36.140625 108.228515625 36.140625 Q 107.775390625 36.140625 107.291015625 36.0625 Q 106.822265625 35.984375 106.306640625 35.828125 L 106.306640625 34.84375 Q 106.759765625 35.078125 107.228515625 35.203125 Q 107.697265625 35.3125 108.212890625 35.3125 Q 109.056640625 35.3125 109.541015625 34.875 Q 110.041015625 34.421875 110.041015625 33.65625 Q 110.041015625 32.90625 109.541015625 32.46875 Q 109.056640625 32.015625 108.212890625 32.015625 Q 107.822265625 32.015625 107.416015625 32.109375 Q 107.025390625 32.1875 106.619140625 32.375 L 106.619140625 28.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 114.66669502231811 32.381300804456544 L 118.66669502231811 32.381300804456544"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.66669502231811 2 L 118.66669502231811 317"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 119.16669502231811 1 L 115.66669502231811 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 118.16669502231811 1 L 121.66669502231811 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 452.77212094563004 225.13443114482908 C 452.77212094563004 338.68601980523965 360.7203705763101 430.7377701745598 247.16878191589961 430.7377701745598 C 133.61719325548916 430.7377701745598 41.565442886169166 338.68601980523965 41.565442886169166 225.13443114482908 C 41.565442886169166 111.58284248441846 133.61719325548916 19.531092115098375 247.16878191589961 19.531092115098375 C 360.7203705763101 19.531092115098375 452.77212094563004 111.58284248441846 452.77212094563004 225.13443114482908 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 27.9375 33.4375 Q 27.75 33.34375 27.53125 33.296875 Q 27.328125 33.234375 27.0625 33.234375 Q 26.15625 33.234375 25.65625 33.828125 Q 25.171875 34.421875 25.171875 35.546875 L 25.171875 39 L 24.09375 39 L 24.09375 32.4375 L 25.171875 32.4375 L 25.171875 33.453125 Q 25.515625 32.859375 26.0625 32.578125 Q 26.609375 32.28125 27.390625 32.28125 Q 27.5 32.28125 27.625 32.296875 Q 27.765625 32.3125 27.921875 32.34375 L 27.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 29.16796875 43.171875 L 30.79296875 43.171875 L 30.79296875 37.609375 L 29.02734375 37.953125 L 29.02734375 37.0625 L 30.77734375 36.703125 L 31.76171875 36.703125 L 31.76171875 43.171875 L 33.37109375 43.171875 L 33.37109375 44 L 29.16796875 44 L 29.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 39.3759765625 33.546875 L 46.8916015625 33.546875 L 46.8916015625 34.53125 L 39.3759765625 34.53125 L 39.3759765625 33.546875 z M 39.3759765625 35.9375 L 46.8916015625 35.9375 L 46.8916015625 36.9375 L 39.3759765625 36.9375 L 39.3759765625 35.9375 z M 53.4638671875 38 L 55.4013671875 38 L 55.4013671875 31.328125 L 53.2919921875 31.75 L 53.2919921875 30.671875 L 55.3857421875 30.25 L 56.5732421875 30.25 L 56.5732421875 38 L 58.5107421875 38 L 58.5107421875 39 L 53.4638671875 39 L 53.4638671875 38 z M 60.8955078125 37.515625 L 62.1298828125 37.515625 L 62.1298828125 39 L 60.8955078125 39 L 60.8955078125 37.515625 z M 67.3974609375 34.15625 Q 66.6005859375 34.15625 66.1318359375 34.703125 Q 65.6630859375 35.25 65.6630859375 36.1875 Q 65.6630859375 37.140625 66.1318359375 37.6875 Q 66.6005859375 38.234375 67.3974609375 38.234375 Q 68.1943359375 38.234375 68.6474609375 37.6875 Q 69.1162109375 37.140625 69.1162109375 36.1875 Q 69.1162109375 35.25 68.6474609375 34.703125 Q 68.1943359375 34.15625 67.3974609375 34.15625 z M 69.7412109375 30.4375 L 69.7412109375 31.515625 Q 69.2880859375 31.3125 68.8349609375 31.203125 Q 68.3818359375 31.09375 67.9443359375 31.09375 Q 66.7724609375 31.09375 66.1474609375 31.890625 Q 65.5380859375 32.671875 65.4443359375 34.265625 Q 65.7880859375 33.765625 66.3037109375 33.5 Q 66.8349609375 33.21875 67.4599609375 33.21875 Q 68.7724609375 33.21875 69.5380859375 34.015625 Q 70.3037109375 34.8125 70.3037109375 36.1875 Q 70.3037109375 37.546875 69.5068359375 38.359375 Q 68.7099609375 39.171875 67.3974609375 39.171875 Q 65.8662109375 39.171875 65.0693359375 38.015625 Q 64.2724609375 36.84375 64.2724609375 34.640625 Q 64.2724609375 32.5625 65.2568359375 31.328125 Q 66.2412109375 30.09375 67.8974609375 30.09375 Q 68.3349609375 30.09375 68.7880859375 30.1875 Q 69.2412109375 30.265625 69.7412109375 30.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
|
||||
<path d="M 154.53904724121094 282.778564453125 L 172.54957580566406 271.57049560546875 L 161.34149169921875 253.55996704101562 L 143.3309783935547 264.7680358886719 L 154.53904724121094 282.778564453125"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
|
||||
<path d="M 154.53904724121094 282.778564453125 L 172.54957580566406 271.57049560546875 L 161.34149169921875 253.55996704101562 L 143.3309783935547 264.7680358886719 L 154.53904724121094 282.778564453125"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 178.9468221607791 322 L -5 26.4114799761894"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 154.53904829384888 282.7785681228254 L 247.16878191589961 225.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 80 163 L 80 225.13443114482908"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 258.734375 210.921875 L 258.734375 212.171875 Q 258.125 211.609375 257.453125 211.34375 Q 256.78125 211.0625 256.015625 211.0625 Q 254.515625 211.0625 253.71875 211.984375 Q 252.921875 212.90625 252.921875 214.640625 Q 252.921875 216.359375 253.71875 217.28125 Q 254.515625 218.203125 256.015625 218.203125 Q 256.78125 218.203125 257.453125 217.921875 Q 258.125 217.640625 258.734375 217.09375 L 258.734375 218.328125 Q 258.109375 218.75 257.40625 218.96875 Q 256.71875 219.171875 255.953125 219.171875 Q 253.953125 219.171875 252.8125 217.953125 Q 251.671875 216.734375 251.671875 214.640625 Q 251.671875 212.53125 252.8125 211.3125 Q 253.953125 210.09375 255.953125 210.09375 Q 256.734375 210.09375 257.421875 210.3125 Q 258.125 210.515625 258.734375 210.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 260.61328125 223.171875 L 262.23828125 223.171875 L 262.23828125 217.609375 L 260.47265625 217.953125 L 260.47265625 217.0625 L 262.22265625 216.703125 L 263.20703125 216.703125 L 263.20703125 223.171875 L 264.81640625 223.171875 L 264.81640625 224 L 260.61328125 224 L 260.61328125 223.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 83 163 C 83 164.65685424949237 81.65685424949238 166 80 166 C 78.34314575050762 166 77 164.65685424949237 77 163 C 77 161.34314575050763 78.34314575050762 160 80 160 C 81.65685424949238 160 83 161.34314575050763 83 163 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 83 163 C 83 164.65685424949237 81.65685424949238 166 80 166 C 78.34314575050762 166 77 164.65685424949237 77 163 C 77 161.34314575050763 78.34314575050762 160 80 160 C 81.65685424949238 160 83 161.34314575050763 83 163 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 86.359375 149.21875 L 86.359375 152.515625 L 87.84375 152.515625 Q 88.671875 152.515625 89.125 152.09375 Q 89.578125 151.65625 89.578125 150.859375 Q 89.578125 150.078125 89.125 149.65625 Q 88.671875 149.21875 87.84375 149.21875 L 86.359375 149.21875 z M 85.171875 148.25 L 87.84375 148.25 Q 89.328125 148.25 90.078125 148.921875 Q 90.828125 149.578125 90.828125 150.859375 Q 90.828125 152.15625 90.078125 152.828125 Q 89.328125 153.484375 87.84375 153.484375 L 86.359375 153.484375 L 86.359375 157 L 85.171875 157 L 85.171875 148.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 130.734375 210.921875 L 130.734375 212.171875 Q 130.125 211.609375 129.453125 211.34375 Q 128.78125 211.0625 128.015625 211.0625 Q 126.515625 211.0625 125.71875 211.984375 Q 124.921875 212.90625 124.921875 214.640625 Q 124.921875 216.359375 125.71875 217.28125 Q 126.515625 218.203125 128.015625 218.203125 Q 128.78125 218.203125 129.453125 217.921875 Q 130.125 217.640625 130.734375 217.09375 L 130.734375 218.328125 Q 130.109375 218.75 129.40625 218.96875 Q 128.71875 219.171875 127.953125 219.171875 Q 125.953125 219.171875 124.8125 217.953125 Q 123.671875 216.734375 123.671875 214.640625 Q 123.671875 212.53125 124.8125 211.3125 Q 125.953125 210.09375 127.953125 210.09375 Q 128.734375 210.09375 129.421875 210.3125 Q 130.125 210.515625 130.734375 210.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 135.09765625 216.40625 L 135.09765625 217.15625 L 134.23828125 217.15625 Q 133.75390625 217.15625 133.56640625 217.359375 Q 133.37890625 217.546875 133.37890625 218.046875 L 133.37890625 218.53125 L 134.84765625 218.53125 L 134.84765625 219.234375 L 133.37890625 219.234375 L 133.37890625 224 L 132.47265625 224 L 132.47265625 219.234375 L 131.61328125 219.234375 L 131.61328125 218.53125 L 132.47265625 218.53125 L 132.47265625 218.15625 Q 132.47265625 217.234375 132.89453125 216.828125 Q 133.31640625 216.40625 134.23828125 216.40625 L 135.09765625 216.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 65 135 C 65 136.65685424949237 63.65685424949238 138 62 138 C 60.34314575050762 138 59 136.65685424949237 59 135 C 59 133.34314575050763 60.34314575050762 132 62 132 C 63.65685424949238 132 65 133.34314575050763 65 135 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 65 135 C 65 136.65685424949237 63.65685424949238 138 62 138 C 60.34314575050762 138 59 136.65685424949237 59 135 C 59 133.34314575050763 60.34314575050762 132 62 132 C 63.65685424949238 132 65 133.34314575050763 65 135 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 68.359375 121.21875 L 68.359375 124.515625 L 69.84375 124.515625 Q 70.671875 124.515625 71.125 124.09375 Q 71.578125 123.65625 71.578125 122.859375 Q 71.578125 122.078125 71.125 121.65625 Q 70.671875 121.21875 69.84375 121.21875 L 68.359375 121.21875 z M 67.171875 120.25 L 69.84375 120.25 Q 71.328125 120.25 72.078125 120.921875 Q 72.828125 121.578125 72.828125 122.859375 Q 72.828125 124.15625 72.078125 124.828125 Q 71.328125 125.484375 69.84375 125.484375 L 68.359375 125.484375 L 68.359375 129 L 67.171875 129 L 67.171875 120.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 74.470703125 133.171875 L 76.095703125 133.171875 L 76.095703125 127.609375 L 74.330078125 127.953125 L 74.330078125 127.0625 L 76.080078125 126.703125 L 77.064453125 126.703125 L 77.064453125 133.171875 L 78.673828125 133.171875 L 78.673828125 134 L 74.470703125 134 L 74.470703125 133.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 158 283 C 158 284.65685424949237 156.65685424949237 286 155 286 C 153.34314575050763 286 152 284.65685424949237 152 283 C 152 281.34314575050763 153.34314575050763 280 155 280 C 156.65685424949237 280 158 281.34314575050763 158 283 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 158 283 C 158 284.65685424949237 156.65685424949237 286 155 286 C 153.34314575050763 286 152 284.65685424949237 152 283 C 152 281.34314575050763 153.34314575050763 280 155 280 C 156.65685424949237 280 158 281.34314575050763 158 283 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 160.171875 268.25 L 161.359375 268.25 L 161.359375 271.84375 L 165.65625 271.84375 L 165.65625 268.25 L 166.84375 268.25 L 166.84375 277 L 165.65625 277 L 165.65625 272.828125 L 161.359375 272.828125 L 161.359375 277 L 160.171875 277 L 160.171875 268.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 83 225 C 83 226.65685424949237 81.65685424949238 228 80 228 C 78.34314575050762 228 77 226.65685424949237 77 225 C 77 223.34314575050763 78.34314575050762 222 80 222 C 81.65685424949238 222 83 223.34314575050763 83 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 83 225 C 83 226.65685424949237 81.65685424949238 228 80 228 C 78.34314575050762 228 77 226.65685424949237 77 225 C 77 223.34314575050763 78.34314575050762 222 80 222 C 81.65685424949238 222 83 223.34314575050763 83 225 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 84.75 210.25 L 86.03125 210.25 L 88.203125 213.5 L 90.390625 210.25 L 91.65625 210.25 L 88.84375 214.453125 L 91.84375 219 L 90.578125 219 L 88.109375 215.28125 L 85.640625 219 L 84.359375 219 L 87.484375 214.328125 L 84.75 210.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 94.189453125 217.515625 L 94.189453125 220.265625 L 95.423828125 220.265625 Q 96.111328125 220.265625 96.486328125 219.90625 Q 96.876953125 219.546875 96.876953125 218.890625 Q 96.876953125 218.234375 96.486328125 217.875 Q 96.111328125 217.515625 95.423828125 217.515625 L 94.189453125 217.515625 z M 93.205078125 216.703125 L 95.423828125 216.703125 Q 96.658203125 216.703125 97.283203125 217.265625 Q 97.908203125 217.8125 97.908203125 218.890625 Q 97.908203125 219.96875 97.283203125 220.515625 Q 96.658203125 221.0625 95.423828125 221.0625 L 94.189453125 221.0625 L 94.189453125 224 L 93.205078125 224 L 93.205078125 216.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 39 KiB |
338
site/docs/dev/design/conical/lemma4.svg
Normal file
@ -0,0 +1,338 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
|
||||
<svg
|
||||
version="1.1"
|
||||
baseProfile="full"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns:ev="http://www.w3.org/2001/xml-events"
|
||||
x="0px"
|
||||
y="0px"
|
||||
width="308px"
|
||||
height="243px"
|
||||
viewBox="0 0 308 243"
|
||||
>
|
||||
<title></title>
|
||||
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Wednesday, December 27, 2017 4:17:43 PM EST</desc>
|
||||
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
|
||||
<path d="M 0 0 L 385 0 L 385 303 L 0 303 L 0 0 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 65.171875 205.359375 Q 64.421875 205.359375 64.03125 206.109375 Q 63.65625 206.859375 63.65625 208.359375 Q 63.65625 209.859375 64.03125 210.609375 Q 64.421875 211.359375 65.171875 211.359375 Q 65.953125 211.359375 66.328125 210.609375 Q 66.71875 209.859375 66.71875 208.359375 Q 66.71875 206.859375 66.328125 206.109375 Q 65.953125 205.359375 65.171875 205.359375 z M 65.171875 204.578125 Q 66.40625 204.578125 67.046875 205.546875 Q 67.703125 206.515625 67.703125 208.359375 Q 67.703125 210.203125 67.046875 211.171875 Q 66.40625 212.140625 65.171875 212.140625 Q 63.953125 212.140625 63.296875 211.171875 Q 62.65625 210.203125 62.65625 208.359375 Q 62.65625 206.515625 63.296875 205.546875 Q 63.953125 204.578125 65.171875 204.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.63336452454984 198.05787425931192 L 56.63336452454984 202.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 123.171875 205.359375 Q 122.421875 205.359375 122.03125 206.109375 Q 121.65625 206.859375 121.65625 208.359375 Q 121.65625 209.859375 122.03125 210.609375 Q 122.421875 211.359375 123.171875 211.359375 Q 123.953125 211.359375 124.328125 210.609375 Q 124.71875 209.859375 124.71875 208.359375 Q 124.71875 206.859375 124.328125 206.109375 Q 123.953125 205.359375 123.171875 205.359375 z M 123.171875 204.578125 Q 124.40625 204.578125 125.046875 205.546875 Q 125.703125 206.515625 125.703125 208.359375 Q 125.703125 210.203125 125.046875 211.171875 Q 124.40625 212.140625 123.171875 212.140625 Q 121.953125 212.140625 121.296875 211.171875 Q 120.65625 210.203125 120.65625 208.359375 Q 120.65625 206.515625 121.296875 205.546875 Q 121.953125 204.578125 123.171875 204.578125 z M 127.4248046875 210.765625 L 128.4560546875 210.765625 L 128.4560546875 212 L 127.4248046875 212 L 127.4248046875 210.765625 z M 130.619140625 204.703125 L 134.494140625 204.703125 L 134.494140625 205.546875 L 131.525390625 205.546875 L 131.525390625 207.328125 Q 131.744140625 207.25 131.947265625 207.21875 Q 132.166015625 207.1875 132.384765625 207.1875 Q 133.603515625 207.1875 134.306640625 207.859375 Q 135.025390625 208.515625 135.025390625 209.65625 Q 135.025390625 210.84375 134.291015625 211.5 Q 133.572265625 212.140625 132.228515625 212.140625 Q 131.775390625 212.140625 131.291015625 212.0625 Q 130.822265625 211.984375 130.306640625 211.828125 L 130.306640625 210.84375 Q 130.759765625 211.078125 131.228515625 211.203125 Q 131.697265625 211.3125 132.212890625 211.3125 Q 133.056640625 211.3125 133.541015625 210.875 Q 134.041015625 210.421875 134.041015625 209.65625 Q 134.041015625 208.90625 133.541015625 208.46875 Q 133.056640625 208.015625 132.212890625 208.015625 Q 131.822265625 208.015625 131.416015625 208.109375 Q 131.025390625 208.1875 130.619140625 208.375 L 130.619140625 204.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 127.30951231601955 198.05787425931192 L 127.30951231601955 202.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 196.234375 211.171875 L 197.859375 211.171875 L 197.859375 205.609375 L 196.09375 205.953125 L 196.09375 205.0625 L 197.84375 204.703125 L 198.828125 204.703125 L 198.828125 211.171875 L 200.4375 211.171875 L 200.4375 212 L 196.234375 212 L 196.234375 211.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 197.98566010748925 198.05787425931192 L 197.98566010748925 202.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 262.234375 211.171875 L 263.859375 211.171875 L 263.859375 205.609375 L 262.09375 205.953125 L 262.09375 205.0625 L 263.84375 204.703125 L 264.828125 204.703125 L 264.828125 211.171875 L 266.4375 211.171875 L 266.4375 212 L 262.234375 212 L 262.234375 211.171875 z M 268.4248046875 210.765625 L 269.4560546875 210.765625 L 269.4560546875 212 L 268.4248046875 212 L 268.4248046875 210.765625 z M 271.619140625 204.703125 L 275.494140625 204.703125 L 275.494140625 205.546875 L 272.525390625 205.546875 L 272.525390625 207.328125 Q 272.744140625 207.25 272.947265625 207.21875 Q 273.166015625 207.1875 273.384765625 207.1875 Q 274.603515625 207.1875 275.306640625 207.859375 Q 276.025390625 208.515625 276.025390625 209.65625 Q 276.025390625 210.84375 275.291015625 211.5 Q 274.572265625 212.140625 273.228515625 212.140625 Q 272.775390625 212.140625 272.291015625 212.0625 Q 271.822265625 211.984375 271.306640625 211.828125 L 271.306640625 210.84375 Q 271.759765625 211.078125 272.228515625 211.203125 Q 272.697265625 211.3125 273.212890625 211.3125 Q 274.056640625 211.3125 274.541015625 210.875 Q 275.041015625 210.421875 275.041015625 209.65625 Q 275.041015625 208.90625 274.541015625 208.46875 Q 274.056640625 208.015625 273.212890625 208.015625 Q 272.822265625 208.015625 272.416015625 208.109375 Q 272.025390625 208.1875 271.619140625 208.375 L 271.619140625 204.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 268.66180789895895 198.05787425931192 L 268.66180789895895 202.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 338.921875 211.171875 L 342.359375 211.171875 L 342.359375 212 L 337.734375 212 L 337.734375 211.171875 Q 338.296875 210.59375 339.265625 209.609375 Q 340.234375 208.625 340.484375 208.34375 Q 340.953125 207.8125 341.140625 207.453125 Q 341.328125 207.078125 341.328125 206.71875 Q 341.328125 206.140625 340.921875 205.78125 Q 340.515625 205.40625 339.859375 205.40625 Q 339.390625 205.40625 338.875 205.578125 Q 338.375 205.734375 337.78125 206.0625 L 337.78125 205.0625 Q 338.375 204.828125 338.890625 204.703125 Q 339.40625 204.578125 339.84375 204.578125 Q 340.96875 204.578125 341.640625 205.140625 Q 342.328125 205.703125 342.328125 206.65625 Q 342.328125 207.109375 342.15625 207.515625 Q 341.984375 207.90625 341.546875 208.453125 Q 341.421875 208.59375 340.765625 209.28125 Q 340.109375 209.953125 338.921875 211.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 339.33795569042866 198.05787425931192 L 339.33795569042866 202.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 0 198.05787425931192 L 383 198.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 384 198.55787425931192 L 381 195.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 384 197.55787425931192 L 381 201.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 31.484375 268.859375 L 34.125 268.859375 L 34.125 269.65625 L 31.484375 269.65625 L 31.484375 268.859375 z M 37.7802734375 265.359375 Q 37.0302734375 265.359375 36.6396484375 266.109375 Q 36.2646484375 266.859375 36.2646484375 268.359375 Q 36.2646484375 269.859375 36.6396484375 270.609375 Q 37.0302734375 271.359375 37.7802734375 271.359375 Q 38.5615234375 271.359375 38.9365234375 270.609375 Q 39.3271484375 269.859375 39.3271484375 268.359375 Q 39.3271484375 266.859375 38.9365234375 266.109375 Q 38.5615234375 265.359375 37.7802734375 265.359375 z M 37.7802734375 264.578125 Q 39.0146484375 264.578125 39.6552734375 265.546875 Q 40.3115234375 266.515625 40.3115234375 268.359375 Q 40.3115234375 270.203125 39.6552734375 271.171875 Q 39.0146484375 272.140625 37.7802734375 272.140625 Q 36.5615234375 272.140625 35.9052734375 271.171875 Q 35.2646484375 270.203125 35.2646484375 268.359375 Q 35.2646484375 266.515625 35.9052734375 265.546875 Q 36.5615234375 264.578125 37.7802734375 264.578125 z M 42.033203125 270.765625 L 43.064453125 270.765625 L 43.064453125 272 L 42.033203125 272 L 42.033203125 270.765625 z M 45.2275390625 264.703125 L 49.1025390625 264.703125 L 49.1025390625 265.546875 L 46.1337890625 265.546875 L 46.1337890625 267.328125 Q 46.3525390625 267.25 46.5556640625 267.21875 Q 46.7744140625 267.1875 46.9931640625 267.1875 Q 48.2119140625 267.1875 48.9150390625 267.859375 Q 49.6337890625 268.515625 49.6337890625 269.65625 Q 49.6337890625 270.84375 48.8994140625 271.5 Q 48.1806640625 272.140625 46.8369140625 272.140625 Q 46.3837890625 272.140625 45.8994140625 272.0625 Q 45.4306640625 271.984375 44.9150390625 271.828125 L 44.9150390625 270.84375 Q 45.3681640625 271.078125 45.8369140625 271.203125 Q 46.3056640625 271.3125 46.8212890625 271.3125 Q 47.6650390625 271.3125 48.1494140625 270.875 Q 48.6494140625 270.421875 48.6494140625 269.65625 Q 48.6494140625 268.90625 48.1494140625 268.46875 Q 47.6650390625 268.015625 46.8212890625 268.015625 Q 46.4306640625 268.015625 46.0244140625 268.109375 Q 45.6337890625 268.1875 45.2275390625 268.375 L 45.2275390625 264.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52.63336452454984 268.73402205078196 L 56.63336452454984 268.73402205078196"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 47.171875 189.359375 Q 46.421875 189.359375 46.03125 190.109375 Q 45.65625 190.859375 45.65625 192.359375 Q 45.65625 193.859375 46.03125 194.609375 Q 46.421875 195.359375 47.171875 195.359375 Q 47.953125 195.359375 48.328125 194.609375 Q 48.71875 193.859375 48.71875 192.359375 Q 48.71875 190.859375 48.328125 190.109375 Q 47.953125 189.359375 47.171875 189.359375 z M 47.171875 188.578125 Q 48.40625 188.578125 49.046875 189.546875 Q 49.703125 190.515625 49.703125 192.359375 Q 49.703125 194.203125 49.046875 195.171875 Q 48.40625 196.140625 47.171875 196.140625 Q 45.953125 196.140625 45.296875 195.171875 Q 44.65625 194.203125 44.65625 192.359375 Q 44.65625 190.515625 45.296875 189.546875 Q 45.953125 188.578125 47.171875 188.578125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52.63336452454984 198.05787425931194 L 56.63336452454984 198.05787425931194"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 37.171875 124.359375 Q 36.421875 124.359375 36.03125 125.109375 Q 35.65625 125.859375 35.65625 127.359375 Q 35.65625 128.859375 36.03125 129.609375 Q 36.421875 130.359375 37.171875 130.359375 Q 37.953125 130.359375 38.328125 129.609375 Q 38.71875 128.859375 38.71875 127.359375 Q 38.71875 125.859375 38.328125 125.109375 Q 37.953125 124.359375 37.171875 124.359375 z M 37.171875 123.578125 Q 38.40625 123.578125 39.046875 124.546875 Q 39.703125 125.515625 39.703125 127.359375 Q 39.703125 129.203125 39.046875 130.171875 Q 38.40625 131.140625 37.171875 131.140625 Q 35.953125 131.140625 35.296875 130.171875 Q 34.65625 129.203125 34.65625 127.359375 Q 34.65625 125.515625 35.296875 124.546875 Q 35.953125 123.578125 37.171875 123.578125 z M 41.4248046875 129.765625 L 42.4560546875 129.765625 L 42.4560546875 131 L 41.4248046875 131 L 41.4248046875 129.765625 z M 44.619140625 123.703125 L 48.494140625 123.703125 L 48.494140625 124.546875 L 45.525390625 124.546875 L 45.525390625 126.328125 Q 45.744140625 126.25 45.947265625 126.21875 Q 46.166015625 126.1875 46.384765625 126.1875 Q 47.603515625 126.1875 48.306640625 126.859375 Q 49.025390625 127.515625 49.025390625 128.65625 Q 49.025390625 129.84375 48.291015625 130.5 Q 47.572265625 131.140625 46.228515625 131.140625 Q 45.775390625 131.140625 45.291015625 131.0625 Q 44.822265625 130.984375 44.306640625 130.828125 L 44.306640625 129.84375 Q 44.759765625 130.078125 45.228515625 130.203125 Q 45.697265625 130.3125 46.212890625 130.3125 Q 47.056640625 130.3125 47.541015625 129.875 Q 48.041015625 129.421875 48.041015625 128.65625 Q 48.041015625 127.90625 47.541015625 127.46875 Q 47.056640625 127.015625 46.212890625 127.015625 Q 45.822265625 127.015625 45.416015625 127.109375 Q 45.025390625 127.1875 44.619140625 127.375 L 44.619140625 123.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52.63336452454984 127.38172646784193 L 56.63336452454984 127.38172646784193"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 45.234375 59.171875 L 46.859375 59.171875 L 46.859375 53.609375 L 45.09375 53.953125 L 45.09375 53.0625 L 46.84375 52.703125 L 47.828125 52.703125 L 47.828125 59.171875 L 49.4375 59.171875 L 49.4375 60 L 45.234375 60 L 45.234375 59.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 52.63336452454984 56.705578676371914 L 56.63336452454984 56.705578676371914"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.63336452454984 2 L 56.63336452454984 303"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 57.13336452454984 1 L 53.63336452454984 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.13336452454984 1 L 59.63336452454984 4"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g id="misc">
|
||||
</g><!-- misc -->
|
||||
<g id="layer0">
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 296.9322670155468 198.05787425931192 C 296.9322670155468 252.70457630213457 252.63236215031168 297.00448116736993 197.98566010748925 297.00448116736993 C 143.33895806466683 297.00448116736993 99.03905319943168 252.70457630213457 99.03905319943168 198.05787425931192 C 99.03905319943168 143.41117221648926 143.33895806466683 99.1112673512539 197.98566010748925 99.1112673512539 C 252.63236215031168 99.1112673512539 296.9322670155468 143.41117221648926 296.9322670155468 198.05787425931192 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 33 22 L 133 22"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 50 22 C 50 23.65685424949238 48.65685424949238 25 47 25 C 45.34314575050762 25 44 23.65685424949238 44 22 C 44 20.34314575050762 45.34314575050762 19 47 19 C 48.65685424949238 19 50 20.34314575050762 50 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 50 22 C 50 23.65685424949238 48.65685424949238 25 47 25 C 45.34314575050762 25 44 23.65685424949238 44 22 C 44 20.34314575050762 45.34314575050762 19 47 19 C 48.65685424949238 19 50 20.34314575050762 50 22 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 9.9375 33.4375 Q 9.75 33.34375 9.53125 33.296875 Q 9.328125 33.234375 9.0625 33.234375 Q 8.15625 33.234375 7.65625 33.828125 Q 7.171875 34.421875 7.171875 35.546875 L 7.171875 39 L 6.09375 39 L 6.09375 32.4375 L 7.171875 32.4375 L 7.171875 33.453125 Q 7.515625 32.859375 8.0625 32.578125 Q 8.609375 32.28125 9.390625 32.28125 Q 9.5 32.28125 9.625 32.296875 Q 9.765625 32.3125 9.921875 32.34375 L 9.9375 33.4375 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 11.16796875 43.171875 L 12.79296875 43.171875 L 12.79296875 37.609375 L 11.02734375 37.953125 L 11.02734375 37.0625 L 12.77734375 36.703125 L 13.76171875 36.703125 L 13.76171875 43.171875 L 15.37109375 43.171875 L 15.37109375 44 L 11.16796875 44 L 11.16796875 43.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
|
||||
<path d="M 21.3759765625 33.546875 L 28.8916015625 33.546875 L 28.8916015625 34.53125 L 21.3759765625 34.53125 L 21.3759765625 33.546875 z M 21.3759765625 35.9375 L 28.8916015625 35.9375 L 28.8916015625 36.9375 L 21.3759765625 36.9375 L 21.3759765625 35.9375 z M 37.7919921875 31.03125 Q 36.8857421875 31.03125 36.4169921875 31.9375 Q 35.9638671875 32.828125 35.9638671875 34.640625 Q 35.9638671875 36.4375 36.4169921875 37.34375 Q 36.8857421875 38.234375 37.7919921875 38.234375 Q 38.7138671875 38.234375 39.1669921875 37.34375 Q 39.6357421875 36.4375 39.6357421875 34.640625 Q 39.6357421875 32.828125 39.1669921875 31.9375 Q 38.7138671875 31.03125 37.7919921875 31.03125 z M 37.7919921875 30.09375 Q 39.2607421875 30.09375 40.0419921875 31.265625 Q 40.8232421875 32.421875 40.8232421875 34.640625 Q 40.8232421875 36.84375 40.0419921875 38.015625 Q 39.2607421875 39.171875 37.7919921875 39.171875 Q 36.3232421875 39.171875 35.5419921875 38.015625 Q 34.7763671875 36.84375 34.7763671875 34.640625 Q 34.7763671875 32.421875 35.5419921875 31.265625 Q 36.3232421875 30.09375 37.7919921875 30.09375 z M 42.8955078125 37.515625 L 44.1298828125 37.515625 L 44.1298828125 39 L 42.8955078125 39 L 42.8955078125 37.515625 z M 46.4130859375 30.25 L 52.0380859375 30.25 L 52.0380859375 30.75 L 48.8662109375 39 L 47.6318359375 39 L 50.6162109375 31.25 L 46.4130859375 31.25 L 46.4130859375 30.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
|
||||
<path d="M 148.8255615234375 130.73641967773438 L 131.6938018798828 143.2465362548828 L 144.20391845703125 160.3782958984375 L 161.33566284179688 147.86817932128906 L 148.8255615234375 130.73641967773438"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
|
||||
<path d="M 148.8255615234375 130.73641967773438 L 131.6938018798828 143.2465362548828 L 144.20391845703125 160.3782958984375 L 161.33566284179688 147.86817932128906 L 148.8255615234375 130.73641967773438"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 56.63336452454984 198.05787425931192 L 385 -41.72509929585516"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 148.82555735449304 130.73642394409598 L 197.98566010748925 198.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 232.00000000000009 70 L 232.00000000000009 198.05787425931192"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 201 198 C 201 199.65685424949237 199.65685424949237 201 198 201 C 196.34314575050763 201 195 199.65685424949237 195 198 C 195 196.34314575050763 196.34314575050763 195 198 195 C 199.65685424949237 195 201 196.34314575050763 201 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 201 198 C 201 199.65685424949237 199.65685424949237 201 198 201 C 196.34314575050763 201 195 199.65685424949237 195 198 C 195 196.34314575050763 196.34314575050763 195 198 195 C 199.65685424949237 195 201 196.34314575050763 201 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 209.734375 183.921875 L 209.734375 185.171875 Q 209.125 184.609375 208.453125 184.34375 Q 207.78125 184.0625 207.015625 184.0625 Q 205.515625 184.0625 204.71875 184.984375 Q 203.921875 185.90625 203.921875 187.640625 Q 203.921875 189.359375 204.71875 190.28125 Q 205.515625 191.203125 207.015625 191.203125 Q 207.78125 191.203125 208.453125 190.921875 Q 209.125 190.640625 209.734375 190.09375 L 209.734375 191.328125 Q 209.109375 191.75 208.40625 191.96875 Q 207.71875 192.171875 206.953125 192.171875 Q 204.953125 192.171875 203.8125 190.953125 Q 202.671875 189.734375 202.671875 187.640625 Q 202.671875 185.53125 203.8125 184.3125 Q 204.953125 183.09375 206.953125 183.09375 Q 207.734375 183.09375 208.421875 183.3125 Q 209.125 183.515625 209.734375 183.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 211.61328125 196.171875 L 213.23828125 196.171875 L 213.23828125 190.609375 L 211.47265625 190.953125 L 211.47265625 190.0625 L 213.22265625 189.703125 L 214.20703125 189.703125 L 214.20703125 196.171875 L 215.81640625 196.171875 L 215.81640625 197 L 211.61328125 197 L 211.61328125 196.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 235 70 C 235 71.65685424949238 233.65685424949237 73 232 73 C 230.34314575050763 73 229 71.65685424949238 229 70 C 229 68.34314575050762 230.34314575050763 67 232 67 C 233.65685424949237 67 235 68.34314575050762 235 70 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 235 70 C 235 71.65685424949238 233.65685424949237 73 232 73 C 230.34314575050763 73 229 71.65685424949238 229 70 C 229 68.34314575050762 230.34314575050763 67 232 67 C 233.65685424949237 67 235 68.34314575050762 235 70 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
|
||||
<path d="M 238.359375 56.21875 L 238.359375 59.515625 L 239.84375 59.515625 Q 240.671875 59.515625 241.125 59.09375 Q 241.578125 58.65625 241.578125 57.859375 Q 241.578125 57.078125 241.125 56.65625 Q 240.671875 56.21875 239.84375 56.21875 L 238.359375 56.21875 z M 237.171875 55.25 L 239.84375 55.25 Q 241.328125 55.25 242.078125 55.921875 Q 242.828125 56.578125 242.828125 57.859375 Q 242.828125 59.15625 242.078125 59.828125 Q 241.328125 60.484375 239.84375 60.484375 L 238.359375 60.484375 L 238.359375 64 L 237.171875 64 L 237.171875 55.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 60 198 C 60 199.65685424949237 58.65685424949238 201 57 201 C 55.34314575050762 201 54 199.65685424949237 54 198 C 54 196.34314575050763 55.34314575050762 195 57 195 C 58.65685424949238 195 60 196.34314575050763 60 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 60 198 C 60 199.65685424949237 58.65685424949238 201 57 201 C 55.34314575050762 201 54 199.65685424949237 54 198 C 54 196.34314575050763 55.34314575050762 195 57 195 C 58.65685424949238 195 60 196.34314575050763 60 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 68.734375 183.921875 L 68.734375 185.171875 Q 68.125 184.609375 67.453125 184.34375 Q 66.78125 184.0625 66.015625 184.0625 Q 64.515625 184.0625 63.71875 184.984375 Q 62.921875 185.90625 62.921875 187.640625 Q 62.921875 189.359375 63.71875 190.28125 Q 64.515625 191.203125 66.015625 191.203125 Q 66.78125 191.203125 67.453125 190.921875 Q 68.125 190.640625 68.734375 190.09375 L 68.734375 191.328125 Q 68.109375 191.75 67.40625 191.96875 Q 66.71875 192.171875 65.953125 192.171875 Q 63.953125 192.171875 62.8125 190.953125 Q 61.671875 189.734375 61.671875 187.640625 Q 61.671875 185.53125 62.8125 184.3125 Q 63.953125 183.09375 65.953125 183.09375 Q 66.734375 183.09375 67.421875 183.3125 Q 68.125 183.515625 68.734375 183.921875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 73.09765625 189.40625 L 73.09765625 190.15625 L 72.23828125 190.15625 Q 71.75390625 190.15625 71.56640625 190.359375 Q 71.37890625 190.546875 71.37890625 191.046875 L 71.37890625 191.53125 L 72.84765625 191.53125 L 72.84765625 192.234375 L 71.37890625 192.234375 L 71.37890625 197 L 70.47265625 197 L 70.47265625 192.234375 L 69.61328125 192.234375 L 69.61328125 191.53125 L 70.47265625 191.53125 L 70.47265625 191.15625 Q 70.47265625 190.234375 70.89453125 189.828125 Q 71.31640625 189.40625 72.23828125 189.40625 L 73.09765625 189.40625 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 195 99 C 195 100.65685424949238 193.65685424949237 102 192 102 C 190.34314575050763 102 189 100.65685424949238 189 99 C 189 97.34314575050762 190.34314575050763 96 192 96 C 193.65685424949237 96 195 97.34314575050762 195 99 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 195 99 C 195 100.65685424949238 193.65685424949237 102 192 102 C 190.34314575050763 102 189 100.65685424949238 189 99 C 189 97.34314575050762 190.34314575050763 96 192 96 C 193.65685424949237 96 195 97.34314575050762 195 99 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 198.359375 85.21875 L 198.359375 88.515625 L 199.84375 88.515625 Q 200.671875 88.515625 201.125 88.09375 Q 201.578125 87.65625 201.578125 86.859375 Q 201.578125 86.078125 201.125 85.65625 Q 200.671875 85.21875 199.84375 85.21875 L 198.359375 85.21875 z M 197.171875 84.25 L 199.84375 84.25 Q 201.328125 84.25 202.078125 84.921875 Q 202.828125 85.578125 202.828125 86.859375 Q 202.828125 88.15625 202.078125 88.828125 Q 201.328125 89.484375 199.84375 89.484375 L 198.359375 89.484375 L 198.359375 93 L 197.171875 93 L 197.171875 84.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 204.470703125 97.171875 L 206.095703125 97.171875 L 206.095703125 91.609375 L 204.330078125 91.953125 L 204.330078125 91.0625 L 206.080078125 90.703125 L 207.064453125 90.703125 L 207.064453125 97.171875 L 208.673828125 97.171875 L 208.673828125 98 L 204.470703125 98 L 204.470703125 97.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 109 162 C 109 163.65685424949237 107.65685424949238 165 106 165 C 104.34314575050762 165 103 163.65685424949237 103 162 C 103 160.34314575050763 104.34314575050762 159 106 159 C 107.65685424949238 159 109 160.34314575050763 109 162 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 109 162 C 109 163.65685424949237 107.65685424949238 165 106 165 C 104.34314575050762 165 103 163.65685424949237 103 162 C 103 160.34314575050763 104.34314575050762 159 106 159 C 107.65685424949238 159 109 160.34314575050763 109 162 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 112.359375 148.21875 L 112.359375 151.515625 L 113.84375 151.515625 Q 114.671875 151.515625 115.125 151.09375 Q 115.578125 150.65625 115.578125 149.859375 Q 115.578125 149.078125 115.125 148.65625 Q 114.671875 148.21875 113.84375 148.21875 L 112.359375 148.21875 z M 111.171875 147.25 L 113.84375 147.25 Q 115.328125 147.25 116.078125 147.921875 Q 116.828125 148.578125 116.828125 149.859375 Q 116.828125 151.15625 116.078125 151.828125 Q 115.328125 152.484375 113.84375 152.484375 L 112.359375 152.484375 L 112.359375 156 L 111.171875 156 L 111.171875 147.25 z M 119.595703125 148.21875 L 119.595703125 151.515625 L 121.080078125 151.515625 Q 121.908203125 151.515625 122.361328125 151.09375 Q 122.814453125 150.65625 122.814453125 149.859375 Q 122.814453125 149.078125 122.361328125 148.65625 Q 121.908203125 148.21875 121.080078125 148.21875 L 119.595703125 148.21875 z M 118.408203125 147.25 L 121.080078125 147.25 Q 122.564453125 147.25 123.314453125 147.921875 Q 124.064453125 148.578125 124.064453125 149.859375 Q 124.064453125 151.15625 123.314453125 151.828125 Q 122.564453125 152.484375 121.080078125 152.484375 L 119.595703125 152.484375 L 119.595703125 156 L 118.408203125 156 L 118.408203125 147.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 125.70703125 160.171875 L 127.33203125 160.171875 L 127.33203125 154.609375 L 125.56640625 154.953125 L 125.56640625 154.0625 L 127.31640625 153.703125 L 128.30078125 153.703125 L 128.30078125 160.171875 L 129.91015625 160.171875 L 129.91015625 161 L 125.70703125 161 L 125.70703125 160.171875 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 152 131 C 152 132.65685424949237 150.65685424949237 134 149 134 C 147.34314575050763 134 146 132.65685424949237 146 131 C 146 129.34314575050763 147.34314575050763 128 149 128 C 150.65685424949237 128 152 129.34314575050763 152 131 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 152 131 C 152 132.65685424949237 150.65685424949237 134 149 134 C 147.34314575050763 134 146 132.65685424949237 146 131 C 146 129.34314575050763 147.34314575050763 128 149 128 C 150.65685424949237 128 152 129.34314575050763 152 131 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 154.171875 116.25 L 155.359375 116.25 L 155.359375 119.84375 L 159.65625 119.84375 L 159.65625 116.25 L 160.84375 116.25 L 160.84375 125 L 159.65625 125 L 159.65625 120.828125 L 155.359375 120.828125 L 155.359375 125 L 154.171875 125 L 154.171875 116.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 235 198 C 235 199.65685424949237 233.65685424949237 201 232 201 C 230.34314575050763 201 229 199.65685424949237 229 198 C 229 196.34314575050763 230.34314575050763 195 232 195 C 233.65685424949237 195 235 196.34314575050763 235 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
|
||||
<path d="M 235 198 C 235 199.65685424949237 233.65685424949237 201 232 201 C 230.34314575050763 201 229 199.65685424949237 229 198 C 229 196.34314575050763 230.34314575050763 195 232 195 C 233.65685424949237 195 235 196.34314575050763 235 198 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 236.75 183.25 L 238.03125 183.25 L 240.203125 186.5 L 242.390625 183.25 L 243.65625 183.25 L 240.84375 187.453125 L 243.84375 192 L 242.578125 192 L 240.109375 188.28125 L 237.640625 192 L 236.359375 192 L 239.484375 187.328125 L 236.75 183.25 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
|
||||
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
|
||||
<path d="M 246.189453125 190.515625 L 246.189453125 193.265625 L 247.423828125 193.265625 Q 248.111328125 193.265625 248.486328125 192.90625 Q 248.876953125 192.546875 248.876953125 191.890625 Q 248.876953125 191.234375 248.486328125 190.875 Q 248.111328125 190.515625 247.423828125 190.515625 L 246.189453125 190.515625 z M 245.205078125 189.703125 L 247.423828125 189.703125 Q 248.658203125 189.703125 249.283203125 190.265625 Q 249.908203125 190.8125 249.908203125 191.890625 Q 249.908203125 192.96875 249.283203125 193.515625 Q 248.658203125 194.0625 247.423828125 194.0625 L 246.189453125 194.0625 L 246.189453125 197 L 245.205078125 197 L 245.205078125 189.703125 z"/>
|
||||
</g> <!-- drawing style -->
|
||||
</g> <!-- transform -->
|
||||
</g><!-- layer0 -->
|
||||
</g> <!-- default stroke -->
|
||||
</svg> <!-- bounding box -->
|
After Width: | Height: | Size: 38 KiB |
@ -49,7 +49,7 @@ serializing the PDF file.
|
||||
|
||||
## <span id="PDF_Objects_and_Document_Structure">PDF Objects and Document Structure</span>
|
||||
|
||||
![PDF Logical Document Structure](/dev/design/PdfLogicalDocumentStructure.png)
|
||||
![PDF Logical Document Structure](../PdfLogicalDocumentStructure.png)
|
||||
|
||||
**Background**: The PDF file format has a header, a set of objects and then a
|
||||
footer that contains a table of contents for all of the objects in the document
|
||||
|
BIN
site/docs/dev/testing/BlameView.png
Normal file
After Width: | Height: | Size: 188 KiB |
BIN
site/docs/dev/testing/ByTest.png
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
site/docs/dev/testing/Cluster.png
Normal file
After Width: | Height: | Size: 58 KiB |
BIN
site/docs/dev/testing/ClusterConfig.png
Normal file
After Width: | Height: | Size: 213 KiB |
BIN
site/docs/dev/testing/Digests.png
Normal file
After Width: | Height: | Size: 408 KiB |
BIN
site/docs/dev/testing/DotDiagram.png
Normal file
After Width: | Height: | Size: 312 KiB |
BIN
site/docs/dev/testing/Grid.png
Normal file
After Width: | Height: | Size: 321 KiB |
BIN
site/docs/dev/testing/Ignores.png
Normal file
After Width: | Height: | Size: 254 KiB |
BIN
site/docs/dev/testing/Isolate.png
Normal file
After Width: | Height: | Size: 30 KiB |
BIN
site/docs/dev/testing/IssueHighlight.png
Normal file
After Width: | Height: | Size: 189 KiB |
BIN
site/docs/dev/testing/Perf.png
Normal file
After Width: | Height: | Size: 169 KiB |
BIN
site/docs/dev/testing/Regression.png
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
site/docs/dev/testing/Search.png
Normal file
After Width: | Height: | Size: 206 KiB |
BIN
site/docs/dev/testing/Status.png
Normal file
After Width: | Height: | Size: 43 KiB |
@ -19,13 +19,13 @@ Add the checkout location to your $PATH.
|
||||
To download the isolated files for a test first visit
|
||||
the build status page and find the "isolated output" link:
|
||||
|
||||
<img src="Status.png" style="margin-left:30px" width=576 height=271 >
|
||||
<img src="../Status.png" style="margin-left:30px" width=576 height=271 >
|
||||
|
||||
|
||||
Follow that link to find the hash of the isolated outputs:
|
||||
|
||||
|
||||
<img src="Isolate.png" style="margin-left:30px" width=451 height=301 >
|
||||
<img src="../Isolate.png" style="margin-left:30px" width=451 height=301 >
|
||||
|
||||
Then run `isolateserver.py` with --isolated set to that hash:
|
||||
|
||||
|
@ -48,14 +48,14 @@ Solution today:
|
||||
- Blame is not sorted in any particular order
|
||||
- Digests are clustered by runs and the most minimal set of blame
|
||||
|
||||
<img src=BlameView.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../BlameView.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
- Select digests for triage
|
||||
- Digests will be listed in order with largest difference first
|
||||
- Click to open the digest view with detailed information
|
||||
|
||||
<img src=Digests.png style="margin-left:40px" align="left" width="780"/>
|
||||
<img src=../Digests.png style="margin-left:40px" align="left" width="780"/>
|
||||
<br clear="left">
|
||||
|
||||
- Open bugs for identified owner(s)
|
||||
@ -65,7 +65,7 @@ Solution today:
|
||||
- The URL reference to the digest in Issue Tracker will link the bug to the
|
||||
digest in Gold
|
||||
|
||||
<img src="IssueHighlight.png" style="margin-left:60px" align="left" width="720" border=1/>
|
||||
<img src="../IssueHighlight.png" style="margin-left:60px" align="left" width="720" border=1/>
|
||||
<br clear="left">
|
||||
|
||||
<br>
|
||||
@ -88,7 +88,7 @@ To find your results:
|
||||
- Note: It is not yet implemented in the UI but possible to filter the view by
|
||||
CL. Delete hashes in the URL to only include the hash for your CL.
|
||||
|
||||
<img src=BlameView.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../BlameView.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
To rebaseline images:
|
||||
@ -96,7 +96,7 @@ To rebaseline images:
|
||||
- Access the Ignores view and create a new, short-interval (hours) ignore for
|
||||
the most affected configuration(s)
|
||||
|
||||
<img src=Ignores.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../Ignores.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
- Click on the Ignore to bring up a search view filtered by the affected
|
||||
@ -141,7 +141,7 @@ Solution:
|
||||
|
||||
- Access the By Test view
|
||||
|
||||
<img src=ByTest.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../ByTest.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
- Click the magnifier to filter by configuration
|
||||
@ -150,12 +150,12 @@ Solution:
|
||||
- Click on configurations under “parameters” to highlight data points and
|
||||
compare
|
||||
|
||||
<img src=ClusterConfig.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../ClusterConfig.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
- Access the Grid view to see NxN diffs
|
||||
|
||||
<img src=Grid.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../Grid.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
- Access the Dot diagram to see history of commits for the trace
|
||||
@ -163,7 +163,7 @@ Solution:
|
||||
- Each line represents a configuration
|
||||
- Dot colors distinguish between digests
|
||||
|
||||
<img src=DotDiagram.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../DotDiagram.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
||||
<br>
|
||||
@ -181,5 +181,5 @@ Solution:
|
||||
- Access the Search view
|
||||
- Select any parameters desired to search across tests
|
||||
|
||||
<img src=Search.png style="margin-left:30px" align="left" width="800"/>
|
||||
<img src=../Search.png style="margin-left:30px" align="left" width="800"/>
|
||||
<br clear="left">
|
||||
|
@ -9,7 +9,7 @@ linkTitle: "Skia Perf"
|
||||
[Skia Perf](https://perf.skia.org) is a web application for analyzing and
|
||||
viewing performance metrics produced by Skia's testing infrastructure.
|
||||
|
||||
<img src=Perf.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
|
||||
<img src=../Perf.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
|
||||
|
||||
Skia tests across a large number of platforms and configurations, and each
|
||||
commit to Skia generates more than 400,000 individual values that are sent to
|
||||
@ -18,11 +18,11 @@ memory and coverage data.
|
||||
|
||||
Perf offers clustering, which is a tool to pick out trends and patterns in large sets of traces.
|
||||
|
||||
<img src=Cluster.png style="margin-left:30px" align="left" width="400"/> <br clear="left">
|
||||
<img src=../Cluster.png style="margin-left:30px" align="left" width="400"/> <br clear="left">
|
||||
|
||||
And can generate alerts when those trends spot a regression:
|
||||
|
||||
<img src=Regression.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
|
||||
<img src=../Regression.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
|
||||
|
||||
|
||||
## Calculations
|
||||
|
BIN
site/docs/dev/tools/buttons.png
Normal file
After Width: | Height: | Size: 1.1 KiB |
BIN
site/docs/dev/tools/crosshair.png
Normal file
After Width: | Height: | Size: 28 KiB |
@ -20,7 +20,7 @@ Features:
|
||||
- Android offscreen layer visualization
|
||||
- Shared resource viewer
|
||||
|
||||
<img src="/dev/tools/onlinedebugger.png" style="display: inline-block;" />
|
||||
<img src="../onlinedebugger.png" style="display: inline-block;" />
|
||||
|
||||
## User Guide
|
||||
|
||||
@ -33,8 +33,8 @@ capture one from an android device using the
|
||||
### Command Playback and Filters
|
||||
|
||||
Try playing back the commands within the current frame using the lower play
|
||||
button <img src="/dev/tools/playcommands.png" style="display: inline-block;" />,
|
||||
(the one not in a circle) You should see the image built up one draw at a time.
|
||||
button <img src="../playcommands.png" style="display: inline-block;" />, (the
|
||||
one not in a circle) You should see the image built up one draw at a time.
|
||||
|
||||
Many commands manipulate the matrix or clip but don't make any visible change
|
||||
when run. Try filtering these out by pasting
|
||||
@ -52,18 +52,18 @@ using `,` (comma) and `.` (period).
|
||||
> at the beginning.
|
||||
|
||||
Any command can be expanded using the
|
||||
<img src="/dev/tools/expand.png" style="display: inline-block;" /> icon to see
|
||||
all of the parameters that were recorded with that command.
|
||||
<img src="../expand.png" style="display: inline-block;" /> icon to see all of
|
||||
the parameters that were recorded with that command.
|
||||
|
||||
Commands can be disabled or enabled with the checkbox that becomes available
|
||||
after expanding the command's detail view.
|
||||
|
||||
Jog the command playhead to the end of the list with the
|
||||
<img src="/dev/tools/end.png" style="display: inline-block;" /> button.
|
||||
<img src="../end.png" style="display: inline-block;" /> button.
|
||||
|
||||
### Frame playback
|
||||
|
||||
<img src="/dev/tools/frameplayback.png" style="display: inline-block;" />
|
||||
<img src="../frameplayback.png" style="display: inline-block;" />
|
||||
|
||||
The sample file contains multiple frames. Use the encircled play button to play
|
||||
back the frames. The current frame is indictated by the slider position, and the
|
||||
@ -77,7 +77,7 @@ the end of its list. If the command playhead is somewhere in the middle, say
|
||||
|
||||
### Resources Tab
|
||||
|
||||
<img src="/dev/tools/resources.png" style="display: inline-block;" />
|
||||
<img src="../resources.png" style="display: inline-block;" />
|
||||
|
||||
Any resources that were referenced by commands in the file appear here. As of
|
||||
Dec 2019, this only shows images.
|
||||
@ -97,7 +97,7 @@ ids in the process that recorded the SKP.
|
||||
|
||||
### Android Layers
|
||||
|
||||
<img src="/dev/tools/layers.png" style="display: inline-block;" />
|
||||
<img src="../layers.png" style="display: inline-block;" />
|
||||
|
||||
When MSKPs are recorded in Android, Extra information about offscreen hardware
|
||||
layers is recorded. The sample google calendar mskp linked above contains this
|
||||
@ -121,7 +121,7 @@ by clicking the `Exit` button on the layer box.
|
||||
|
||||
### Crosshair and Breakpoints
|
||||
|
||||
<img src="/dev/tools/crosshair.png" style="display: inline-block;" />
|
||||
<img src="../crosshair.png" style="display: inline-block;" />
|
||||
|
||||
Clicking any point in the main view will toggle a red crosshair for selecting
|
||||
pixels. the selected pixel's color is shown in several formats on the right
|
||||
@ -135,12 +135,12 @@ command that draws something you see in the viewer.
|
||||
|
||||
### GPU Op Bounds and Other settings
|
||||
|
||||
<img src="/dev/tools/settings.png" style="display: inline-block;" />
|
||||
<img src="../settings.png" style="display: inline-block;" />
|
||||
|
||||
Each of the filtered commands from above has a colored number to its right
|
||||
<img src="/dev/tools/gpuop.png" style="display: inline-block;" />. This is the
|
||||
GPU operation id. When multiple commands share a GPU op id, this indicates that
|
||||
they were batched together when sent to the GPU. In the WASM debugger, this goes
|
||||
<img src="../gpuop.png" style="display: inline-block;" />. This is the GPU
|
||||
operation id. When multiple commands share a GPU op id, this indicates that they
|
||||
were batched together when sent to the GPU. In the WASM debugger, this goes
|
||||
though WebGL.
|
||||
|
||||
There is a "Display GPU Op Bounds" toggle in the upper right of the interface.
|
||||
@ -162,7 +162,7 @@ the pixel was drawn to more than once.
|
||||
|
||||
### Image fit and download buttons.
|
||||
|
||||
<img src="/dev/tools/settings.png" style="display: inline-block;" />
|
||||
<img src="../settings.png" style="display: inline-block;" />
|
||||
|
||||
These buttons resize the main view. they are, from left to right:
|
||||
|
||||
|
BIN
site/docs/dev/tools/debugger.png
Normal file
After Width: | Height: | Size: 176 KiB |
BIN
site/docs/dev/tools/end.png
Normal file
After Width: | Height: | Size: 228 B |
BIN
site/docs/dev/tools/expand.png
Normal file
After Width: | Height: | Size: 225 B |
BIN
site/docs/dev/tools/frameplayback.png
Normal file
After Width: | Height: | Size: 1.9 KiB |
BIN
site/docs/dev/tools/gpuop.png
Normal file
After Width: | Height: | Size: 678 B |
BIN
site/docs/dev/tools/image.png
Normal file
After Width: | Height: | Size: 346 B |
BIN
site/docs/dev/tools/layers.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
site/docs/dev/tools/onlinedebugger.png
Normal file
After Width: | Height: | Size: 445 KiB |
BIN
site/docs/dev/tools/playcommands.png
Normal file
After Width: | Height: | Size: 243 B |
BIN
site/docs/dev/tools/resources.png
Normal file
After Width: | Height: | Size: 2.7 KiB |
BIN
site/docs/dev/tools/settings.png
Normal file
After Width: | Height: | Size: 7.8 KiB |
@ -35,13 +35,13 @@ clutter and slowdown in the interface), it's best to run a small number of tests
|
||||
tracing. Once you have generated a file in this way, go to
|
||||
[chrome://tracing](chrome://tracing), click Load:
|
||||
|
||||
![Load Button](tracing_load.png)
|
||||
![Load Button](../tracing_load.png)
|
||||
|
||||
... then select the JSON file. The data will be loaded and can be navigated/inspected using the
|
||||
tracing tools. Tip: press '?' for a help screen explaining the available keyboard and mouse
|
||||
controls.
|
||||
|
||||
![Tracing interface](tracing.png)
|
||||
![Tracing interface](../tracing.png)
|
||||
|
||||
Android ATrace
|
||||
--------------
|
||||
|
BIN
site/docs/dev/tools/tracing.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
site/docs/dev/tools/tracing_load.png
Normal file
After Width: | Height: | Size: 6.0 KiB |
BIN
site/docs/user/modules/PathKit_effects.png
Normal file
After Width: | Height: | Size: 111 KiB |