[docs] Add back in all images and fix broken image links.

Change-Id: I0ffd838880746dbfe534ea615277fc24cd26b7ec
No-Try: true
Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.3?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Digests?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Status?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Cluster?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Perf?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.2?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/lemma4?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/IssueHighlight?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/lemma3.1?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/tracing?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/BlameView?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.2.2?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/download?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Isolate?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Search?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/end?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/image?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Grid?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.2.1?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/debugger?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/pdftheory?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/resources?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/playcommands?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/DotDiagram?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Ignores?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/onlinedebugger?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/crosshair?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/frameplayback?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/corollary2.3.1?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/buttons?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/ClusterConfig?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/lemma3.2?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/skiaperf?cl=392736
Docs-Preview: https://skia.org/docs/dev/contrib/SuggestedReviewers?cl=392736
Docs-Preview: https://skia.org/docs/user/modules/PathKit_effects?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/Regression?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/ByTest?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/settings?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/conical/lemma1?cl=392736
Docs-Preview: https://skia.org/docs/dev/design/PdfLogicalDocumentStructure?cl=392736
Docs-Preview: https://skia.org/docs/dev/testing/skiagold?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/expand?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/tracing_load?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/layers?cl=392736
Docs-Preview: https://skia.org/docs/dev/tools/gpuop?cl=392736
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/392736
Reviewed-by: Joe Gregorio <jcgregorio@google.com>
This commit is contained in:
Joe Gregorio 2021-04-05 09:17:20 -04:00
parent 5c7ab08937
commit 9601185bb6
48 changed files with 2627 additions and 153 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@ -15,11 +15,12 @@ MathJax.Hub.Config({
(Please refresh the page if you see a lot of dollars instead of math symbols.) (Please refresh the page if you see a lot of dollars instead of math symbols.)
We present a fast shading algorithm (compared to bruteforcely solving the quadratic equation of We present a fast shading algorithm (compared to bruteforcely solving the
gradient $t$) for computing the two-point conical gradient (i.e., `createRadialGradient` in quadratic equation of gradient $t$) for computing the two-point conical gradient
(i.e., `createRadialGradient` in
[spec](https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-createradialgradient)). [spec](https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-createradialgradient)).
It reduced the number of multiplications per pixel from ~10 down to 3, and brought a speedup of up to It reduced the number of multiplications per pixel from ~10 down to 3, and
26% in our nanobenches. brought a speedup of up to 26% in our nanobenches.
This document has 3 parts: This document has 3 parts:
@ -27,16 +28,19 @@ This document has 3 parts:
2. [Algorithm](#algorithm) 2. [Algorithm](#algorithm)
3. [Appendix](#appendix) 3. [Appendix](#appendix)
Part 1 and 2 are self-explanatory. Part 3 shows how to geometrically proves our Theorem 1 in part Part 1 and 2 are self-explanatory. Part 3 shows how to geometrically proves our
2; it's more complicated but it gives us a nice picture about what's going on. Theorem 1 in part 2; it's more complicated but it gives us a nice picture about
what's going on.
## <span id="problem-statement">Problem Statement and Setup</span> ## <span id="problem-statement">Problem Statement and Setup</span>
Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is
point $P = (x, y)$ we want the shader to quickly compute a gradient $t \in \mathbb R$ such that $p$ the radius. For any point $P = (x, y)$ we want the shader to quickly compute a
is on the linearly interpolated circle with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius gradient $t \in \mathbb R$ such that $p$ is on the linearly interpolated circle
$r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be _positive_). If with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
there are multiple (at most 2) solutions of $t$, choose the bigger one. $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be
_positive_). If there are multiple (at most 2) solutions of $t$, choose the
bigger one.
There are two degenerated cases: There are two degenerated cases:
@ -45,90 +49,109 @@ There are two degenerated cases:
<!-- TODO maybe add some fiddle or images here to illustrate the two degenerated cases --> <!-- TODO maybe add some fiddle or images here to illustrate the two degenerated cases -->
They are easy to handle so we won't cover them here. From now on, we assume $C_0 \neq C_1$ and $r_0 They are easy to handle so we won't cover them here. From now on, we assume
$C_0 \neq C_1$ and $r_0
\neq r_1$. \neq r_1$.
As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its As $r_0 \neq r_1$, we can find a focal point
corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$. $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its corresponding linearly
Solving the latter equation gets us $f = r_0 / (r_0 - r_1)$. interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$. Solving the
latter equation gets us $f = r_0 / (r_0 - r_1)$.
As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$. If $r_1 = 0$, we can As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$.
swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set If $r_1 = 0$, we can swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient
$t = 1 - t_s$. The only catch here is that with multiple solutions of $t_s$, we shall choose the $t_s$ as if $r_1 \neq 0$, and finally set $t = 1 - t_s$. The only catch here is
smaller one (so $t$ could be the bigger one). that with multiple solutions of $t_s$, we shall choose the smaller one (so $t$
could be the bigger one).
Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do a linear Assuming that we've done swapping if necessary so $C_1 \neq C_f$, we can then do
transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the transformation: a linear transformation to map $C_f, C_1$ to $(0, 0), (1, 0)$. After the
transformation:
1. All centers $C_t = (x_t, 0)$ must be on the $x$ axis 1. All centers $C_t = (x_t, 0)$ must be on the $x$ axis
2. The radius $r_t$ is $x_t r_1$. 2. The radius $r_t$ is $x_t r_1$.
3. Given $x_t$ , we can derive $t = f + (1 - f) x_t$ 3. Given $x_t$ , we can derive $t = f + (1 - f) x_t$
From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$ so we're only From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$
interested positive solution $x_t$. Again, if there are multiple $x_t$ solutions, we may want to so we're only interested positive solution $x_t$. Again, if there are multiple
find the bigger one if $1 - f > 0$, and smaller one if $1 - f < 0$, so the corresponding $t$ is $x_t$ solutions, we may want to find the bigger one if $1 - f > 0$, and smaller
always the bigger one (note that $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$). one if $1 - f < 0$, so the corresponding $t$ is always the bigger one (note that
$f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
## <span id="algorithm">Algorithm</span> ## <span id="algorithm">Algorithm</span>
**Theorem 1.** The solution to $x_t$ is **Theorem 1.** The solution to $x_t$ is
1. $\frac{x^2 + y^2}{(1 + r_1) x} = \frac{x^2 + y^2}{2 x}$ if $r_1 = 1$ 1. $\frac{x^2 + y^2}{(1 + r_1) x} = \frac{x^2 + y^2}{2 x}$ if $r_1 = 1$
2. $\left(\sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if $r_1 > 1$ 2. $\left(\sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if
3. $\left(\pm \sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if $r_1 < 1$. $r_1 > 1$
3. $\left(\pm \sqrt{(r_1^2 - 1) y ^2 + r_1^2 x^2} - x\right) / (r_1^2 - 1)$ if
$r_1 < 1$.
Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce valid $x_t > 0$. Case Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce
3 may have no solution at all if $(r_1^2 - 1) y^2 + r_1^2 x^2 < 0$. valid $x_t > 0$. Case 3 may have no solution at all if
$(r_1^2 - 1) y^2 + r_1^2 x^2 < 0$.
_Proof._ Algebriacally, solving the quadratic equation $(x_t - x)^2 + y^2 = (x_t r_1)^2$ and _Proof._ Algebriacally, solving the quadratic equation
eliminate negative $x_t$ solutions get us the theorem. $(x_t - x)^2 + y^2 = (x_t r_1)^2$ and eliminate negative $x_t$ solutions get us
the theorem.
Alternatively, we can also combine Corollary 2., 3., and Lemma 4. in the Appendix to geometrically Alternatively, we can also combine Corollary 2., 3., and Lemma 4. in the
prove the theorem. $\square$ Appendix to geometrically prove the theorem. $\square$
Theorem 1 by itself is not sufficient for our shader algorithm because: Theorem 1 by itself is not sufficient for our shader algorithm because:
1. we still need to compute $t$ from $x_t$ (remember that $t = f + (1-f) x_t$); 1. we still need to compute $t$ from $x_t$ (remember that $t = f + (1-f) x_t$);
2. we still need to handle cases of choosing the bigger/smaller $x_t$; 2. we still need to handle cases of choosing the bigger/smaller $x_t$;
3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$ if $r_1 = 0$); 3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$
4. there are way too many multiplications and divisions in Theorem 1 that would slow our shader. if $r_1 = 0$);
4. there are way too many multiplications and divisions in Theorem 1 that would
slow our shader.
Issue 2 and 3 are solved by generating different shader code based on different situations. So they Issue 2 and 3 are solved by generating different shader code based on different
are mainly correctness issues rather than performance issues. Issue 1 and 4 are performance situations. So they are mainly correctness issues rather than performance
critical, and they will affect how we handle issue 2 and 3. issues. Issue 1 and 4 are performance critical, and they will affect how we
handle issue 2 and 3.
The key to handle 1 and 4 efficiently is to fold as many multiplications and divisions into the The key to handle 1 and 4 efficiently is to fold as many multiplications and
linear transformation matrix, which the shader has to do anyway (remember our linear transformation divisions into the linear transformation matrix, which the shader has to do
to map $C_f, C_1$ to $(0, 0), (1, 0)$). anyway (remember our linear transformation to map $C_f, C_1$ to
$(0, 0), (1, 0)$).
For example, let $\hat x, \hat y = |1-f|x, |1-f|y$. Computing $\hat x_t$ with respect to $\hat x, For example, let $\hat x, \hat y = |1-f|x, |1-f|y$. Computing $\hat x_t$ with
\hat y$ allow us to have $t = f + (1 - f)x_t = f + \text{sign}(1-f) \cdot \hat x_t$. That saves us respect to $\hat x,
one multiplication. Applying similar techniques to Theorem 1 gets us: \hat y$ allow us to have
$t = f + (1 - f)x_t = f + \text{sign}(1-f) \cdot \hat x_t$. That saves us one
multiplication. Applying similar techniques to Theorem 1 gets us:
1. If $r_1 = 1$, let $x' = x/2,~ y' = y/2$, then $x_t = (x'^2 + y'^2) / x'$. 1. If $r_1 = 1$, let $x' = x/2,~ y' = y/2$, then $x_t = (x'^2 + y'^2) / x'$.
2. If $r_1 > 1$, let $x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{r_1^2 - 1}}{r_1^2 - 1} y$, then 2. If $r_1 > 1$, let
$x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{r_1^2 - 1}}{r_1^2 - 1} y$, then
$x_t = \sqrt{x'^2 + y'^2} - x' / r_1$ $x_t = \sqrt{x'^2 + y'^2} - x' / r_1$
3. If $r_1 < 1$, let $x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{1 - r_1^2}}{r_1^2 - 1} y$, then 3. If $r_1 < 1$, let
$x' = r_1 / (r_1^2 - 1) x,~ y' = \frac{\sqrt{1 - r_1^2}}{r_1^2 - 1} y$, then
$x_t = \pm\sqrt{x'^2 - y'^2} - x' / r_1$ $x_t = \pm\sqrt{x'^2 - y'^2} - x' / r_1$
Combining it with the swapping, the equation $t = f + (1-f) x_t$, and the fact that we only want Combining it with the swapping, the equation $t = f + (1-f) x_t$, and the fact
positive $x_t > 0$ and bigger $t$, we have our final algorithm: that we only want positive $x_t > 0$ and bigger $t$, we have our final
algorithm:
**Algorithm 1.** **Algorithm 1.**
1. Let $C'_0, r'_0, C'_1, r'_1 = C_0, r_0, C_1, r_1$ if there is no swapping and $C'_0, 1. Let $C'_0, r'_0, C'_1, r'_1 = C_0, r_0, C_1, r_1$ if there is no swapping and
$C'_0,
r'_0, C'_1, r'_1 = C_1, r_1, C_0, r_0$ if there is swapping. r'_0, C'_1, r'_1 = C_1, r_1, C_0, r_0$ if there is swapping.
2. Let $f = r'_0 / (r'_0 - r'_1)$ and $1 - f = r'_1 / (r'_1 - r'_0)$ 2. Let $f = r'_0 / (r'_0 - r'_1)$ and $1 - f = r'_1 / (r'_1 - r'_0)$
3. Let $x' = x/2,~ y' = y/2$ if $r_1 = 1$, and 3. Let $x' = x/2,~ y' = y/2$ if $r_1 = 1$, and
$x' = r_1 / (r_1^2 - 1) x,~ y' = \sqrt{|r_1^2 - 1|} / (r_1^2 - 1) y$ if $r_1 \neq 1$ $x' = r_1 / (r_1^2 - 1) x,~ y' = \sqrt{|r_1^2 - 1|} / (r_1^2 - 1) y$ if
$r_1 \neq 1$
4. Let $\hat x = |1 - f|x', \hat y = |1 - f|y'$ 4. Let $\hat x = |1 - f|x', \hat y = |1 - f|y'$
5. If $r_1 = 1$, let $\hat x_t = (\hat x^2 + \hat y^2) / \hat x$ 5. If $r_1 = 1$, let $\hat x_t = (\hat x^2 + \hat y^2) / \hat x$
6. If $r_1 > 1$, 6. If $r_1 > 1$, let $\hat x_t = \sqrt{\hat x^2 + \hat y^2} - \hat x / r_1$
let $\hat x_t = \sqrt{\hat x^2 + \hat y^2} - \hat x / r_1$
7. If $r_1 < 1$ 7. If $r_1 < 1$
8. return invalid if $\hat x^2 - \hat y^2 < 0$ 8. return invalid if $\hat x^2 - \hat y^2 < 0$
9. let $\hat x_t = -\sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ if we've swapped $r_0, r_1$, 9. let $\hat x_t = -\sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ if we've swapped
or if $1 - f < 0$ $r_0, r_1$, or if $1 - f < 0$
10. let $\hat x_t = \sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ otherwise 10. let $\hat x_t = \sqrt{\hat x^2 - \hat y^2} - \hat x / r_1$ otherwise
@ -136,74 +159,87 @@ positive $x_t > 0$ and bigger $t$, we have our final algorithm:
12. Let $t = f + \text{sign}(1 - f) \hat x_t$ 12. Let $t = f + \text{sign}(1 - f) \hat x_t$
13. If swapped, let $t = 1 - t$ 13. If swapped, let $t = 1 - t$
In step 7, we try to select either the smaller or bigger $\hat x_t$ based on whether the final $t$ In step 7, we try to select either the smaller or bigger $\hat x_t$ based on
has a negative or positive relationship with $\hat x_t$. It's negative if we've swapped, or if whether the final $t$ has a negative or positive relationship with $\hat x_t$.
$\text{sign}(1 - f)$ is negative (these two cannot both happen). It's negative if we've swapped, or if $\text{sign}(1 - f)$ is negative (these
two cannot both happen).
Note that all the computations and if decisions not involving $\hat x, \hat y$ can be precomputed Note that all the computations and if decisions not involving $\hat x, \hat y$
before the shading stage. The two if decisions $\hat x^2 - \hat y^2 < 0$ and $\hat x^t < 0$ can can be precomputed before the shading stage. The two if decisions
also be omitted by precomputing the shading area that never violates those conditions. $\hat x^2 - \hat y^2 < 0$ and $\hat x^t < 0$ can also be omitted by precomputing
the shading area that never violates those conditions.
The number of operations per shading is thus: The number of operations per shading is thus:
- 1 addition, 2 multiplications, and 1 division if $r_1 = 1$ - 1 addition, 2 multiplications, and 1 division if $r_1 = 1$
- 2 additions, 3 multiplications, and 1 sqrt for $r_1 \neq 1$ (count subtraction as addition; - 2 additions, 3 multiplications, and 1 sqrt for $r_1 \neq 1$ (count subtraction
dividing $r_1$ is multiplying $1/r_1$) as addition; dividing $r_1$ is multiplying $1/r_1$)
- 1 more addition operation if $f \neq 0$ - 1 more addition operation if $f \neq 0$
- 1 more addition operation if swapped. - 1 more addition operation if swapped.
In comparison, for $r_1 \neq 1$ case, our current raster pipeline shading algorithm (which shall In comparison, for $r_1 \neq 1$ case, our current raster pipeline shading
hopefully soon be upgraded to the algorithm described here) mainly uses formula $$t = 0.5 \cdot algorithm (which shall hopefully soon be upgraded to the algorithm described
(1/a) \cdot \left(-b \pm \sqrt{b^2 - 4ac}\right)$$ It precomputes $a = 1 - (r_1 - r_0)^2, 1/a, r1 - here) mainly uses formula
r0$. Number $b = -2 \cdot (x + (r1 - r0) \cdot r0)$ costs 2 multiplications and 1 addition. Number $$t = 0.5 \cdot
$c = x^2 + y^2 - r_0^2$ costs 3 multiplications and 2 additions. And the final $t$ costs 5 more (1/a) \cdot \left(-b \pm \sqrt{b^2 - 4ac}\right)$$ It precomputes
multiplications, 1 more sqrt, and 2 more additions. That's a total of 5 additions, 10 $a = 1 - (r_1 - r_0)^2, 1/a, r1 -
multiplications, and 1 sqrt. (Our algorithm has 2-4 additions, 3 multiplications, and 1 sqrt.) Even r0$. Number
if it saves the $0.5 \cdot (1/a), 4a, r_0^2$ and $(r_1 - r_0) r_0$ multiplications, there are still $b = -2 \cdot (x + (r1 - r0) \cdot r0)$ costs 2 multiplications and 1 addition.
6 multiplications. Moreover, it sends in 4 unitofmrs to the shader while our algorithm only needs 2 Number $c = x^2 + y^2 - r_0^2$ costs 3 multiplications and 2 additions. And the
uniforms ($1/r_1$ and $f$). final $t$ costs 5 more multiplications, 1 more sqrt, and 2 more additions.
That's a total of 5 additions, 10 multiplications, and 1 sqrt. (Our algorithm
has 2-4 additions, 3 multiplications, and 1 sqrt.) Even if it saves the
$0.5 \cdot (1/a), 4a, r_0^2$ and $(r_1 - r_0) r_0$ multiplications, there are
still 6 multiplications. Moreover, it sends in 4 unitofmrs to the shader while
our algorithm only needs 2 uniforms ($1/r_1$ and $f$).
## <span id="appendix">Appendix</span> ## <span id="appendix">Appendix</span>
**Lemma 1.** Draw a ray from $C_f = (0, 0)$ to $P = (x, y)$. For every **Lemma 1.** Draw a ray from $C_f = (0, 0)$ to $P = (x, y)$. For every
intersection points $P_1$ between that ray and circle $C_1 = (1, 0), r_1$, there exists an $x_t$ intersection points $P_1$ between that ray and circle $C_1 = (1, 0), r_1$, there
that equals to the length of segment $C_f P$ over length of segment $C_f P_1$. That is, exists an $x_t$ that equals to the length of segment $C_f P$ over length of
$x_t = || C_f P || / ||C_f P_1||$ segment $C_f P_1$. That is, $x_t = || C_f P || / ||C_f P_1||$
_Proof._ Draw a line from $P$ that's parallel to $C_1 P_1$. Let it intersect with $x$-axis on point _Proof._ Draw a line from $P$ that's parallel to $C_1 P_1$. Let it intersect
$C = (x', y')$. with $x$-axis on point $C = (x', y')$.
<img src="conical/lemma1.svg"/> <img src="./lemma1.svg"/>
Triangle $\triangle C_f C P$ is similar to triangle $\triangle C_f C_1 P_1$. Triangle $\triangle C_f C P$ is similar to triangle $\triangle C_f C_1 P_1$.
Therefore $||P C|| = ||P_1 C_1|| \cdot (||C_f C|| / ||C_f C_1||) = r_1 x'$. Thus $x'$ is a solution Therefore $||P C|| = ||P_1 C_1|| \cdot (||C_f C|| / ||C_f C_1||) = r_1 x'$. Thus
to $x_t$. Because triangle $\triangle C_f C P$ and triangle $\triangle C_f C_1 P_1$ are similar, $x' $x'$ is a solution to $x_t$. Because triangle $\triangle C_f C P$ and triangle
= ||C_f C_1|| \cdot (||C_f P|| / ||C_f P_1||) = ||C_f P|| / ||C_f P_1||$. $\square$ $\triangle C_f C_1 P_1$ are similar,
$x'
= ||C_f C_1|| \cdot (||C_f P|| / ||C_f P_1||) = ||C_f P|| / ||C_f P_1||$.
$\square$
**Lemma 2.** For every solution $x_t$, if we extend/shrink segment $C_f P$ to $C_f P_1$ with ratio **Lemma 2.** For every solution $x_t$, if we extend/shrink segment $C_f P$ to
$1 / x_t$ (i.e., find $P_1$ on ray $C_f P$ such that $||C_f P_1|| / ||C_f P|| = 1 / x_t$), then $C_f P_1$ with ratio $1 / x_t$ (i.e., find $P_1$ on ray $C_f P$ such that
$P_1$ must be on circle $C_1, r_1$. $||C_f P_1|| / ||C_f P|| = 1 / x_t$), then $P_1$ must be on circle $C_1, r_1$.
_Proof._ Let $C_t = (x_t, 0)$. Triangle $\triangle C_f C_t P$ is similar to $C_f C_1 P_1$. Therefore _Proof._ Let $C_t = (x_t, 0)$. Triangle $\triangle C_f C_t P$ is similar to
$||C_1 P_1|| = r_1$ and $P_1$ is on circle $C_1, r_1$. $\square$ $C_f C_1 P_1$. Therefore $||C_1 P_1|| = r_1$ and $P_1$ is on circle $C_1, r_1$.
$\square$
**Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions $x_t$ is equal to the **Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions
number of intersections between ray $C_f P$ and circle $C_1, r_1$. Therefore $x_t$ is equal to the number of intersections between ray $C_f P$ and circle
$C_1, r_1$. Therefore
- when $r_1 > 1$, there's always one unique intersection/solution; we call this "well-behaved"; this - when $r_1 > 1$, there's always one unique intersection/solution; we call this
was previously known as the "inside" case; "well-behaved"; this was previously known as the "inside" case;
- when $r_1 = 1$, there's either one or zero intersection/solution (excluding $C_f$ which is always - when $r_1 = 1$, there's either one or zero intersection/solution (excluding
on the circle); we call this "focal-on-circle"; this was previously known as the "edge" case; $C_f$ which is always on the circle); we call this "focal-on-circle"; this was
previously known as the "edge" case;
<img src="conical/corollary2.2.1.svg"/> <img src="./corollary2.2.1.svg"/>
<img src="conical/corollary2.2.2.svg"/> <img src="./corollary2.2.2.svg"/>
- when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also previously as the "outside" - when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also
case. previously as the "outside" case.
<img src="conical/corollary2.3.1.svg" width="30%"/> <img src="./corollary2.3.1.svg" width="30%"/>
<img src="conical/corollary2.3.2.svg" width="30%"/> <img src="./corollary2.3.2.svg" width="30%"/>
<img src="conical/corollary2.3.3.svg" width="30%"/> <img src="./corollary2.3.3.svg" width="30%"/>
**Lemma 3.** When solution exists, one such solution is **Lemma 3.** When solution exists, one such solution is
@ -211,47 +247,48 @@ $$
x_t = {|| C_f P || \over ||C_f P_1||} = \frac{x^2 + y^2}{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}} x_t = {|| C_f P || \over ||C_f P_1||} = \frac{x^2 + y^2}{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}
$$ $$
_Proof._ As $C_f = (0, 0), P = (x, y)$, we have $||C_f P|| = \sqrt(x^2 + y^2)$. So we'll mainly _Proof._ As $C_f = (0, 0), P = (x, y)$, we have $||C_f P|| = \sqrt(x^2 + y^2)$.
focus on how to compute $||C_f P_1||$. So we'll mainly focus on how to compute $||C_f P_1||$.
**When $x \geq 0$:** **When $x \geq 0$:**
<img src="conical/lemma3.1.svg"/> <img src="./lemma3.1.svg"/>
Let $X_P = (x, 0)$ and $H$ be a point on $C_f P_1$ such that $C_1 H$ is perpendicular to $C_1 Let $X_P = (x, 0)$ and $H$ be a point on $C_f P_1$ such that $C_1 H$ is
P_1$. Triangle $\triangle C_1 H C_f$ is similar to triangle $\triangle P X_P C_f$. Thus perpendicular to $C_1
P_1$. Triangle $\triangle C_1 H C_f$ is similar to triangle
$\triangle P X_P C_f$. Thus
$$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = x / \sqrt{x^2 + y^2}$$ $$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = x / \sqrt{x^2 + y^2}$$
$$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$ $$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$
Triangle $\triangle C_1 H P_1$ is a right triangle with hypotenuse $r_1$. Hence Triangle $\triangle C_1 H P_1$ is a right triangle with hypotenuse $r_1$. Hence
$$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$ $$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$
We have We have \begin{align} ||C_f P_1|| &= ||C_f H|| + ||H P_1|| \\\\\\ &= x /
\begin{align} \sqrt{x^2 + y^2} + \sqrt{r_1^2 - y^2 / (x^2 + y^2)} \\\\\\ &= \frac{x +
||C_f P_1|| &= ||C_f H|| + ||H P_1|| \\\\\\ \sqrt{r_1^2 (x^2 + y^2) - y^2}}{\sqrt{x^2 + y^2}} \\\\\\ &= \frac{x +
&= x / \sqrt{x^2 + y^2} + \sqrt{r_1^2 - y^2 / (x^2 + y^2)} \\\\\\ \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}} \end{align}
&= \frac{x + \sqrt{r_1^2 (x^2 + y^2) - y^2}}{\sqrt{x^2 + y^2}} \\\\\\
&= \frac{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}}
\end{align}
**When $x < 0$:** **When $x < 0$:**
Define $X_P$ and $H$ similarly as before except that now $H$ is on ray $P_1 C_f$ instead of Define $X_P$ and $H$ similarly as before except that now $H$ is on ray $P_1 C_f$
$C_f P_1$. instead of $C_f P_1$.
<img src="conical/lemma3.2.svg"/> <img src="./lemma3.2.svg"/>
As before, triangle $\triangle C_1 H C_f$ is similar to triangle $\triangle P X_P C_f$, and triangle As before, triangle $\triangle C_1 H C_f$ is similar to triangle
$\triangle C_1 H P_1$ is a right triangle, so we have $\triangle P X_P C_f$, and triangle $\triangle C_1 H P_1$ is a right triangle,
so we have
$$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = -x / \sqrt{x^2 + y^2}$$ $$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = -x / \sqrt{x^2 + y^2}$$
$$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$ $$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$
$$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$ $$ ||H P_1|| = \sqrt{r_1^2 - ||C_1 H||^2} = \sqrt{r_1^2 - y^2 / (x^2 + y^2)} $$
Note that the only difference is changing $x$ to $-x$ because $x$ is negative. Note that the only difference is changing $x$ to $-x$ because $x$ is negative.
Also note that now $||C_f P_1|| = -||C_f H|| + ||H P_1||$ and we have $-||C_f H||$ instead of Also note that now $||C_f P_1|| = -||C_f H|| + ||H P_1||$ and we have
$||C_f H||$. That negation cancels out the negation of $-x$ so we get the same equation $-||C_f H||$ instead of $||C_f H||$. That negation cancels out the negation of
of $||C_f P_1||$ for both $x \geq 0$ and $x < 0$ cases: $-x$ so we get the same equation of $||C_f P_1||$ for both $x \geq 0$ and
$x < 0$ cases:
$$ $$
||C_f P_1|| = \frac{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}} ||C_f P_1|| = \frac{x + \sqrt{(r_1^2 - 1) y^2 + r_1^2 x^2}}{\sqrt{x^2 + y^2}}
@ -312,7 +349,7 @@ $x_t > 0 \Leftrightarrow x > 0$ if the solution exists.)
*Proof.* Case 1 follows naturally from Lemma 3. and Corollary 1. *Proof.* Case 1 follows naturally from Lemma 3. and Corollary 1.
<img src="conical/lemma4.svg"/> <img src="./lemma4.svg"/>
For case 2, we notice that $||C_f P_1||$ could be For case 2, we notice that $||C_f P_1||$ could be

View File

@ -0,0 +1,233 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="337px"
height="327px"
viewBox="0 0 337 327"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:11:08 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 C 238.88348923828713 192.00518957402107 199.0151481419891 231.87353067031938 149.83505704565925 231.87353067031938 C 100.65496594932941 231.87353067031938 60.786624853031384 192.00518957402107 60.786624853031384 142.82509847769097 C 60.786624853031384 93.64500738136084 100.65496594932941 53.776666285062575 149.83505704565925 53.776666285062575 C 199.0151481419891 53.776666285062575 238.88348923828713 93.64500738136084 238.88348923828713 142.82509847769097 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 15.9375 33.4375 Q 15.75 33.34375 15.53125 33.296875 Q 15.328125 33.234375 15.0625 33.234375 Q 14.15625 33.234375 13.65625 33.828125 Q 13.171875 34.421875 13.171875 35.546875 L 13.171875 39 L 12.09375 39 L 12.09375 32.4375 L 13.171875 32.4375 L 13.171875 33.453125 Q 13.515625 32.859375 14.0625 32.578125 Q 14.609375 32.28125 15.390625 32.28125 Q 15.5 32.28125 15.625 32.296875 Q 15.765625 32.3125 15.921875 32.34375 L 15.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 17.16796875 43.171875 L 18.79296875 43.171875 L 18.79296875 37.609375 L 17.02734375 37.953125 L 17.02734375 37.0625 L 18.77734375 36.703125 L 19.76171875 36.703125 L 19.76171875 43.171875 L 21.37109375 43.171875 L 21.37109375 44 L 17.16796875 44 L 17.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 27.3759765625 33.546875 L 34.8916015625 33.546875 L 34.8916015625 34.53125 L 27.3759765625 34.53125 L 27.3759765625 33.546875 z M 27.3759765625 35.9375 L 34.8916015625 35.9375 L 34.8916015625 36.9375 L 27.3759765625 36.9375 L 27.3759765625 35.9375 z M 41.4638671875 38 L 43.4013671875 38 L 43.4013671875 31.328125 L 41.2919921875 31.75 L 41.2919921875 30.671875 L 43.3857421875 30.25 L 44.5732421875 30.25 L 44.5732421875 38 L 46.5107421875 38 L 46.5107421875 39 L 41.4638671875 39 L 41.4638671875 38 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 265 4.751810368390778"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 136 94 C 136 95.65685424949238 134.65685424949237 97 133 97 C 131.34314575050763 97 130 95.65685424949238 130 94 C 130 92.34314575050762 131.34314575050763 91 133 91 C 134.65685424949237 91 136 92.34314575050762 136 94 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 136 94 C 136 95.65685424949238 134.65685424949237 97 133 97 C 131.34314575050763 97 130 95.65685424949238 130 94 C 130 92.34314575050762 131.34314575050763 91 133 91 C 134.65685424949237 91 136 92.34314575050762 136 94 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 139.359375 80.21875 L 139.359375 83.515625 L 140.84375 83.515625 Q 141.671875 83.515625 142.125 83.09375 Q 142.578125 82.65625 142.578125 81.859375 Q 142.578125 81.078125 142.125 80.65625 Q 141.671875 80.21875 140.84375 80.21875 L 139.359375 80.21875 z M 138.171875 79.25 L 140.84375 79.25 Q 142.328125 79.25 143.078125 79.921875 Q 143.828125 80.578125 143.828125 81.859375 Q 143.828125 83.15625 143.078125 83.828125 Q 142.328125 84.484375 140.84375 84.484375 L 139.359375 84.484375 L 139.359375 88 L 138.171875 88 L 138.171875 79.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 186 60 C 186 61.65685424949238 184.65685424949237 63 183 63 C 181.34314575050763 63 180 61.65685424949238 180 60 C 180 58.34314575050762 181.34314575050763 57 183 57 C 184.65685424949237 57 186 58.34314575050762 186 60 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 186 60 C 186 61.65685424949238 184.65685424949237 63 183 63 C 181.34314575050763 63 180 61.65685424949238 180 60 C 180 58.34314575050762 181.34314575050763 57 183 57 C 184.65685424949237 57 186 58.34314575050762 186 60 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 189.359375 46.21875 L 189.359375 49.515625 L 190.84375 49.515625 Q 191.671875 49.515625 192.125 49.09375 Q 192.578125 48.65625 192.578125 47.859375 Q 192.578125 47.078125 192.125 46.65625 Q 191.671875 46.21875 190.84375 46.21875 L 189.359375 46.21875 z M 188.171875 45.25 L 190.84375 45.25 Q 192.328125 45.25 193.078125 45.921875 Q 193.828125 46.578125 193.828125 47.859375 Q 193.828125 49.15625 193.078125 49.828125 Q 192.328125 50.484375 190.84375 50.484375 L 189.359375 50.484375 L 189.359375 54 L 188.171875 54 L 188.171875 45.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 195.470703125 58.171875 L 197.095703125 58.171875 L 197.095703125 52.609375 L 195.330078125 52.953125 L 195.330078125 52.0625 L 197.080078125 51.703125 L 198.064453125 51.703125 L 198.064453125 58.171875 L 199.673828125 58.171875 L 199.673828125 59 L 195.470703125 59 L 195.470703125 58.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 21 KiB

View File

@ -0,0 +1,213 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="337px"
height="327px"
viewBox="0 0 337 327"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:12:44 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 C 238.88348923828713 192.00518957402107 199.0151481419891 231.87353067031938 149.83505704565925 231.87353067031938 C 100.65496594932941 231.87353067031938 60.786624853031384 192.00518957402107 60.786624853031384 142.82509847769097 C 60.786624853031384 93.64500738136084 100.65496594932941 53.776666285062575 149.83505704565925 53.776666285062575 C 199.0151481419891 53.776666285062575 238.88348923828713 93.64500738136084 238.88348923828713 142.82509847769097 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56 22 C 56 23.65685424949238 54.65685424949238 25 53 25 C 51.34314575050762 25 50 23.65685424949238 50 22 C 50 20.34314575050762 51.34314575050762 19 53 19 C 54.65685424949238 19 56 20.34314575050762 56 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 15.9375 33.4375 Q 15.75 33.34375 15.53125 33.296875 Q 15.328125 33.234375 15.0625 33.234375 Q 14.15625 33.234375 13.65625 33.828125 Q 13.171875 34.421875 13.171875 35.546875 L 13.171875 39 L 12.09375 39 L 12.09375 32.4375 L 13.171875 32.4375 L 13.171875 33.453125 Q 13.515625 32.859375 14.0625 32.578125 Q 14.609375 32.28125 15.390625 32.28125 Q 15.5 32.28125 15.625 32.296875 Q 15.765625 32.3125 15.921875 32.34375 L 15.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 17.16796875 43.171875 L 18.79296875 43.171875 L 18.79296875 37.609375 L 17.02734375 37.953125 L 17.02734375 37.0625 L 18.77734375 36.703125 L 19.76171875 36.703125 L 19.76171875 43.171875 L 21.37109375 43.171875 L 21.37109375 44 L 17.16796875 44 L 17.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 27.3759765625 33.546875 L 34.8916015625 33.546875 L 34.8916015625 34.53125 L 27.3759765625 34.53125 L 27.3759765625 33.546875 z M 27.3759765625 35.9375 L 34.8916015625 35.9375 L 34.8916015625 36.9375 L 27.3759765625 36.9375 L 27.3759765625 35.9375 z M 41.4638671875 38 L 43.4013671875 38 L 43.4013671875 31.328125 L 41.2919921875 31.75 L 41.2919921875 30.671875 L 43.3857421875 30.25 L 44.5732421875 30.25 L 44.5732421875 38 L 46.5107421875 38 L 46.5107421875 39 L 41.4638671875 39 L 41.4638671875 38 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L -26.259375880414986 0"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 48.359375 98.21875 L 48.359375 101.515625 L 49.84375 101.515625 Q 50.671875 101.515625 51.125 101.09375 Q 51.578125 100.65625 51.578125 99.859375 Q 51.578125 99.078125 51.125 98.65625 Q 50.671875 98.21875 49.84375 98.21875 L 48.359375 98.21875 z M 47.171875 97.25 L 49.84375 97.25 Q 51.328125 97.25 52.078125 97.921875 Q 52.828125 98.578125 52.828125 99.859375 Q 52.828125 101.15625 52.078125 101.828125 Q 51.328125 102.484375 49.84375 102.484375 L 48.359375 102.484375 L 48.359375 106 L 47.171875 106 L 47.171875 97.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 19 KiB

View File

@ -0,0 +1,213 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="337px"
height="327px"
viewBox="0 0 337 327"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:14:25 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L -26.259375880414986 0"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 45 112 C 45 113.65685424949238 43.65685424949238 115 42 115 C 40.34314575050762 115 39 113.65685424949238 39 112 C 39 110.34314575050762 40.34314575050762 109 42 109 C 43.65685424949238 109 45 110.34314575050762 45 112 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 48.359375 98.21875 L 48.359375 101.515625 L 49.84375 101.515625 Q 50.671875 101.515625 51.125 101.09375 Q 51.578125 100.65625 51.578125 99.859375 Q 51.578125 99.078125 51.125 98.65625 Q 50.671875 98.21875 49.84375 98.21875 L 48.359375 98.21875 z M 47.171875 97.25 L 49.84375 97.25 Q 51.328125 97.25 52.078125 97.921875 Q 52.828125 98.578125 52.828125 99.859375 Q 52.828125 101.15625 52.078125 101.828125 Q 51.328125 102.484375 49.84375 102.484375 L 48.359375 102.484375 L 48.359375 106 L 47.171875 106 L 47.171875 97.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 21 KiB

View File

@ -0,0 +1,233 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="337px"
height="327px"
viewBox="0 0 337 327"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:15:24 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 168.9065303237307 0"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 128 58 C 128 59.65685424949238 126.65685424949238 61 125 61 C 123.34314575050762 61 122 59.65685424949238 122 58 C 122 56.34314575050762 123.34314575050762 55 125 55 C 126.65685424949238 55 128 56.34314575050762 128 58 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 128 58 C 128 59.65685424949238 126.65685424949238 61 125 61 C 123.34314575050762 61 122 59.65685424949238 122 58 C 122 56.34314575050762 123.34314575050762 55 125 55 C 126.65685424949238 55 128 56.34314575050762 128 58 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 131.359375 44.21875 L 131.359375 47.515625 L 132.84375 47.515625 Q 133.671875 47.515625 134.125 47.09375 Q 134.578125 46.65625 134.578125 45.859375 Q 134.578125 45.078125 134.125 44.65625 Q 133.671875 44.21875 132.84375 44.21875 L 131.359375 44.21875 z M 130.171875 43.25 L 132.84375 43.25 Q 134.328125 43.25 135.078125 43.921875 Q 135.828125 44.578125 135.828125 45.859375 Q 135.828125 47.15625 135.078125 47.828125 Q 134.328125 48.484375 132.84375 48.484375 L 131.359375 48.484375 L 131.359375 52 L 130.171875 52 L 130.171875 43.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 93 105 C 93 106.65685424949238 91.65685424949238 108 90 108 C 88.34314575050762 108 87 106.65685424949238 87 105 C 87 103.34314575050762 88.34314575050762 102 90 102 C 91.65685424949238 102 93 103.34314575050762 93 105 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 93 105 C 93 106.65685424949238 91.65685424949238 108 90 108 C 88.34314575050762 108 87 106.65685424949238 87 105 C 87 103.34314575050762 88.34314575050762 102 90 102 C 91.65685424949238 102 93 103.34314575050762 93 105 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 96.359375 91.21875 L 96.359375 94.515625 L 97.84375 94.515625 Q 98.671875 94.515625 99.125 94.09375 Q 99.578125 93.65625 99.578125 92.859375 Q 99.578125 92.078125 99.125 91.65625 Q 98.671875 91.21875 97.84375 91.21875 L 96.359375 91.21875 z M 95.171875 90.25 L 97.84375 90.25 Q 99.328125 90.25 100.078125 90.921875 Q 100.828125 91.578125 100.828125 92.859375 Q 100.828125 94.15625 100.078125 94.828125 Q 99.328125 95.484375 97.84375 95.484375 L 96.359375 95.484375 L 96.359375 99 L 95.171875 99 L 95.171875 90.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 102.470703125 103.171875 L 104.095703125 103.171875 L 104.095703125 97.609375 L 102.330078125 97.953125 L 102.330078125 97.0625 L 104.080078125 96.703125 L 105.064453125 96.703125 L 105.064453125 103.171875 L 106.673828125 103.171875 L 106.673828125 104 L 102.470703125 104 L 102.470703125 103.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 23 KiB

View File

@ -0,0 +1,253 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="337px"
height="327px"
viewBox="0 0 337 327"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:23:26 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 265 0 L 265 257 L 0 257 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 69.171875 149.359375 Q 68.421875 149.359375 68.03125 150.109375 Q 67.65625 150.859375 67.65625 152.359375 Q 67.65625 153.859375 68.03125 154.609375 Q 68.421875 155.359375 69.171875 155.359375 Q 69.953125 155.359375 70.328125 154.609375 Q 70.71875 153.859375 70.71875 152.359375 Q 70.71875 150.859375 70.328125 150.109375 Q 69.953125 149.359375 69.171875 149.359375 z M 69.171875 148.578125 Q 70.40625 148.578125 71.046875 149.546875 Q 71.703125 150.515625 71.703125 152.359375 Q 71.703125 154.203125 71.046875 155.171875 Q 70.40625 156.140625 69.171875 156.140625 Q 67.953125 156.140625 67.296875 155.171875 Q 66.65625 154.203125 66.65625 152.359375 Q 66.65625 150.515625 67.296875 149.546875 Q 67.953125 148.578125 69.171875 148.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 60.78662485303139 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 148.234375 155.171875 L 149.859375 155.171875 L 149.859375 149.609375 L 148.09375 149.953125 L 148.09375 149.0625 L 149.84375 148.703125 L 150.828125 148.703125 L 150.828125 155.171875 L 152.4375 155.171875 L 152.4375 156 L 148.234375 156 L 148.234375 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 149.83505704565925 142.82509847769097 L 149.83505704565925 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 237.921875 155.171875 L 241.359375 155.171875 L 241.359375 156 L 236.734375 156 L 236.734375 155.171875 Q 237.296875 154.59375 238.265625 153.609375 Q 239.234375 152.625 239.484375 152.34375 Q 239.953125 151.8125 240.140625 151.453125 Q 240.328125 151.078125 240.328125 150.71875 Q 240.328125 150.140625 239.921875 149.78125 Q 239.515625 149.40625 238.859375 149.40625 Q 238.390625 149.40625 237.875 149.578125 Q 237.375 149.734375 236.78125 150.0625 L 236.78125 149.0625 Q 237.375 148.828125 237.890625 148.703125 Q 238.40625 148.578125 238.84375 148.578125 Q 239.96875 148.578125 240.640625 149.140625 Q 241.328125 149.703125 241.328125 150.65625 Q 241.328125 151.109375 241.15625 151.515625 Q 240.984375 151.90625 240.546875 152.453125 Q 240.421875 152.59375 239.765625 153.28125 Q 239.109375 153.953125 237.921875 155.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 238.88348923828713 142.82509847769097 L 238.88348923828713 146.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 142.82509847769097 L 263 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 143.32509847769097 L 261 139.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 264 142.32509847769097 L 261 145.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 44.484375 231.859375 L 47.125 231.859375 L 47.125 232.65625 L 44.484375 232.65625 L 44.484375 231.859375 z M 48.8427734375 234.171875 L 50.4677734375 234.171875 L 50.4677734375 228.609375 L 48.7021484375 228.953125 L 48.7021484375 228.0625 L 50.4521484375 227.703125 L 51.4365234375 227.703125 L 51.4365234375 234.171875 L 53.0458984375 234.171875 L 53.0458984375 235 L 48.8427734375 235 L 48.8427734375 234.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 231.87353067031938 L 60.78662485303139 231.87353067031938"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 51.171875 133.359375 Q 50.421875 133.359375 50.03125 134.109375 Q 49.65625 134.859375 49.65625 136.359375 Q 49.65625 137.859375 50.03125 138.609375 Q 50.421875 139.359375 51.171875 139.359375 Q 51.953125 139.359375 52.328125 138.609375 Q 52.71875 137.859375 52.71875 136.359375 Q 52.71875 134.859375 52.328125 134.109375 Q 51.953125 133.359375 51.171875 133.359375 z M 51.171875 132.578125 Q 52.40625 132.578125 53.046875 133.546875 Q 53.703125 134.515625 53.703125 136.359375 Q 53.703125 138.203125 53.046875 139.171875 Q 52.40625 140.140625 51.171875 140.140625 Q 49.953125 140.140625 49.296875 139.171875 Q 48.65625 138.203125 48.65625 136.359375 Q 48.65625 134.515625 49.296875 133.546875 Q 49.953125 132.578125 51.171875 132.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 142.82509847769097 L 60.78662485303139 142.82509847769097"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.234375 56.171875 L 50.859375 56.171875 L 50.859375 50.609375 L 49.09375 50.953125 L 49.09375 50.0625 L 50.84375 49.703125 L 51.828125 49.703125 L 51.828125 56.171875 L 53.4375 56.171875 L 53.4375 57 L 49.234375 57 L 49.234375 56.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.78662485303139 53.776666285062575 L 60.78662485303139 53.776666285062575"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 2 L 60.78662485303139 257"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 61.28662485303139 1 L 57.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.28662485303139 1 L 63.78662485303139 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 221.07380279976155 142.82509847769097 C 221.07380279976155 182.16917135475506 189.17912992272312 214.0638442317937 149.83505704565925 214.0638442317937 C 110.49098416859538 214.0638442317937 78.59631129155696 182.16917135475506 78.59631129155696 142.82509847769097 C 78.59631129155696 103.48102560062685 110.49098416859538 71.58635272358825 149.83505704565925 71.58635272358825 C 189.17912992272312 71.58635272358825 221.07380279976155 103.48102560062685 221.07380279976155 142.82509847769097 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52 22 C 52 23.65685424949238 50.65685424949238 25 49 25 C 47.34314575050762 25 46 23.65685424949238 46 22 C 46 20.34314575050762 47.34314575050762 19 49 19 C 50.65685424949238 19 52 20.34314575050762 52 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 11.9375 33.4375 Q 11.75 33.34375 11.53125 33.296875 Q 11.328125 33.234375 11.0625 33.234375 Q 10.15625 33.234375 9.65625 33.828125 Q 9.171875 34.421875 9.171875 35.546875 L 9.171875 39 L 8.09375 39 L 8.09375 32.4375 L 9.171875 32.4375 L 9.171875 33.453125 Q 9.515625 32.859375 10.0625 32.578125 Q 10.609375 32.28125 11.390625 32.28125 Q 11.5 32.28125 11.625 32.296875 Q 11.765625 32.3125 11.921875 32.34375 L 11.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 13.16796875 43.171875 L 14.79296875 43.171875 L 14.79296875 37.609375 L 13.02734375 37.953125 L 13.02734375 37.0625 L 14.77734375 36.703125 L 15.76171875 36.703125 L 15.76171875 43.171875 L 17.37109375 43.171875 L 17.37109375 44 L 13.16796875 44 L 13.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 23.3759765625 33.546875 L 30.8916015625 33.546875 L 30.8916015625 34.53125 L 23.3759765625 34.53125 L 23.3759765625 33.546875 z M 23.3759765625 35.9375 L 30.8916015625 35.9375 L 30.8916015625 36.9375 L 23.3759765625 36.9375 L 23.3759765625 35.9375 z M 39.7919921875 31.03125 Q 38.8857421875 31.03125 38.4169921875 31.9375 Q 37.9638671875 32.828125 37.9638671875 34.640625 Q 37.9638671875 36.4375 38.4169921875 37.34375 Q 38.8857421875 38.234375 39.7919921875 38.234375 Q 40.7138671875 38.234375 41.1669921875 37.34375 Q 41.6357421875 36.4375 41.6357421875 34.640625 Q 41.6357421875 32.828125 41.1669921875 31.9375 Q 40.7138671875 31.03125 39.7919921875 31.03125 z M 39.7919921875 30.09375 Q 41.2607421875 30.09375 42.0419921875 31.265625 Q 42.8232421875 32.421875 42.8232421875 34.640625 Q 42.8232421875 36.84375 42.0419921875 38.015625 Q 41.2607421875 39.171875 39.7919921875 39.171875 Q 38.3232421875 39.171875 37.5419921875 38.015625 Q 36.7763671875 36.84375 36.7763671875 34.640625 Q 36.7763671875 32.421875 37.5419921875 31.265625 Q 38.3232421875 30.09375 39.7919921875 30.09375 z M 44.8955078125 37.515625 L 46.1298828125 37.515625 L 46.1298828125 39 L 44.8955078125 39 L 44.8955078125 37.515625 z M 51.2412109375 34.84375 Q 50.3974609375 34.84375 49.9130859375 35.296875 Q 49.4287109375 35.75 49.4287109375 36.53125 Q 49.4287109375 37.328125 49.9130859375 37.78125 Q 50.3974609375 38.234375 51.2412109375 38.234375 Q 52.0849609375 38.234375 52.5693359375 37.78125 Q 53.0537109375 37.328125 53.0537109375 36.53125 Q 53.0537109375 35.75 52.5693359375 35.296875 Q 52.1005859375 34.84375 51.2412109375 34.84375 z M 50.0537109375 34.34375 Q 49.3037109375 34.15625 48.8662109375 33.640625 Q 48.4443359375 33.109375 48.4443359375 32.359375 Q 48.4443359375 31.3125 49.1943359375 30.703125 Q 49.9443359375 30.09375 51.2412109375 30.09375 Q 52.5537109375 30.09375 53.2880859375 30.703125 Q 54.0380859375 31.3125 54.0380859375 32.359375 Q 54.0380859375 33.109375 53.6162109375 33.640625 Q 53.1943359375 34.15625 52.4287109375 34.34375 Q 53.2880859375 34.546875 53.7568359375 35.125 Q 54.2412109375 35.703125 54.2412109375 36.53125 Q 54.2412109375 37.8125 53.4599609375 38.5 Q 52.6943359375 39.171875 51.2412109375 39.171875 Q 49.8037109375 39.171875 49.0224609375 38.5 Q 48.2412109375 37.8125 48.2412109375 36.53125 Q 48.2412109375 35.703125 48.7255859375 35.125 Q 49.2099609375 34.546875 50.0537109375 34.34375 z M 49.6318359375 32.46875 Q 49.6318359375 33.15625 50.0537109375 33.53125 Q 50.4755859375 33.90625 51.2412109375 33.90625 Q 52.0068359375 33.90625 52.4287109375 33.53125 Q 52.8662109375 33.15625 52.8662109375 32.46875 Q 52.8662109375 31.796875 52.4287109375 31.421875 Q 52.0068359375 31.03125 51.2412109375 31.03125 Q 50.4755859375 31.03125 50.0537109375 31.421875 Q 49.6318359375 31.796875 49.6318359375 32.46875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60.78662485303139 142.82509847769097 L 265 -42.99129391401277"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 153 143 C 153 144.65685424949237 151.65685424949237 146 150 146 C 148.34314575050763 146 147 144.65685424949237 147 143 C 147 141.34314575050763 148.34314575050763 140 150 140 C 151.65685424949237 140 153 141.34314575050763 153 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 161.734375 128.921875 L 161.734375 130.171875 Q 161.125 129.609375 160.453125 129.34375 Q 159.78125 129.0625 159.015625 129.0625 Q 157.515625 129.0625 156.71875 129.984375 Q 155.921875 130.90625 155.921875 132.640625 Q 155.921875 134.359375 156.71875 135.28125 Q 157.515625 136.203125 159.015625 136.203125 Q 159.78125 136.203125 160.453125 135.921875 Q 161.125 135.640625 161.734375 135.09375 L 161.734375 136.328125 Q 161.109375 136.75 160.40625 136.96875 Q 159.71875 137.171875 158.953125 137.171875 Q 156.953125 137.171875 155.8125 135.953125 Q 154.671875 134.734375 154.671875 132.640625 Q 154.671875 130.53125 155.8125 129.3125 Q 156.953125 128.09375 158.953125 128.09375 Q 159.734375 128.09375 160.421875 128.3125 Q 161.125 128.515625 161.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 163.61328125 141.171875 L 165.23828125 141.171875 L 165.23828125 135.609375 L 163.47265625 135.953125 L 163.47265625 135.0625 L 165.22265625 134.703125 L 166.20703125 134.703125 L 166.20703125 141.171875 L 167.81640625 141.171875 L 167.81640625 142 L 163.61328125 142 L 163.61328125 141.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 168 48 C 168 49.65685424949238 166.65685424949237 51 165 51 C 163.34314575050763 51 162 49.65685424949238 162 48 C 162 46.34314575050762 163.34314575050763 45 165 45 C 166.65685424949237 45 168 46.34314575050762 168 48 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 168 48 C 168 49.65685424949238 166.65685424949237 51 165 51 C 163.34314575050763 51 162 49.65685424949238 162 48 C 162 46.34314575050762 163.34314575050763 45 165 45 C 166.65685424949237 45 168 46.34314575050762 168 48 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 171.359375 34.21875 L 171.359375 37.515625 L 172.84375 37.515625 Q 173.671875 37.515625 174.125 37.09375 Q 174.578125 36.65625 174.578125 35.859375 Q 174.578125 35.078125 174.125 34.65625 Q 173.671875 34.21875 172.84375 34.21875 L 171.359375 34.21875 z M 170.171875 33.25 L 172.84375 33.25 Q 174.328125 33.25 175.078125 33.921875 Q 175.828125 34.578125 175.828125 35.859375 Q 175.828125 37.15625 175.078125 37.828125 Q 174.328125 38.484375 172.84375 38.484375 L 171.359375 38.484375 L 171.359375 42 L 170.171875 42 L 170.171875 33.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 64 143 C 64 144.65685424949237 62.65685424949238 146 61 146 C 59.34314575050762 146 58 144.65685424949237 58 143 C 58 141.34314575050763 59.34314575050762 140 61 140 C 62.65685424949238 140 64 141.34314575050763 64 143 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 72.734375 128.921875 L 72.734375 130.171875 Q 72.125 129.609375 71.453125 129.34375 Q 70.78125 129.0625 70.015625 129.0625 Q 68.515625 129.0625 67.71875 129.984375 Q 66.921875 130.90625 66.921875 132.640625 Q 66.921875 134.359375 67.71875 135.28125 Q 68.515625 136.203125 70.015625 136.203125 Q 70.78125 136.203125 71.453125 135.921875 Q 72.125 135.640625 72.734375 135.09375 L 72.734375 136.328125 Q 72.109375 136.75 71.40625 136.96875 Q 70.71875 137.171875 69.953125 137.171875 Q 67.953125 137.171875 66.8125 135.953125 Q 65.671875 134.734375 65.671875 132.640625 Q 65.671875 130.53125 66.8125 129.3125 Q 67.953125 128.09375 69.953125 128.09375 Q 70.734375 128.09375 71.421875 128.3125 Q 72.125 128.515625 72.734375 128.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 77.09765625 134.40625 L 77.09765625 135.15625 L 76.23828125 135.15625 Q 75.75390625 135.15625 75.56640625 135.359375 Q 75.37890625 135.546875 75.37890625 136.046875 L 75.37890625 136.53125 L 76.84765625 136.53125 L 76.84765625 137.234375 L 75.37890625 137.234375 L 75.37890625 142 L 74.47265625 142 L 74.47265625 137.234375 L 73.61328125 137.234375 L 73.61328125 136.53125 L 74.47265625 136.53125 L 74.47265625 136.15625 Q 74.47265625 135.234375 74.89453125 134.828125 Q 75.31640625 134.40625 76.23828125 134.40625 L 77.09765625 134.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 141 73 C 141 74.65685424949238 139.65685424949237 76 138 76 C 136.34314575050763 76 135 74.65685424949238 135 73 C 135 71.34314575050762 136.34314575050763 70 138 70 C 139.65685424949237 70 141 71.34314575050762 141 73 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 141 73 C 141 74.65685424949238 139.65685424949237 76 138 76 C 136.34314575050763 76 135 74.65685424949238 135 73 C 135 71.34314575050762 136.34314575050763 70 138 70 C 139.65685424949237 70 141 71.34314575050762 141 73 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 144.359375 59.21875 L 144.359375 62.515625 L 145.84375 62.515625 Q 146.671875 62.515625 147.125 62.09375 Q 147.578125 61.65625 147.578125 60.859375 Q 147.578125 60.078125 147.125 59.65625 Q 146.671875 59.21875 145.84375 59.21875 L 144.359375 59.21875 z M 143.171875 58.25 L 145.84375 58.25 Q 147.328125 58.25 148.078125 58.921875 Q 148.828125 59.578125 148.828125 60.859375 Q 148.828125 62.15625 148.078125 62.828125 Q 147.328125 63.484375 145.84375 63.484375 L 144.359375 63.484375 L 144.359375 67 L 143.171875 67 L 143.171875 58.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 150.470703125 71.171875 L 152.095703125 71.171875 L 152.095703125 65.609375 L 150.330078125 65.953125 L 150.330078125 65.0625 L 152.080078125 64.703125 L 153.064453125 64.703125 L 153.064453125 71.171875 L 154.673828125 71.171875 L 154.673828125 72 L 150.470703125 72 L 150.470703125 71.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 84 124 C 84 125.65685424949238 82.65685424949238 127 81 127 C 79.34314575050762 127 78 125.65685424949238 78 124 C 78 122.34314575050762 79.34314575050762 121 81 121 C 82.65685424949238 121 84 122.34314575050762 84 124 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 84 124 C 84 125.65685424949238 82.65685424949238 127 81 127 C 79.34314575050762 127 78 125.65685424949238 78 124 C 78 122.34314575050762 79.34314575050762 121 81 121 C 82.65685424949238 121 84 122.34314575050762 84 124 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 87.359375 110.21875 L 87.359375 113.515625 L 88.84375 113.515625 Q 89.671875 113.515625 90.125 113.09375 Q 90.578125 112.65625 90.578125 111.859375 Q 90.578125 111.078125 90.125 110.65625 Q 89.671875 110.21875 88.84375 110.21875 L 87.359375 110.21875 z M 86.171875 109.25 L 88.84375 109.25 Q 90.328125 109.25 91.078125 109.921875 Q 91.828125 110.578125 91.828125 111.859375 Q 91.828125 113.15625 91.078125 113.828125 Q 90.328125 114.484375 88.84375 114.484375 L 87.359375 114.484375 L 87.359375 118 L 86.171875 118 L 86.171875 109.25 z M 94.595703125 110.21875 L 94.595703125 113.515625 L 96.080078125 113.515625 Q 96.908203125 113.515625 97.361328125 113.09375 Q 97.814453125 112.65625 97.814453125 111.859375 Q 97.814453125 111.078125 97.361328125 110.65625 Q 96.908203125 110.21875 96.080078125 110.21875 L 94.595703125 110.21875 z M 93.408203125 109.25 L 96.080078125 109.25 Q 97.564453125 109.25 98.314453125 109.921875 Q 99.064453125 110.578125 99.064453125 111.859375 Q 99.064453125 113.15625 98.314453125 113.828125 Q 97.564453125 114.484375 96.080078125 114.484375 L 94.595703125 114.484375 L 94.595703125 118 L 93.408203125 118 L 93.408203125 109.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.2733051439510972, 0, 0, 1.2733051439510972, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 100.70703125 122.171875 L 102.33203125 122.171875 L 102.33203125 116.609375 L 100.56640625 116.953125 L 100.56640625 116.0625 L 102.31640625 115.703125 L 103.30078125 115.703125 L 103.30078125 122.171875 L 104.91015625 122.171875 L 104.91015625 123 L 100.70703125 123 L 100.70703125 122.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -0,0 +1,298 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="562px"
height="514px"
viewBox="0 0 562 514"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 3:02:35 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 442 0 L 442 404 L 0 404 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 49.484375 212.859375 L 52.125 212.859375 L 52.125 213.65625 L 49.484375 213.65625 L 49.484375 212.859375 z M 53.8427734375 215.171875 L 55.4677734375 215.171875 L 55.4677734375 209.609375 L 53.7021484375 209.953125 L 53.7021484375 209.0625 L 55.4521484375 208.703125 L 56.4365234375 208.703125 L 56.4365234375 215.171875 L 58.0458984375 215.171875 L 58.0458984375 216 L 53.8427734375 216 L 53.8427734375 215.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 53.73819266040353 202.82509847769083 L 53.73819266040353 206.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 151.171875 209.359375 Q 150.421875 209.359375 150.03125 210.109375 Q 149.65625 210.859375 149.65625 212.359375 Q 149.65625 213.859375 150.03125 214.609375 Q 150.421875 215.359375 151.171875 215.359375 Q 151.953125 215.359375 152.328125 214.609375 Q 152.71875 213.859375 152.71875 212.359375 Q 152.71875 210.859375 152.328125 210.109375 Q 151.953125 209.359375 151.171875 209.359375 z M 151.171875 208.578125 Q 152.40625 208.578125 153.046875 209.546875 Q 153.703125 210.515625 153.703125 212.359375 Q 153.703125 214.203125 153.046875 215.171875 Q 152.40625 216.140625 151.171875 216.140625 Q 149.953125 216.140625 149.296875 215.171875 Q 148.65625 214.203125 148.65625 212.359375 Q 148.65625 210.515625 149.296875 209.546875 Q 149.953125 208.578125 151.171875 208.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 142.7866248530314 202.82509847769083 L 142.7866248530314 206.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 230.234375 215.171875 L 231.859375 215.171875 L 231.859375 209.609375 L 230.09375 209.953125 L 230.09375 209.0625 L 231.84375 208.703125 L 232.828125 208.703125 L 232.828125 215.171875 L 234.4375 215.171875 L 234.4375 216 L 230.234375 216 L 230.234375 215.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 231.8350570456593 202.82509847769083 L 231.8350570456593 206.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 319.921875 215.171875 L 323.359375 215.171875 L 323.359375 216 L 318.734375 216 L 318.734375 215.171875 Q 319.296875 214.59375 320.265625 213.609375 Q 321.234375 212.625 321.484375 212.34375 Q 321.953125 211.8125 322.140625 211.453125 Q 322.328125 211.078125 322.328125 210.71875 Q 322.328125 210.140625 321.921875 209.78125 Q 321.515625 209.40625 320.859375 209.40625 Q 320.390625 209.40625 319.875 209.578125 Q 319.375 209.734375 318.78125 210.0625 L 318.78125 209.0625 Q 319.375 208.828125 319.890625 208.703125 Q 320.40625 208.578125 320.84375 208.578125 Q 321.96875 208.578125 322.640625 209.140625 Q 323.328125 209.703125 323.328125 210.65625 Q 323.328125 211.109375 323.15625 211.515625 Q 322.984375 211.90625 322.546875 212.453125 Q 322.421875 212.59375 321.765625 213.28125 Q 321.109375 213.953125 319.921875 215.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 320.8834892382872 202.82509847769083 L 320.8834892382872 206.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 411.0625 212.0625 Q 411.765625 212.21875 412.15625 212.703125 Q 412.5625 213.171875 412.5625 213.875 Q 412.5625 214.953125 411.8125 215.546875 Q 411.078125 216.140625 409.703125 216.140625 Q 409.25 216.140625 408.765625 216.046875 Q 408.28125 215.953125 407.765625 215.78125 L 407.765625 214.828125 Q 408.171875 215.0625 408.65625 215.1875 Q 409.15625 215.3125 409.6875 215.3125 Q 410.609375 215.3125 411.09375 214.953125 Q 411.578125 214.578125 411.578125 213.875 Q 411.578125 213.234375 411.125 212.875 Q 410.671875 212.515625 409.875 212.515625 L 409.015625 212.515625 L 409.015625 211.703125 L 409.90625 211.703125 Q 410.640625 211.703125 411.015625 211.40625 Q 411.40625 211.109375 411.40625 210.5625 Q 411.40625 210.015625 411 209.71875 Q 410.609375 209.40625 409.875 209.40625 Q 409.46875 209.40625 409 209.5 Q 408.53125 209.578125 407.984375 209.765625 L 407.984375 208.890625 Q 408.546875 208.734375 409.03125 208.65625 Q 409.53125 208.578125 409.953125 208.578125 Q 411.078125 208.578125 411.734375 209.09375 Q 412.390625 209.59375 412.390625 210.46875 Q 412.390625 211.078125 412.046875 211.5 Q 411.703125 211.90625 411.0625 212.0625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 409.9319214309151 202.82509847769083 L 409.9319214309151 206.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 202.82509847769083 L 440 202.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 441 203.32509847769083 L 438 199.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 441 202.32509847769083 L 438 205.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 126.484375 380.859375 L 129.125 380.859375 L 129.125 381.65625 L 126.484375 381.65625 L 126.484375 380.859375 z M 131.5302734375 383.171875 L 134.9677734375 383.171875 L 134.9677734375 384 L 130.3427734375 384 L 130.3427734375 383.171875 Q 130.9052734375 382.59375 131.8740234375 381.609375 Q 132.8427734375 380.625 133.0927734375 380.34375 Q 133.5615234375 379.8125 133.7490234375 379.453125 Q 133.9365234375 379.078125 133.9365234375 378.71875 Q 133.9365234375 378.140625 133.5302734375 377.78125 Q 133.1240234375 377.40625 132.4677734375 377.40625 Q 131.9990234375 377.40625 131.4833984375 377.578125 Q 130.9833984375 377.734375 130.3896484375 378.0625 L 130.3896484375 377.0625 Q 130.9833984375 376.828125 131.4990234375 376.703125 Q 132.0146484375 376.578125 132.4521484375 376.578125 Q 133.5771484375 376.578125 134.2490234375 377.140625 Q 134.9365234375 377.703125 134.9365234375 378.65625 Q 134.9365234375 379.109375 134.7646484375 379.515625 Q 134.5927734375 379.90625 134.1552734375 380.453125 Q 134.0302734375 380.59375 133.3740234375 381.28125 Q 132.7177734375 381.953125 131.5302734375 383.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 138.7866248530314 380.9219628629475 L 142.7866248530314 380.9219628629475"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 126.484375 291.859375 L 129.125 291.859375 L 129.125 292.65625 L 126.484375 292.65625 L 126.484375 291.859375 z M 130.8427734375 294.171875 L 132.4677734375 294.171875 L 132.4677734375 288.609375 L 130.7021484375 288.953125 L 130.7021484375 288.0625 L 132.4521484375 287.703125 L 133.4365234375 287.703125 L 133.4365234375 294.171875 L 135.0458984375 294.171875 L 135.0458984375 295 L 130.8427734375 295 L 130.8427734375 294.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 138.7866248530314 291.87353067031916 L 142.7866248530314 291.87353067031916"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 133.171875 193.359375 Q 132.421875 193.359375 132.03125 194.109375 Q 131.65625 194.859375 131.65625 196.359375 Q 131.65625 197.859375 132.03125 198.609375 Q 132.421875 199.359375 133.171875 199.359375 Q 133.953125 199.359375 134.328125 198.609375 Q 134.71875 197.859375 134.71875 196.359375 Q 134.71875 194.859375 134.328125 194.109375 Q 133.953125 193.359375 133.171875 193.359375 z M 133.171875 192.578125 Q 134.40625 192.578125 135.046875 193.546875 Q 135.703125 194.515625 135.703125 196.359375 Q 135.703125 198.203125 135.046875 199.171875 Q 134.40625 200.140625 133.171875 200.140625 Q 131.953125 200.140625 131.296875 199.171875 Q 130.65625 198.203125 130.65625 196.359375 Q 130.65625 194.515625 131.296875 193.546875 Q 131.953125 192.578125 133.171875 192.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 138.7866248530314 202.8250984776908 L 142.7866248530314 202.8250984776908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 131.234375 116.171875 L 132.859375 116.171875 L 132.859375 110.609375 L 131.09375 110.953125 L 131.09375 110.0625 L 132.84375 109.703125 L 133.828125 109.703125 L 133.828125 116.171875 L 135.4375 116.171875 L 135.4375 117 L 131.234375 117 L 131.234375 116.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 138.7866248530314 113.77666628506246 L 142.7866248530314 113.77666628506246"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 131.921875 27.171875 L 135.359375 27.171875 L 135.359375 28 L 130.734375 28 L 130.734375 27.171875 Q 131.296875 26.59375 132.265625 25.609375 Q 133.234375 24.625 133.484375 24.34375 Q 133.953125 23.8125 134.140625 23.453125 Q 134.328125 23.078125 134.328125 22.71875 Q 134.328125 22.140625 133.921875 21.78125 Q 133.515625 21.40625 132.859375 21.40625 Q 132.390625 21.40625 131.875 21.578125 Q 131.375 21.734375 130.78125 22.0625 L 130.78125 21.0625 Q 131.375 20.828125 131.890625 20.703125 Q 132.40625 20.578125 132.84375 20.578125 Q 133.96875 20.578125 134.640625 21.140625 Q 135.328125 21.703125 135.328125 22.65625 Q 135.328125 23.109375 135.15625 23.515625 Q 134.984375 23.90625 134.546875 24.453125 Q 134.421875 24.59375 133.765625 25.28125 Q 133.109375 25.953125 131.921875 27.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 138.7866248530314 24.72823409243412 L 142.7866248530314 24.72823409243412"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 142.7866248530314 2 L 142.7866248530314 404"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 143.2866248530314 1 L 139.7866248530314 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 142.2866248530314 1 L 145.7866248530314 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 418.8367646501779 202.82509847769083 C 418.8367646501779 306.10328977998404 335.113248347952 389.82680608221034 231.8350570456593 389.82680608221034 C 128.5568657433666 389.82680608221034 44.83334944114074 306.10328977998404 44.83334944114074 202.82509847769083 C 44.83334944114074 99.5469071753976 128.5568657433666 15.82339087317132 231.8350570456593 15.82339087317132 C 335.113248347952 15.82339087317132 418.8367646501779 99.5469071753976 418.8367646501779 202.82509847769083 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 78 22 C 78 23.65685424949238 76.65685424949238 25 75 25 C 73.34314575050762 25 72 23.65685424949238 72 22 C 72 20.34314575050762 73.34314575050762 19 75 19 C 76.65685424949238 19 78 20.34314575050762 78 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 78 22 C 78 23.65685424949238 76.65685424949238 25 75 25 C 73.34314575050762 25 72 23.65685424949238 72 22 C 72 20.34314575050762 73.34314575050762 19 75 19 C 76.65685424949238 19 78 20.34314575050762 78 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 68.9375 6.4375 Q 68.75 6.34375 68.53125 6.296875 Q 68.328125 6.234375 68.0625 6.234375 Q 67.15625 6.234375 66.65625 6.828125 Q 66.171875 7.421875 66.171875 8.546875 L 66.171875 12 L 65.09375 12 L 65.09375 5.4375 L 66.171875 5.4375 L 66.171875 6.453125 Q 66.515625 5.859375 67.0625 5.578125 Q 67.609375 5.28125 68.390625 5.28125 Q 68.5 5.28125 68.625 5.296875 Q 68.765625 5.3125 68.921875 5.34375 L 68.9375 6.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 70.16796875 16.171875 L 71.79296875 16.171875 L 71.79296875 10.609375 L 70.02734375 10.953125 L 70.02734375 10.0625 L 71.77734375 9.703125 L 72.76171875 9.703125 L 72.76171875 16.171875 L 74.37109375 16.171875 L 74.37109375 17 L 70.16796875 17 L 70.16796875 16.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 80.3759765625 6.546875 L 87.8916015625 6.546875 L 87.8916015625 7.53125 L 80.3759765625 7.53125 L 80.3759765625 6.546875 z M 80.3759765625 8.9375 L 87.8916015625 8.9375 L 87.8916015625 9.9375 L 80.3759765625 9.9375 L 80.3759765625 8.9375 z M 95.2763671875 11 L 99.4169921875 11 L 99.4169921875 12 L 93.8544921875 12 L 93.8544921875 11 Q 94.5263671875 10.3125 95.6826171875 9.140625 Q 96.8544921875 7.953125 97.1513671875 7.609375 Q 97.7294921875 6.984375 97.9482421875 6.546875 Q 98.1826171875 6.09375 98.1826171875 5.671875 Q 98.1826171875 4.96875 97.6826171875 4.53125 Q 97.1982421875 4.09375 96.4169921875 4.09375 Q 95.8544921875 4.09375 95.2294921875 4.28125 Q 94.6201171875 4.46875 93.9169921875 4.875 L 93.9169921875 3.671875 Q 94.6357421875 3.390625 95.2451171875 3.25 Q 95.8701171875 3.09375 96.3857421875 3.09375 Q 97.7451171875 3.09375 98.5576171875 3.78125 Q 99.3701171875 4.453125 99.3701171875 5.59375 Q 99.3701171875 6.125 99.1669921875 6.609375 Q 98.9638671875 7.09375 98.4326171875 7.75 Q 98.2763671875 7.921875 97.4951171875 8.734375 Q 96.7138671875 9.546875 95.2763671875 11 z M 101.8955078125 10.515625 L 103.1298828125 10.515625 L 103.1298828125 12 L 101.8955078125 12 L 101.8955078125 10.515625 z M 105.9130859375 11 L 107.8505859375 11 L 107.8505859375 4.328125 L 105.7412109375 4.75 L 105.7412109375 3.671875 L 107.8349609375 3.25 L 109.0224609375 3.25 L 109.0224609375 11 L 110.9599609375 11 L 110.9599609375 12 L 105.9130859375 12 L 105.9130859375 11 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-dasharray="5,4" stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 3.451104209809671 409 L 389.1354963935821 -5"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 142.7866248530314 202.82509847769083 L 442 13.738868350091622"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 359.30328095086816 65.9986005269738 L 231.8350570456593 202.82509847769083"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 235 203 C 235 204.65685424949237 233.65685424949237 206 232 206 C 230.34314575050763 206 229 204.65685424949237 229 203 C 229 201.34314575050763 230.34314575050763 200 232 200 C 233.65685424949237 200 235 201.34314575050763 235 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 235 203 C 235 204.65685424949237 233.65685424949237 206 232 206 C 230.34314575050763 206 229 204.65685424949237 229 203 C 229 201.34314575050763 230.34314575050763 200 232 200 C 233.65685424949237 200 235 201.34314575050763 235 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 243.734375 188.921875 L 243.734375 190.171875 Q 243.125 189.609375 242.453125 189.34375 Q 241.78125 189.0625 241.015625 189.0625 Q 239.515625 189.0625 238.71875 189.984375 Q 237.921875 190.90625 237.921875 192.640625 Q 237.921875 194.359375 238.71875 195.28125 Q 239.515625 196.203125 241.015625 196.203125 Q 241.78125 196.203125 242.453125 195.921875 Q 243.125 195.640625 243.734375 195.09375 L 243.734375 196.328125 Q 243.109375 196.75 242.40625 196.96875 Q 241.71875 197.171875 240.953125 197.171875 Q 238.953125 197.171875 237.8125 195.953125 Q 236.671875 194.734375 236.671875 192.640625 Q 236.671875 190.53125 237.8125 189.3125 Q 238.953125 188.09375 240.953125 188.09375 Q 241.734375 188.09375 242.421875 188.3125 Q 243.125 188.515625 243.734375 188.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 245.61328125 201.171875 L 247.23828125 201.171875 L 247.23828125 195.609375 L 245.47265625 195.953125 L 245.47265625 195.0625 L 247.22265625 194.703125 L 248.20703125 194.703125 L 248.20703125 201.171875 L 249.81640625 201.171875 L 249.81640625 202 L 245.61328125 202 L 245.61328125 201.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 274 122 C 274 123.65685424949238 272.65685424949237 125 271 125 C 269.34314575050763 125 268 123.65685424949238 268 122 C 268 120.34314575050762 269.34314575050763 119 271 119 C 272.65685424949237 119 274 120.34314575050762 274 122 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 274 122 C 274 123.65685424949238 272.65685424949237 125 271 125 C 269.34314575050763 125 268 123.65685424949238 268 122 C 268 120.34314575050762 269.34314575050763 119 271 119 C 272.65685424949237 119 274 120.34314575050762 274 122 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 277.359375 108.21875 L 277.359375 111.515625 L 278.84375 111.515625 Q 279.671875 111.515625 280.125 111.09375 Q 280.578125 110.65625 280.578125 109.859375 Q 280.578125 109.078125 280.125 108.65625 Q 279.671875 108.21875 278.84375 108.21875 L 277.359375 108.21875 z M 276.171875 107.25 L 278.84375 107.25 Q 280.328125 107.25 281.078125 107.921875 Q 281.828125 108.578125 281.828125 109.859375 Q 281.828125 111.15625 281.078125 111.828125 Q 280.328125 112.484375 278.84375 112.484375 L 277.359375 112.484375 L 277.359375 116 L 276.171875 116 L 276.171875 107.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 146 203 C 146 204.65685424949237 144.65685424949237 206 143 206 C 141.34314575050763 206 140 204.65685424949237 140 203 C 140 201.34314575050763 141.34314575050763 200 143 200 C 144.65685424949237 200 146 201.34314575050763 146 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 146 203 C 146 204.65685424949237 144.65685424949237 206 143 206 C 141.34314575050763 206 140 204.65685424949237 140 203 C 140 201.34314575050763 141.34314575050763 200 143 200 C 144.65685424949237 200 146 201.34314575050763 146 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 154.734375 188.921875 L 154.734375 190.171875 Q 154.125 189.609375 153.453125 189.34375 Q 152.78125 189.0625 152.015625 189.0625 Q 150.515625 189.0625 149.71875 189.984375 Q 148.921875 190.90625 148.921875 192.640625 Q 148.921875 194.359375 149.71875 195.28125 Q 150.515625 196.203125 152.015625 196.203125 Q 152.78125 196.203125 153.453125 195.921875 Q 154.125 195.640625 154.734375 195.09375 L 154.734375 196.328125 Q 154.109375 196.75 153.40625 196.96875 Q 152.71875 197.171875 151.953125 197.171875 Q 149.953125 197.171875 148.8125 195.953125 Q 147.671875 194.734375 147.671875 192.640625 Q 147.671875 190.53125 148.8125 189.3125 Q 149.953125 188.09375 151.953125 188.09375 Q 152.734375 188.09375 153.421875 188.3125 Q 154.125 188.515625 154.734375 188.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 159.09765625 194.40625 L 159.09765625 195.15625 L 158.23828125 195.15625 Q 157.75390625 195.15625 157.56640625 195.359375 Q 157.37890625 195.546875 157.37890625 196.046875 L 157.37890625 196.53125 L 158.84765625 196.53125 L 158.84765625 197.234375 L 157.37890625 197.234375 L 157.37890625 202 L 156.47265625 202 L 156.47265625 197.234375 L 155.61328125 197.234375 L 155.61328125 196.53125 L 156.47265625 196.53125 L 156.47265625 196.15625 Q 156.47265625 195.234375 156.89453125 194.828125 Q 157.31640625 194.40625 158.23828125 194.40625 L 159.09765625 194.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 362 66 C 362 67.65685424949238 360.65685424949237 69 359 69 C 357.34314575050763 69 356 67.65685424949238 356 66 C 356 64.34314575050762 357.34314575050763 63 359 63 C 360.65685424949237 63 362 64.34314575050762 362 66 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 362 66 C 362 67.65685424949238 360.65685424949237 69 359 69 C 357.34314575050763 69 356 67.65685424949238 356 66 C 356 64.34314575050762 357.34314575050763 63 359 63 C 360.65685424949237 63 362 64.34314575050762 362 66 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 365.359375 52.21875 L 365.359375 55.515625 L 366.84375 55.515625 Q 367.671875 55.515625 368.125 55.09375 Q 368.578125 54.65625 368.578125 53.859375 Q 368.578125 53.078125 368.125 52.65625 Q 367.671875 52.21875 366.84375 52.21875 L 365.359375 52.21875 z M 364.171875 51.25 L 366.84375 51.25 Q 368.328125 51.25 369.078125 51.921875 Q 369.828125 52.578125 369.828125 53.859375 Q 369.828125 55.15625 369.078125 55.828125 Q 368.328125 56.484375 366.84375 56.484375 L 365.359375 56.484375 L 365.359375 60 L 364.171875 60 L 364.171875 51.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 371.470703125 64.171875 L 373.095703125 64.171875 L 373.095703125 58.609375 L 371.330078125 58.953125 L 371.330078125 58.0625 L 373.080078125 57.703125 L 374.064453125 57.703125 L 374.064453125 64.171875 L 375.673828125 64.171875 L 375.673828125 65 L 371.470703125 65 L 371.470703125 64.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 199 203 C 199 204.65685424949237 197.65685424949237 206 196 206 C 194.34314575050763 206 193 204.65685424949237 193 203 C 193 201.34314575050763 194.34314575050763 200 196 200 C 197.65685424949237 200 199 201.34314575050763 199 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 199 203 C 199 204.65685424949237 197.65685424949237 206 196 206 C 194.34314575050763 206 193 204.65685424949237 193 203 C 193 201.34314575050763 194.34314575050763 200 196 200 C 197.65685424949237 200 199 201.34314575050763 199 203 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(1.273305143951097, 0, 0, 1.273305143951097, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 207.734375 188.921875 L 207.734375 190.171875 Q 207.125 189.609375 206.453125 189.34375 Q 205.78125 189.0625 205.015625 189.0625 Q 203.515625 189.0625 202.71875 189.984375 Q 201.921875 190.90625 201.921875 192.640625 Q 201.921875 194.359375 202.71875 195.28125 Q 203.515625 196.203125 205.015625 196.203125 Q 205.78125 196.203125 206.453125 195.921875 Q 207.125 195.640625 207.734375 195.09375 L 207.734375 196.328125 Q 207.109375 196.75 206.40625 196.96875 Q 205.71875 197.171875 204.953125 197.171875 Q 202.953125 197.171875 201.8125 195.953125 Q 200.671875 194.734375 200.671875 192.640625 Q 200.671875 190.53125 201.8125 189.3125 Q 202.953125 188.09375 204.953125 188.09375 Q 205.734375 188.09375 206.421875 188.3125 Q 207.125 188.515625 207.734375 188.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 30 KiB

View File

@ -0,0 +1,328 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="357px"
height="247px"
viewBox="0 0 357 247"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Friday, December 22, 2017 4:53:23 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 405 0 L 405 280 L 0 280 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 45.484375 235.859375 L 48.125 235.859375 L 48.125 236.65625 L 45.484375 236.65625 L 45.484375 235.859375 z M 51.7802734375 232.359375 Q 51.0302734375 232.359375 50.6396484375 233.109375 Q 50.2646484375 233.859375 50.2646484375 235.359375 Q 50.2646484375 236.859375 50.6396484375 237.609375 Q 51.0302734375 238.359375 51.7802734375 238.359375 Q 52.5615234375 238.359375 52.9365234375 237.609375 Q 53.3271484375 236.859375 53.3271484375 235.359375 Q 53.3271484375 233.859375 52.9365234375 233.109375 Q 52.5615234375 232.359375 51.7802734375 232.359375 z M 51.7802734375 231.578125 Q 53.0146484375 231.578125 53.6552734375 232.546875 Q 54.3115234375 233.515625 54.3115234375 235.359375 Q 54.3115234375 237.203125 53.6552734375 238.171875 Q 53.0146484375 239.140625 51.7802734375 239.140625 Q 50.5615234375 239.140625 49.9052734375 238.171875 Q 49.2646484375 237.203125 49.2646484375 235.359375 Q 49.2646484375 233.515625 49.9052734375 232.546875 Q 50.5615234375 231.578125 51.7802734375 231.578125 z M 56.033203125 237.765625 L 57.064453125 237.765625 L 57.064453125 239 L 56.033203125 239 L 56.033203125 237.765625 z M 59.2275390625 231.703125 L 63.1025390625 231.703125 L 63.1025390625 232.546875 L 60.1337890625 232.546875 L 60.1337890625 234.328125 Q 60.3525390625 234.25 60.5556640625 234.21875 Q 60.7744140625 234.1875 60.9931640625 234.1875 Q 62.2119140625 234.1875 62.9150390625 234.859375 Q 63.6337890625 235.515625 63.6337890625 236.65625 Q 63.6337890625 237.84375 62.8994140625 238.5 Q 62.1806640625 239.140625 60.8369140625 239.140625 Q 60.3837890625 239.140625 59.8994140625 239.0625 Q 59.4306640625 238.984375 58.9150390625 238.828125 L 58.9150390625 237.84375 Q 59.3681640625 238.078125 59.8369140625 238.203125 Q 60.3056640625 238.3125 60.8212890625 238.3125 Q 61.6650390625 238.3125 62.1494140625 237.875 Q 62.6494140625 237.421875 62.6494140625 236.65625 Q 62.6494140625 235.90625 62.1494140625 235.46875 Q 61.6650390625 235.015625 60.8212890625 235.015625 Q 60.4306640625 235.015625 60.0244140625 235.109375 Q 59.6337890625 235.1875 59.2275390625 235.375 L 59.2275390625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 54.41565157552739 225.13443114482905 L 54.41565157552739 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 127.171875 232.359375 Q 126.421875 232.359375 126.03125 233.109375 Q 125.65625 233.859375 125.65625 235.359375 Q 125.65625 236.859375 126.03125 237.609375 Q 126.421875 238.359375 127.171875 238.359375 Q 127.953125 238.359375 128.328125 237.609375 Q 128.71875 236.859375 128.71875 235.359375 Q 128.71875 233.859375 128.328125 233.109375 Q 127.953125 232.359375 127.171875 232.359375 z M 127.171875 231.578125 Q 128.40625 231.578125 129.046875 232.546875 Q 129.703125 233.515625 129.703125 235.359375 Q 129.703125 237.203125 129.046875 238.171875 Q 128.40625 239.140625 127.171875 239.140625 Q 125.953125 239.140625 125.296875 238.171875 Q 124.65625 237.203125 124.65625 235.359375 Q 124.65625 233.515625 125.296875 232.546875 Q 125.953125 231.578125 127.171875 231.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.66669502231808 225.13443114482905 L 118.66669502231808 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 178.171875 232.359375 Q 177.421875 232.359375 177.03125 233.109375 Q 176.65625 233.859375 176.65625 235.359375 Q 176.65625 236.859375 177.03125 237.609375 Q 177.421875 238.359375 178.171875 238.359375 Q 178.953125 238.359375 179.328125 237.609375 Q 179.71875 236.859375 179.71875 235.359375 Q 179.71875 233.859375 179.328125 233.109375 Q 178.953125 232.359375 178.171875 232.359375 z M 178.171875 231.578125 Q 179.40625 231.578125 180.046875 232.546875 Q 180.703125 233.515625 180.703125 235.359375 Q 180.703125 237.203125 180.046875 238.171875 Q 179.40625 239.140625 178.171875 239.140625 Q 176.953125 239.140625 176.296875 238.171875 Q 175.65625 237.203125 175.65625 235.359375 Q 175.65625 233.515625 176.296875 232.546875 Q 176.953125 231.578125 178.171875 231.578125 z M 182.4248046875 237.765625 L 183.4560546875 237.765625 L 183.4560546875 239 L 182.4248046875 239 L 182.4248046875 237.765625 z M 185.619140625 231.703125 L 189.494140625 231.703125 L 189.494140625 232.546875 L 186.525390625 232.546875 L 186.525390625 234.328125 Q 186.744140625 234.25 186.947265625 234.21875 Q 187.166015625 234.1875 187.384765625 234.1875 Q 188.603515625 234.1875 189.306640625 234.859375 Q 190.025390625 235.515625 190.025390625 236.65625 Q 190.025390625 237.84375 189.291015625 238.5 Q 188.572265625 239.140625 187.228515625 239.140625 Q 186.775390625 239.140625 186.291015625 239.0625 Q 185.822265625 238.984375 185.306640625 238.828125 L 185.306640625 237.84375 Q 185.759765625 238.078125 186.228515625 238.203125 Q 186.697265625 238.3125 187.212890625 238.3125 Q 188.056640625 238.3125 188.541015625 237.875 Q 189.041015625 237.421875 189.041015625 236.65625 Q 189.041015625 235.90625 188.541015625 235.46875 Q 188.056640625 235.015625 187.212890625 235.015625 Q 186.822265625 235.015625 186.416015625 235.109375 Q 186.025390625 235.1875 185.619140625 235.375 L 185.619140625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 182.91773846910877 225.13443114482905 L 182.91773846910877 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 245.234375 238.171875 L 246.859375 238.171875 L 246.859375 232.609375 L 245.09375 232.953125 L 245.09375 232.0625 L 246.84375 231.703125 L 247.828125 231.703125 L 247.828125 238.171875 L 249.4375 238.171875 L 249.4375 239 L 245.234375 239 L 245.234375 238.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 247.16878191589944 225.13443114482905 L 247.16878191589944 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 305.234375 238.171875 L 306.859375 238.171875 L 306.859375 232.609375 L 305.09375 232.953125 L 305.09375 232.0625 L 306.84375 231.703125 L 307.828125 231.703125 L 307.828125 238.171875 L 309.4375 238.171875 L 309.4375 239 L 305.234375 239 L 305.234375 238.171875 z M 311.4248046875 237.765625 L 312.4560546875 237.765625 L 312.4560546875 239 L 311.4248046875 239 L 311.4248046875 237.765625 z M 314.619140625 231.703125 L 318.494140625 231.703125 L 318.494140625 232.546875 L 315.525390625 232.546875 L 315.525390625 234.328125 Q 315.744140625 234.25 315.947265625 234.21875 Q 316.166015625 234.1875 316.384765625 234.1875 Q 317.603515625 234.1875 318.306640625 234.859375 Q 319.025390625 235.515625 319.025390625 236.65625 Q 319.025390625 237.84375 318.291015625 238.5 Q 317.572265625 239.140625 316.228515625 239.140625 Q 315.775390625 239.140625 315.291015625 239.0625 Q 314.822265625 238.984375 314.306640625 238.828125 L 314.306640625 237.84375 Q 314.759765625 238.078125 315.228515625 238.203125 Q 315.697265625 238.3125 316.212890625 238.3125 Q 317.056640625 238.3125 317.541015625 237.875 Q 318.041015625 237.421875 318.041015625 236.65625 Q 318.041015625 235.90625 317.541015625 235.46875 Q 317.056640625 235.015625 316.212890625 235.015625 Q 315.822265625 235.015625 315.416015625 235.109375 Q 315.025390625 235.1875 314.619140625 235.375 L 314.619140625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 311.4198253626901 225.13443114482905 L 311.4198253626901 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 374.921875 238.171875 L 378.359375 238.171875 L 378.359375 239 L 373.734375 239 L 373.734375 238.171875 Q 374.296875 237.59375 375.265625 236.609375 Q 376.234375 235.625 376.484375 235.34375 Q 376.953125 234.8125 377.140625 234.453125 Q 377.328125 234.078125 377.328125 233.71875 Q 377.328125 233.140625 376.921875 232.78125 Q 376.515625 232.40625 375.859375 232.40625 Q 375.390625 232.40625 374.875 232.578125 Q 374.375 232.734375 373.78125 233.0625 L 373.78125 232.0625 Q 374.375 231.828125 374.890625 231.703125 Q 375.40625 231.578125 375.84375 231.578125 Q 376.96875 231.578125 377.640625 232.140625 Q 378.328125 232.703125 378.328125 233.65625 Q 378.328125 234.109375 378.15625 234.515625 Q 377.984375 234.90625 377.546875 235.453125 Q 377.421875 235.59375 376.765625 236.28125 Q 376.109375 236.953125 374.921875 238.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 375.6708688094808 225.13443114482905 L 375.6708688094808 229.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 225.13443114482905 L 403 225.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 404 225.63443114482905 L 401 222.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 404 224.63443114482905 L 401 228.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 109.171875 216.359375 Q 108.421875 216.359375 108.03125 217.109375 Q 107.65625 217.859375 107.65625 219.359375 Q 107.65625 220.859375 108.03125 221.609375 Q 108.421875 222.359375 109.171875 222.359375 Q 109.953125 222.359375 110.328125 221.609375 Q 110.71875 220.859375 110.71875 219.359375 Q 110.71875 217.859375 110.328125 217.109375 Q 109.953125 216.359375 109.171875 216.359375 z M 109.171875 215.578125 Q 110.40625 215.578125 111.046875 216.546875 Q 111.703125 217.515625 111.703125 219.359375 Q 111.703125 221.203125 111.046875 222.171875 Q 110.40625 223.140625 109.171875 223.140625 Q 107.953125 223.140625 107.296875 222.171875 Q 106.65625 221.203125 106.65625 219.359375 Q 106.65625 217.515625 107.296875 216.546875 Q 107.953125 215.578125 109.171875 215.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231808 225.13443114482905 L 118.66669502231808 225.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 99.171875 157.359375 Q 98.421875 157.359375 98.03125 158.109375 Q 97.65625 158.859375 97.65625 160.359375 Q 97.65625 161.859375 98.03125 162.609375 Q 98.421875 163.359375 99.171875 163.359375 Q 99.953125 163.359375 100.328125 162.609375 Q 100.71875 161.859375 100.71875 160.359375 Q 100.71875 158.859375 100.328125 158.109375 Q 99.953125 157.359375 99.171875 157.359375 z M 99.171875 156.578125 Q 100.40625 156.578125 101.046875 157.546875 Q 101.703125 158.515625 101.703125 160.359375 Q 101.703125 162.203125 101.046875 163.171875 Q 100.40625 164.140625 99.171875 164.140625 Q 97.953125 164.140625 97.296875 163.171875 Q 96.65625 162.203125 96.65625 160.359375 Q 96.65625 158.515625 97.296875 157.546875 Q 97.953125 156.578125 99.171875 156.578125 z M 103.4248046875 162.765625 L 104.4560546875 162.765625 L 104.4560546875 164 L 103.4248046875 164 L 103.4248046875 162.765625 z M 106.619140625 156.703125 L 110.494140625 156.703125 L 110.494140625 157.546875 L 107.525390625 157.546875 L 107.525390625 159.328125 Q 107.744140625 159.25 107.947265625 159.21875 Q 108.166015625 159.1875 108.384765625 159.1875 Q 109.603515625 159.1875 110.306640625 159.859375 Q 111.025390625 160.515625 111.025390625 161.65625 Q 111.025390625 162.84375 110.291015625 163.5 Q 109.572265625 164.140625 108.228515625 164.140625 Q 107.775390625 164.140625 107.291015625 164.0625 Q 106.822265625 163.984375 106.306640625 163.828125 L 106.306640625 162.84375 Q 106.759765625 163.078125 107.228515625 163.203125 Q 107.697265625 163.3125 108.212890625 163.3125 Q 109.056640625 163.3125 109.541015625 162.875 Q 110.041015625 162.421875 110.041015625 161.65625 Q 110.041015625 160.90625 109.541015625 160.46875 Q 109.056640625 160.015625 108.212890625 160.015625 Q 107.822265625 160.015625 107.416015625 160.109375 Q 107.025390625 160.1875 106.619140625 160.375 L 106.619140625 156.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231808 160.88338769803818 L 118.66669502231808 160.88338769803818"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 107.234375 99.171875 L 108.859375 99.171875 L 108.859375 93.609375 L 107.09375 93.953125 L 107.09375 93.0625 L 108.84375 92.703125 L 109.828125 92.703125 L 109.828125 99.171875 L 111.4375 99.171875 L 111.4375 100 L 107.234375 100 L 107.234375 99.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231808 96.63234425124729 L 118.66669502231808 96.63234425124729"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 97.234375 35.171875 L 98.859375 35.171875 L 98.859375 29.609375 L 97.09375 29.953125 L 97.09375 29.0625 L 98.84375 28.703125 L 99.828125 28.703125 L 99.828125 35.171875 L 101.4375 35.171875 L 101.4375 36 L 97.234375 36 L 97.234375 35.171875 z M 103.4248046875 34.765625 L 104.4560546875 34.765625 L 104.4560546875 36 L 103.4248046875 36 L 103.4248046875 34.765625 z M 106.619140625 28.703125 L 110.494140625 28.703125 L 110.494140625 29.546875 L 107.525390625 29.546875 L 107.525390625 31.328125 Q 107.744140625 31.25 107.947265625 31.21875 Q 108.166015625 31.1875 108.384765625 31.1875 Q 109.603515625 31.1875 110.306640625 31.859375 Q 111.025390625 32.515625 111.025390625 33.65625 Q 111.025390625 34.84375 110.291015625 35.5 Q 109.572265625 36.140625 108.228515625 36.140625 Q 107.775390625 36.140625 107.291015625 36.0625 Q 106.822265625 35.984375 106.306640625 35.828125 L 106.306640625 34.84375 Q 106.759765625 35.078125 107.228515625 35.203125 Q 107.697265625 35.3125 108.212890625 35.3125 Q 109.056640625 35.3125 109.541015625 34.875 Q 110.041015625 34.421875 110.041015625 33.65625 Q 110.041015625 32.90625 109.541015625 32.46875 Q 109.056640625 32.015625 108.212890625 32.015625 Q 107.822265625 32.015625 107.416015625 32.109375 Q 107.025390625 32.1875 106.619140625 32.375 L 106.619140625 28.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231808 32.3813008044564 L 118.66669502231808 32.3813008044564"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.66669502231808 2 L 118.66669502231808 280"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 119.16669502231808 1 L 115.66669502231808 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.16669502231808 1 L 121.66669502231808 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 452.7721209456297 225.13443114482905 C 452.7721209456297 338.6860198052397 360.72037057630973 430.7377701745599 247.16878191589944 430.7377701745599 C 133.6171932554891 430.7377701745599 41.56544288616922 338.6860198052397 41.56544288616922 225.13443114482905 C 41.56544288616922 111.58284248441836 133.6171932554891 19.531092115098204 247.16878191589944 19.531092115098204 C 360.72037057630973 19.531092115098204 452.7721209456297 111.58284248441836 452.7721209456297 225.13443114482905 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 27.9375 33.4375 Q 27.75 33.34375 27.53125 33.296875 Q 27.328125 33.234375 27.0625 33.234375 Q 26.15625 33.234375 25.65625 33.828125 Q 25.171875 34.421875 25.171875 35.546875 L 25.171875 39 L 24.09375 39 L 24.09375 32.4375 L 25.171875 32.4375 L 25.171875 33.453125 Q 25.515625 32.859375 26.0625 32.578125 Q 26.609375 32.28125 27.390625 32.28125 Q 27.5 32.28125 27.625 32.296875 Q 27.765625 32.3125 27.921875 32.34375 L 27.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 29.16796875 43.171875 L 30.79296875 43.171875 L 30.79296875 37.609375 L 29.02734375 37.953125 L 29.02734375 37.0625 L 30.77734375 36.703125 L 31.76171875 36.703125 L 31.76171875 43.171875 L 33.37109375 43.171875 L 33.37109375 44 L 29.16796875 44 L 29.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 39.3759765625 33.546875 L 46.8916015625 33.546875 L 46.8916015625 34.53125 L 39.3759765625 34.53125 L 39.3759765625 33.546875 z M 39.3759765625 35.9375 L 46.8916015625 35.9375 L 46.8916015625 36.9375 L 39.3759765625 36.9375 L 39.3759765625 35.9375 z M 53.4638671875 38 L 55.4013671875 38 L 55.4013671875 31.328125 L 53.2919921875 31.75 L 53.2919921875 30.671875 L 55.3857421875 30.25 L 56.5732421875 30.25 L 56.5732421875 38 L 58.5107421875 38 L 58.5107421875 39 L 53.4638671875 39 L 53.4638671875 38 z M 60.8955078125 37.515625 L 62.1298828125 37.515625 L 62.1298828125 39 L 60.8955078125 39 L 60.8955078125 37.515625 z M 67.3974609375 34.15625 Q 66.6005859375 34.15625 66.1318359375 34.703125 Q 65.6630859375 35.25 65.6630859375 36.1875 Q 65.6630859375 37.140625 66.1318359375 37.6875 Q 66.6005859375 38.234375 67.3974609375 38.234375 Q 68.1943359375 38.234375 68.6474609375 37.6875 Q 69.1162109375 37.140625 69.1162109375 36.1875 Q 69.1162109375 35.25 68.6474609375 34.703125 Q 68.1943359375 34.15625 67.3974609375 34.15625 z M 69.7412109375 30.4375 L 69.7412109375 31.515625 Q 69.2880859375 31.3125 68.8349609375 31.203125 Q 68.3818359375 31.09375 67.9443359375 31.09375 Q 66.7724609375 31.09375 66.1474609375 31.890625 Q 65.5380859375 32.671875 65.4443359375 34.265625 Q 65.7880859375 33.765625 66.3037109375 33.5 Q 66.8349609375 33.21875 67.4599609375 33.21875 Q 68.7724609375 33.21875 69.5380859375 34.015625 Q 70.3037109375 34.8125 70.3037109375 36.1875 Q 70.3037109375 37.546875 69.5068359375 38.359375 Q 68.7099609375 39.171875 67.3974609375 39.171875 Q 65.8662109375 39.171875 65.0693359375 38.015625 Q 64.2724609375 36.84375 64.2724609375 34.640625 Q 64.2724609375 32.5625 65.2568359375 31.328125 Q 66.2412109375 30.09375 67.8974609375 30.09375 Q 68.3349609375 30.09375 68.7880859375 30.1875 Q 69.2412109375 30.265625 69.7412109375 30.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
<path d="M 211.6416473388672 167.66152954101562 L 193.5975799560547 178.8155517578125 L 204.75160217285156 196.85960388183594 L 222.795654296875 185.70558166503906 L 211.6416473388672 167.66152954101562"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
<path d="M 211.6416473388672 167.66152954101562 L 193.5975799560547 178.8155517578125 L 204.75160217285156 196.85960388183594 L 222.795654296875 185.70558166503906 L 211.6416473388672 167.66152954101562"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.66669502231808 225.13443114482905 L 405 48.136155148760366"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 211.64164002930823 167.6615326346497 L 247.16878191589944 225.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 290.818181818182 118.7181818181819 L 290.818181818182 225.13443114482905"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 258.734375 210.921875 L 258.734375 212.171875 Q 258.125 211.609375 257.453125 211.34375 Q 256.78125 211.0625 256.015625 211.0625 Q 254.515625 211.0625 253.71875 211.984375 Q 252.921875 212.90625 252.921875 214.640625 Q 252.921875 216.359375 253.71875 217.28125 Q 254.515625 218.203125 256.015625 218.203125 Q 256.78125 218.203125 257.453125 217.921875 Q 258.125 217.640625 258.734375 217.09375 L 258.734375 218.328125 Q 258.109375 218.75 257.40625 218.96875 Q 256.71875 219.171875 255.953125 219.171875 Q 253.953125 219.171875 252.8125 217.953125 Q 251.671875 216.734375 251.671875 214.640625 Q 251.671875 212.53125 252.8125 211.3125 Q 253.953125 210.09375 255.953125 210.09375 Q 256.734375 210.09375 257.421875 210.3125 Q 258.125 210.515625 258.734375 210.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 260.61328125 223.171875 L 262.23828125 223.171875 L 262.23828125 217.609375 L 260.47265625 217.953125 L 260.47265625 217.0625 L 262.22265625 216.703125 L 263.20703125 216.703125 L 263.20703125 223.171875 L 264.81640625 223.171875 L 264.81640625 224 L 260.61328125 224 L 260.61328125 223.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 294 119 C 294 120.65685424949238 292.65685424949237 122 291 122 C 289.34314575050763 122 288 120.65685424949238 288 119 C 288 117.34314575050762 289.34314575050763 116 291 116 C 292.65685424949237 116 294 117.34314575050762 294 119 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 294 119 C 294 120.65685424949238 292.65685424949237 122 291 122 C 289.34314575050763 122 288 120.65685424949238 288 119 C 288 117.34314575050762 289.34314575050763 116 291 116 C 292.65685424949237 116 294 117.34314575050762 294 119 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 297.359375 105.21875 L 297.359375 108.515625 L 298.84375 108.515625 Q 299.671875 108.515625 300.125 108.09375 Q 300.578125 107.65625 300.578125 106.859375 Q 300.578125 106.078125 300.125 105.65625 Q 299.671875 105.21875 298.84375 105.21875 L 297.359375 105.21875 z M 296.171875 104.25 L 298.84375 104.25 Q 300.328125 104.25 301.078125 104.921875 Q 301.828125 105.578125 301.828125 106.859375 Q 301.828125 108.15625 301.078125 108.828125 Q 300.328125 109.484375 298.84375 109.484375 L 297.359375 109.484375 L 297.359375 113 L 296.171875 113 L 296.171875 104.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 130.734375 210.921875 L 130.734375 212.171875 Q 130.125 211.609375 129.453125 211.34375 Q 128.78125 211.0625 128.015625 211.0625 Q 126.515625 211.0625 125.71875 211.984375 Q 124.921875 212.90625 124.921875 214.640625 Q 124.921875 216.359375 125.71875 217.28125 Q 126.515625 218.203125 128.015625 218.203125 Q 128.78125 218.203125 129.453125 217.921875 Q 130.125 217.640625 130.734375 217.09375 L 130.734375 218.328125 Q 130.109375 218.75 129.40625 218.96875 Q 128.71875 219.171875 127.953125 219.171875 Q 125.953125 219.171875 124.8125 217.953125 Q 123.671875 216.734375 123.671875 214.640625 Q 123.671875 212.53125 124.8125 211.3125 Q 125.953125 210.09375 127.953125 210.09375 Q 128.734375 210.09375 129.421875 210.3125 Q 130.125 210.515625 130.734375 210.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 135.09765625 216.40625 L 135.09765625 217.15625 L 134.23828125 217.15625 Q 133.75390625 217.15625 133.56640625 217.359375 Q 133.37890625 217.546875 133.37890625 218.046875 L 133.37890625 218.53125 L 134.84765625 218.53125 L 134.84765625 219.234375 L 133.37890625 219.234375 L 133.37890625 224 L 132.47265625 224 L 132.47265625 219.234375 L 131.61328125 219.234375 L 131.61328125 218.53125 L 132.47265625 218.53125 L 132.47265625 218.15625 Q 132.47265625 217.234375 132.89453125 216.828125 Q 133.31640625 216.40625 134.23828125 216.40625 L 135.09765625 216.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 380 66 C 380 67.65685424949238 378.65685424949237 69 377 69 C 375.34314575050763 69 374 67.65685424949238 374 66 C 374 64.34314575050762 375.34314575050763 63 377 63 C 378.65685424949237 63 380 64.34314575050762 380 66 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 380 66 C 380 67.65685424949238 378.65685424949237 69 377 69 C 375.34314575050763 69 374 67.65685424949238 374 66 C 374 64.34314575050762 375.34314575050763 63 377 63 C 378.65685424949237 63 380 64.34314575050762 380 66 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 383.359375 52.21875 L 383.359375 55.515625 L 384.84375 55.515625 Q 385.671875 55.515625 386.125 55.09375 Q 386.578125 54.65625 386.578125 53.859375 Q 386.578125 53.078125 386.125 52.65625 Q 385.671875 52.21875 384.84375 52.21875 L 383.359375 52.21875 z M 382.171875 51.25 L 384.84375 51.25 Q 386.328125 51.25 387.078125 51.921875 Q 387.828125 52.578125 387.828125 53.859375 Q 387.828125 55.15625 387.078125 55.828125 Q 386.328125 56.484375 384.84375 56.484375 L 383.359375 56.484375 L 383.359375 60 L 382.171875 60 L 382.171875 51.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 389.470703125 64.171875 L 391.095703125 64.171875 L 391.095703125 58.609375 L 389.330078125 58.953125 L 389.330078125 58.0625 L 391.080078125 57.703125 L 392.064453125 57.703125 L 392.064453125 64.171875 L 393.673828125 64.171875 L 393.673828125 65 L 389.470703125 65 L 389.470703125 64.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 215 168 C 215 169.65685424949237 213.65685424949237 171 212 171 C 210.34314575050763 171 209 169.65685424949237 209 168 C 209 166.34314575050763 210.34314575050763 165 212 165 C 213.65685424949237 165 215 166.34314575050763 215 168 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 215 168 C 215 169.65685424949237 213.65685424949237 171 212 171 C 210.34314575050763 171 209 169.65685424949237 209 168 C 209 166.34314575050763 210.34314575050763 165 212 165 C 213.65685424949237 165 215 166.34314575050763 215 168 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 217.171875 153.25 L 218.359375 153.25 L 218.359375 156.84375 L 222.65625 156.84375 L 222.65625 153.25 L 223.84375 153.25 L 223.84375 162 L 222.65625 162 L 222.65625 157.828125 L 218.359375 157.828125 L 218.359375 162 L 217.171875 162 L 217.171875 153.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 294 225 C 294 226.65685424949237 292.65685424949237 228 291 228 C 289.34314575050763 228 288 226.65685424949237 288 225 C 288 223.34314575050763 289.34314575050763 222 291 222 C 292.65685424949237 222 294 223.34314575050763 294 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 294 225 C 294 226.65685424949237 292.65685424949237 228 291 228 C 289.34314575050763 228 288 226.65685424949237 288 225 C 288 223.34314575050763 289.34314575050763 222 291 222 C 292.65685424949237 222 294 223.34314575050763 294 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 295.75 210.25 L 297.03125 210.25 L 299.203125 213.5 L 301.390625 210.25 L 302.65625 210.25 L 299.84375 214.453125 L 302.84375 219 L 301.578125 219 L 299.109375 215.28125 L 296.640625 219 L 295.359375 219 L 298.484375 214.328125 L 295.75 210.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906831, 0, 0, 0.8823656448906831, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 305.189453125 217.515625 L 305.189453125 220.265625 L 306.423828125 220.265625 Q 307.111328125 220.265625 307.486328125 219.90625 Q 307.876953125 219.546875 307.876953125 218.890625 Q 307.876953125 218.234375 307.486328125 217.875 Q 307.111328125 217.515625 306.423828125 217.515625 L 305.189453125 217.515625 z M 304.205078125 216.703125 L 306.423828125 216.703125 Q 307.658203125 216.703125 308.283203125 217.265625 Q 308.908203125 217.8125 308.908203125 218.890625 Q 308.908203125 219.96875 308.283203125 220.515625 Q 307.658203125 221.0625 306.423828125 221.0625 L 305.189453125 221.0625 L 305.189453125 224 L 304.205078125 224 L 304.205078125 216.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -0,0 +1,328 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="312px"
height="279px"
viewBox="0 0 312 279"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Wednesday, December 27, 2017 9:52:32 AM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 354 0 L 354 317 L 0 317 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 45.484375 235.859375 L 48.125 235.859375 L 48.125 236.65625 L 45.484375 236.65625 L 45.484375 235.859375 z M 51.7802734375 232.359375 Q 51.0302734375 232.359375 50.6396484375 233.109375 Q 50.2646484375 233.859375 50.2646484375 235.359375 Q 50.2646484375 236.859375 50.6396484375 237.609375 Q 51.0302734375 238.359375 51.7802734375 238.359375 Q 52.5615234375 238.359375 52.9365234375 237.609375 Q 53.3271484375 236.859375 53.3271484375 235.359375 Q 53.3271484375 233.859375 52.9365234375 233.109375 Q 52.5615234375 232.359375 51.7802734375 232.359375 z M 51.7802734375 231.578125 Q 53.0146484375 231.578125 53.6552734375 232.546875 Q 54.3115234375 233.515625 54.3115234375 235.359375 Q 54.3115234375 237.203125 53.6552734375 238.171875 Q 53.0146484375 239.140625 51.7802734375 239.140625 Q 50.5615234375 239.140625 49.9052734375 238.171875 Q 49.2646484375 237.203125 49.2646484375 235.359375 Q 49.2646484375 233.515625 49.9052734375 232.546875 Q 50.5615234375 231.578125 51.7802734375 231.578125 z M 56.033203125 237.765625 L 57.064453125 237.765625 L 57.064453125 239 L 56.033203125 239 L 56.033203125 237.765625 z M 59.2275390625 231.703125 L 63.1025390625 231.703125 L 63.1025390625 232.546875 L 60.1337890625 232.546875 L 60.1337890625 234.328125 Q 60.3525390625 234.25 60.5556640625 234.21875 Q 60.7744140625 234.1875 60.9931640625 234.1875 Q 62.2119140625 234.1875 62.9150390625 234.859375 Q 63.6337890625 235.515625 63.6337890625 236.65625 Q 63.6337890625 237.84375 62.8994140625 238.5 Q 62.1806640625 239.140625 60.8369140625 239.140625 Q 60.3837890625 239.140625 59.8994140625 239.0625 Q 59.4306640625 238.984375 58.9150390625 238.828125 L 58.9150390625 237.84375 Q 59.3681640625 238.078125 59.8369140625 238.203125 Q 60.3056640625 238.3125 60.8212890625 238.3125 Q 61.6650390625 238.3125 62.1494140625 237.875 Q 62.6494140625 237.421875 62.6494140625 236.65625 Q 62.6494140625 235.90625 62.1494140625 235.46875 Q 61.6650390625 235.015625 60.8212890625 235.015625 Q 60.4306640625 235.015625 60.0244140625 235.109375 Q 59.6337890625 235.1875 59.2275390625 235.375 L 59.2275390625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 54.41565157552735 225.13443114482908 L 54.41565157552735 229.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 127.171875 232.359375 Q 126.421875 232.359375 126.03125 233.109375 Q 125.65625 233.859375 125.65625 235.359375 Q 125.65625 236.859375 126.03125 237.609375 Q 126.421875 238.359375 127.171875 238.359375 Q 127.953125 238.359375 128.328125 237.609375 Q 128.71875 236.859375 128.71875 235.359375 Q 128.71875 233.859375 128.328125 233.109375 Q 127.953125 232.359375 127.171875 232.359375 z M 127.171875 231.578125 Q 128.40625 231.578125 129.046875 232.546875 Q 129.703125 233.515625 129.703125 235.359375 Q 129.703125 237.203125 129.046875 238.171875 Q 128.40625 239.140625 127.171875 239.140625 Q 125.953125 239.140625 125.296875 238.171875 Q 124.65625 237.203125 124.65625 235.359375 Q 124.65625 233.515625 125.296875 232.546875 Q 125.953125 231.578125 127.171875 231.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.66669502231811 225.13443114482908 L 118.66669502231811 229.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 178.171875 232.359375 Q 177.421875 232.359375 177.03125 233.109375 Q 176.65625 233.859375 176.65625 235.359375 Q 176.65625 236.859375 177.03125 237.609375 Q 177.421875 238.359375 178.171875 238.359375 Q 178.953125 238.359375 179.328125 237.609375 Q 179.71875 236.859375 179.71875 235.359375 Q 179.71875 233.859375 179.328125 233.109375 Q 178.953125 232.359375 178.171875 232.359375 z M 178.171875 231.578125 Q 179.40625 231.578125 180.046875 232.546875 Q 180.703125 233.515625 180.703125 235.359375 Q 180.703125 237.203125 180.046875 238.171875 Q 179.40625 239.140625 178.171875 239.140625 Q 176.953125 239.140625 176.296875 238.171875 Q 175.65625 237.203125 175.65625 235.359375 Q 175.65625 233.515625 176.296875 232.546875 Q 176.953125 231.578125 178.171875 231.578125 z M 182.4248046875 237.765625 L 183.4560546875 237.765625 L 183.4560546875 239 L 182.4248046875 239 L 182.4248046875 237.765625 z M 185.619140625 231.703125 L 189.494140625 231.703125 L 189.494140625 232.546875 L 186.525390625 232.546875 L 186.525390625 234.328125 Q 186.744140625 234.25 186.947265625 234.21875 Q 187.166015625 234.1875 187.384765625 234.1875 Q 188.603515625 234.1875 189.306640625 234.859375 Q 190.025390625 235.515625 190.025390625 236.65625 Q 190.025390625 237.84375 189.291015625 238.5 Q 188.572265625 239.140625 187.228515625 239.140625 Q 186.775390625 239.140625 186.291015625 239.0625 Q 185.822265625 238.984375 185.306640625 238.828125 L 185.306640625 237.84375 Q 185.759765625 238.078125 186.228515625 238.203125 Q 186.697265625 238.3125 187.212890625 238.3125 Q 188.056640625 238.3125 188.541015625 237.875 Q 189.041015625 237.421875 189.041015625 236.65625 Q 189.041015625 235.90625 188.541015625 235.46875 Q 188.056640625 235.015625 187.212890625 235.015625 Q 186.822265625 235.015625 186.416015625 235.109375 Q 186.025390625 235.1875 185.619140625 235.375 L 185.619140625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 182.91773846910888 225.13443114482908 L 182.91773846910888 229.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 245.234375 238.171875 L 246.859375 238.171875 L 246.859375 232.609375 L 245.09375 232.953125 L 245.09375 232.0625 L 246.84375 231.703125 L 247.828125 231.703125 L 247.828125 238.171875 L 249.4375 238.171875 L 249.4375 239 L 245.234375 239 L 245.234375 238.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 247.16878191589964 225.13443114482908 L 247.16878191589964 229.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 305.234375 238.171875 L 306.859375 238.171875 L 306.859375 232.609375 L 305.09375 232.953125 L 305.09375 232.0625 L 306.84375 231.703125 L 307.828125 231.703125 L 307.828125 238.171875 L 309.4375 238.171875 L 309.4375 239 L 305.234375 239 L 305.234375 238.171875 z M 311.4248046875 237.765625 L 312.4560546875 237.765625 L 312.4560546875 239 L 311.4248046875 239 L 311.4248046875 237.765625 z M 314.619140625 231.703125 L 318.494140625 231.703125 L 318.494140625 232.546875 L 315.525390625 232.546875 L 315.525390625 234.328125 Q 315.744140625 234.25 315.947265625 234.21875 Q 316.166015625 234.1875 316.384765625 234.1875 Q 317.603515625 234.1875 318.306640625 234.859375 Q 319.025390625 235.515625 319.025390625 236.65625 Q 319.025390625 237.84375 318.291015625 238.5 Q 317.572265625 239.140625 316.228515625 239.140625 Q 315.775390625 239.140625 315.291015625 239.0625 Q 314.822265625 238.984375 314.306640625 238.828125 L 314.306640625 237.84375 Q 314.759765625 238.078125 315.228515625 238.203125 Q 315.697265625 238.3125 316.212890625 238.3125 Q 317.056640625 238.3125 317.541015625 237.875 Q 318.041015625 237.421875 318.041015625 236.65625 Q 318.041015625 235.90625 317.541015625 235.46875 Q 317.056640625 235.015625 316.212890625 235.015625 Q 315.822265625 235.015625 315.416015625 235.109375 Q 315.025390625 235.1875 314.619140625 235.375 L 314.619140625 231.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 311.4198253626904 225.13443114482908 L 311.4198253626904 229.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 225.13443114482908 L 352 225.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 353 225.63443114482908 L 350 222.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 353 224.63443114482908 L 350 228.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 93.484375 289.859375 L 96.125 289.859375 L 96.125 290.65625 L 93.484375 290.65625 L 93.484375 289.859375 z M 99.7802734375 286.359375 Q 99.0302734375 286.359375 98.6396484375 287.109375 Q 98.2646484375 287.859375 98.2646484375 289.359375 Q 98.2646484375 290.859375 98.6396484375 291.609375 Q 99.0302734375 292.359375 99.7802734375 292.359375 Q 100.5615234375 292.359375 100.9365234375 291.609375 Q 101.3271484375 290.859375 101.3271484375 289.359375 Q 101.3271484375 287.859375 100.9365234375 287.109375 Q 100.5615234375 286.359375 99.7802734375 286.359375 z M 99.7802734375 285.578125 Q 101.0146484375 285.578125 101.6552734375 286.546875 Q 102.3115234375 287.515625 102.3115234375 289.359375 Q 102.3115234375 291.203125 101.6552734375 292.171875 Q 101.0146484375 293.140625 99.7802734375 293.140625 Q 98.5615234375 293.140625 97.9052734375 292.171875 Q 97.2646484375 291.203125 97.2646484375 289.359375 Q 97.2646484375 287.515625 97.9052734375 286.546875 Q 98.5615234375 285.578125 99.7802734375 285.578125 z M 104.033203125 291.765625 L 105.064453125 291.765625 L 105.064453125 293 L 104.033203125 293 L 104.033203125 291.765625 z M 107.2275390625 285.703125 L 111.1025390625 285.703125 L 111.1025390625 286.546875 L 108.1337890625 286.546875 L 108.1337890625 288.328125 Q 108.3525390625 288.25 108.5556640625 288.21875 Q 108.7744140625 288.1875 108.9931640625 288.1875 Q 110.2119140625 288.1875 110.9150390625 288.859375 Q 111.6337890625 289.515625 111.6337890625 290.65625 Q 111.6337890625 291.84375 110.8994140625 292.5 Q 110.1806640625 293.140625 108.8369140625 293.140625 Q 108.3837890625 293.140625 107.8994140625 293.0625 Q 107.4306640625 292.984375 106.9150390625 292.828125 L 106.9150390625 291.84375 Q 107.3681640625 292.078125 107.8369140625 292.203125 Q 108.3056640625 292.3125 108.8212890625 292.3125 Q 109.6650390625 292.3125 110.1494140625 291.875 Q 110.6494140625 291.421875 110.6494140625 290.65625 Q 110.6494140625 289.90625 110.1494140625 289.46875 Q 109.6650390625 289.015625 108.8212890625 289.015625 Q 108.4306640625 289.015625 108.0244140625 289.109375 Q 107.6337890625 289.1875 107.2275390625 289.375 L 107.2275390625 285.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231811 289.3854745916199 L 118.66669502231811 289.3854745916199"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 109.171875 216.359375 Q 108.421875 216.359375 108.03125 217.109375 Q 107.65625 217.859375 107.65625 219.359375 Q 107.65625 220.859375 108.03125 221.609375 Q 108.421875 222.359375 109.171875 222.359375 Q 109.953125 222.359375 110.328125 221.609375 Q 110.71875 220.859375 110.71875 219.359375 Q 110.71875 217.859375 110.328125 217.109375 Q 109.953125 216.359375 109.171875 216.359375 z M 109.171875 215.578125 Q 110.40625 215.578125 111.046875 216.546875 Q 111.703125 217.515625 111.703125 219.359375 Q 111.703125 221.203125 111.046875 222.171875 Q 110.40625 223.140625 109.171875 223.140625 Q 107.953125 223.140625 107.296875 222.171875 Q 106.65625 221.203125 106.65625 219.359375 Q 106.65625 217.515625 107.296875 216.546875 Q 107.953125 215.578125 109.171875 215.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231811 225.13443114482908 L 118.66669502231811 225.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 99.171875 157.359375 Q 98.421875 157.359375 98.03125 158.109375 Q 97.65625 158.859375 97.65625 160.359375 Q 97.65625 161.859375 98.03125 162.609375 Q 98.421875 163.359375 99.171875 163.359375 Q 99.953125 163.359375 100.328125 162.609375 Q 100.71875 161.859375 100.71875 160.359375 Q 100.71875 158.859375 100.328125 158.109375 Q 99.953125 157.359375 99.171875 157.359375 z M 99.171875 156.578125 Q 100.40625 156.578125 101.046875 157.546875 Q 101.703125 158.515625 101.703125 160.359375 Q 101.703125 162.203125 101.046875 163.171875 Q 100.40625 164.140625 99.171875 164.140625 Q 97.953125 164.140625 97.296875 163.171875 Q 96.65625 162.203125 96.65625 160.359375 Q 96.65625 158.515625 97.296875 157.546875 Q 97.953125 156.578125 99.171875 156.578125 z M 103.4248046875 162.765625 L 104.4560546875 162.765625 L 104.4560546875 164 L 103.4248046875 164 L 103.4248046875 162.765625 z M 106.619140625 156.703125 L 110.494140625 156.703125 L 110.494140625 157.546875 L 107.525390625 157.546875 L 107.525390625 159.328125 Q 107.744140625 159.25 107.947265625 159.21875 Q 108.166015625 159.1875 108.384765625 159.1875 Q 109.603515625 159.1875 110.306640625 159.859375 Q 111.025390625 160.515625 111.025390625 161.65625 Q 111.025390625 162.84375 110.291015625 163.5 Q 109.572265625 164.140625 108.228515625 164.140625 Q 107.775390625 164.140625 107.291015625 164.0625 Q 106.822265625 163.984375 106.306640625 163.828125 L 106.306640625 162.84375 Q 106.759765625 163.078125 107.228515625 163.203125 Q 107.697265625 163.3125 108.212890625 163.3125 Q 109.056640625 163.3125 109.541015625 162.875 Q 110.041015625 162.421875 110.041015625 161.65625 Q 110.041015625 160.90625 109.541015625 160.46875 Q 109.056640625 160.015625 108.212890625 160.015625 Q 107.822265625 160.015625 107.416015625 160.109375 Q 107.025390625 160.1875 106.619140625 160.375 L 106.619140625 156.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231811 160.88338769803823 L 118.66669502231811 160.88338769803823"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 107.234375 99.171875 L 108.859375 99.171875 L 108.859375 93.609375 L 107.09375 93.953125 L 107.09375 93.0625 L 108.84375 92.703125 L 109.828125 92.703125 L 109.828125 99.171875 L 111.4375 99.171875 L 111.4375 100 L 107.234375 100 L 107.234375 99.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231811 96.63234425124739 L 118.66669502231811 96.63234425124739"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 97.234375 35.171875 L 98.859375 35.171875 L 98.859375 29.609375 L 97.09375 29.953125 L 97.09375 29.0625 L 98.84375 28.703125 L 99.828125 28.703125 L 99.828125 35.171875 L 101.4375 35.171875 L 101.4375 36 L 97.234375 36 L 97.234375 35.171875 z M 103.4248046875 34.765625 L 104.4560546875 34.765625 L 104.4560546875 36 L 103.4248046875 36 L 103.4248046875 34.765625 z M 106.619140625 28.703125 L 110.494140625 28.703125 L 110.494140625 29.546875 L 107.525390625 29.546875 L 107.525390625 31.328125 Q 107.744140625 31.25 107.947265625 31.21875 Q 108.166015625 31.1875 108.384765625 31.1875 Q 109.603515625 31.1875 110.306640625 31.859375 Q 111.025390625 32.515625 111.025390625 33.65625 Q 111.025390625 34.84375 110.291015625 35.5 Q 109.572265625 36.140625 108.228515625 36.140625 Q 107.775390625 36.140625 107.291015625 36.0625 Q 106.822265625 35.984375 106.306640625 35.828125 L 106.306640625 34.84375 Q 106.759765625 35.078125 107.228515625 35.203125 Q 107.697265625 35.3125 108.212890625 35.3125 Q 109.056640625 35.3125 109.541015625 34.875 Q 110.041015625 34.421875 110.041015625 33.65625 Q 110.041015625 32.90625 109.541015625 32.46875 Q 109.056640625 32.015625 108.212890625 32.015625 Q 107.822265625 32.015625 107.416015625 32.109375 Q 107.025390625 32.1875 106.619140625 32.375 L 106.619140625 28.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 114.66669502231811 32.381300804456544 L 118.66669502231811 32.381300804456544"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.66669502231811 2 L 118.66669502231811 317"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 119.16669502231811 1 L 115.66669502231811 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 118.16669502231811 1 L 121.66669502231811 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 452.77212094563004 225.13443114482908 C 452.77212094563004 338.68601980523965 360.7203705763101 430.7377701745598 247.16878191589961 430.7377701745598 C 133.61719325548916 430.7377701745598 41.565442886169166 338.68601980523965 41.565442886169166 225.13443114482908 C 41.565442886169166 111.58284248441846 133.61719325548916 19.531092115098375 247.16878191589961 19.531092115098375 C 360.7203705763101 19.531092115098375 452.77212094563004 111.58284248441846 452.77212094563004 225.13443114482908 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 68 22 C 68 23.65685424949238 66.65685424949238 25 65 25 C 63.34314575050762 25 62 23.65685424949238 62 22 C 62 20.34314575050762 63.34314575050762 19 65 19 C 66.65685424949238 19 68 20.34314575050762 68 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 27.9375 33.4375 Q 27.75 33.34375 27.53125 33.296875 Q 27.328125 33.234375 27.0625 33.234375 Q 26.15625 33.234375 25.65625 33.828125 Q 25.171875 34.421875 25.171875 35.546875 L 25.171875 39 L 24.09375 39 L 24.09375 32.4375 L 25.171875 32.4375 L 25.171875 33.453125 Q 25.515625 32.859375 26.0625 32.578125 Q 26.609375 32.28125 27.390625 32.28125 Q 27.5 32.28125 27.625 32.296875 Q 27.765625 32.3125 27.921875 32.34375 L 27.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 29.16796875 43.171875 L 30.79296875 43.171875 L 30.79296875 37.609375 L 29.02734375 37.953125 L 29.02734375 37.0625 L 30.77734375 36.703125 L 31.76171875 36.703125 L 31.76171875 43.171875 L 33.37109375 43.171875 L 33.37109375 44 L 29.16796875 44 L 29.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 39.3759765625 33.546875 L 46.8916015625 33.546875 L 46.8916015625 34.53125 L 39.3759765625 34.53125 L 39.3759765625 33.546875 z M 39.3759765625 35.9375 L 46.8916015625 35.9375 L 46.8916015625 36.9375 L 39.3759765625 36.9375 L 39.3759765625 35.9375 z M 53.4638671875 38 L 55.4013671875 38 L 55.4013671875 31.328125 L 53.2919921875 31.75 L 53.2919921875 30.671875 L 55.3857421875 30.25 L 56.5732421875 30.25 L 56.5732421875 38 L 58.5107421875 38 L 58.5107421875 39 L 53.4638671875 39 L 53.4638671875 38 z M 60.8955078125 37.515625 L 62.1298828125 37.515625 L 62.1298828125 39 L 60.8955078125 39 L 60.8955078125 37.515625 z M 67.3974609375 34.15625 Q 66.6005859375 34.15625 66.1318359375 34.703125 Q 65.6630859375 35.25 65.6630859375 36.1875 Q 65.6630859375 37.140625 66.1318359375 37.6875 Q 66.6005859375 38.234375 67.3974609375 38.234375 Q 68.1943359375 38.234375 68.6474609375 37.6875 Q 69.1162109375 37.140625 69.1162109375 36.1875 Q 69.1162109375 35.25 68.6474609375 34.703125 Q 68.1943359375 34.15625 67.3974609375 34.15625 z M 69.7412109375 30.4375 L 69.7412109375 31.515625 Q 69.2880859375 31.3125 68.8349609375 31.203125 Q 68.3818359375 31.09375 67.9443359375 31.09375 Q 66.7724609375 31.09375 66.1474609375 31.890625 Q 65.5380859375 32.671875 65.4443359375 34.265625 Q 65.7880859375 33.765625 66.3037109375 33.5 Q 66.8349609375 33.21875 67.4599609375 33.21875 Q 68.7724609375 33.21875 69.5380859375 34.015625 Q 70.3037109375 34.8125 70.3037109375 36.1875 Q 70.3037109375 37.546875 69.5068359375 38.359375 Q 68.7099609375 39.171875 67.3974609375 39.171875 Q 65.8662109375 39.171875 65.0693359375 38.015625 Q 64.2724609375 36.84375 64.2724609375 34.640625 Q 64.2724609375 32.5625 65.2568359375 31.328125 Q 66.2412109375 30.09375 67.8974609375 30.09375 Q 68.3349609375 30.09375 68.7880859375 30.1875 Q 69.2412109375 30.265625 69.7412109375 30.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
<path d="M 154.53904724121094 282.778564453125 L 172.54957580566406 271.57049560546875 L 161.34149169921875 253.55996704101562 L 143.3309783935547 264.7680358886719 L 154.53904724121094 282.778564453125"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
<path d="M 154.53904724121094 282.778564453125 L 172.54957580566406 271.57049560546875 L 161.34149169921875 253.55996704101562 L 143.3309783935547 264.7680358886719 L 154.53904724121094 282.778564453125"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 178.9468221607791 322 L -5 26.4114799761894"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 154.53904829384888 282.7785681228254 L 247.16878191589961 225.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 80 163 L 80 225.13443114482908"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 250 225 C 250 226.65685424949237 248.65685424949237 228 247 228 C 245.34314575050763 228 244 226.65685424949237 244 225 C 244 223.34314575050763 245.34314575050763 222 247 222 C 248.65685424949237 222 250 223.34314575050763 250 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 258.734375 210.921875 L 258.734375 212.171875 Q 258.125 211.609375 257.453125 211.34375 Q 256.78125 211.0625 256.015625 211.0625 Q 254.515625 211.0625 253.71875 211.984375 Q 252.921875 212.90625 252.921875 214.640625 Q 252.921875 216.359375 253.71875 217.28125 Q 254.515625 218.203125 256.015625 218.203125 Q 256.78125 218.203125 257.453125 217.921875 Q 258.125 217.640625 258.734375 217.09375 L 258.734375 218.328125 Q 258.109375 218.75 257.40625 218.96875 Q 256.71875 219.171875 255.953125 219.171875 Q 253.953125 219.171875 252.8125 217.953125 Q 251.671875 216.734375 251.671875 214.640625 Q 251.671875 212.53125 252.8125 211.3125 Q 253.953125 210.09375 255.953125 210.09375 Q 256.734375 210.09375 257.421875 210.3125 Q 258.125 210.515625 258.734375 210.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 260.61328125 223.171875 L 262.23828125 223.171875 L 262.23828125 217.609375 L 260.47265625 217.953125 L 260.47265625 217.0625 L 262.22265625 216.703125 L 263.20703125 216.703125 L 263.20703125 223.171875 L 264.81640625 223.171875 L 264.81640625 224 L 260.61328125 224 L 260.61328125 223.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 83 163 C 83 164.65685424949237 81.65685424949238 166 80 166 C 78.34314575050762 166 77 164.65685424949237 77 163 C 77 161.34314575050763 78.34314575050762 160 80 160 C 81.65685424949238 160 83 161.34314575050763 83 163 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 83 163 C 83 164.65685424949237 81.65685424949238 166 80 166 C 78.34314575050762 166 77 164.65685424949237 77 163 C 77 161.34314575050763 78.34314575050762 160 80 160 C 81.65685424949238 160 83 161.34314575050763 83 163 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 86.359375 149.21875 L 86.359375 152.515625 L 87.84375 152.515625 Q 88.671875 152.515625 89.125 152.09375 Q 89.578125 151.65625 89.578125 150.859375 Q 89.578125 150.078125 89.125 149.65625 Q 88.671875 149.21875 87.84375 149.21875 L 86.359375 149.21875 z M 85.171875 148.25 L 87.84375 148.25 Q 89.328125 148.25 90.078125 148.921875 Q 90.828125 149.578125 90.828125 150.859375 Q 90.828125 152.15625 90.078125 152.828125 Q 89.328125 153.484375 87.84375 153.484375 L 86.359375 153.484375 L 86.359375 157 L 85.171875 157 L 85.171875 148.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 122 225 C 122 226.65685424949237 120.65685424949238 228 119 228 C 117.34314575050762 228 116 226.65685424949237 116 225 C 116 223.34314575050763 117.34314575050762 222 119 222 C 120.65685424949238 222 122 223.34314575050763 122 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 130.734375 210.921875 L 130.734375 212.171875 Q 130.125 211.609375 129.453125 211.34375 Q 128.78125 211.0625 128.015625 211.0625 Q 126.515625 211.0625 125.71875 211.984375 Q 124.921875 212.90625 124.921875 214.640625 Q 124.921875 216.359375 125.71875 217.28125 Q 126.515625 218.203125 128.015625 218.203125 Q 128.78125 218.203125 129.453125 217.921875 Q 130.125 217.640625 130.734375 217.09375 L 130.734375 218.328125 Q 130.109375 218.75 129.40625 218.96875 Q 128.71875 219.171875 127.953125 219.171875 Q 125.953125 219.171875 124.8125 217.953125 Q 123.671875 216.734375 123.671875 214.640625 Q 123.671875 212.53125 124.8125 211.3125 Q 125.953125 210.09375 127.953125 210.09375 Q 128.734375 210.09375 129.421875 210.3125 Q 130.125 210.515625 130.734375 210.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 135.09765625 216.40625 L 135.09765625 217.15625 L 134.23828125 217.15625 Q 133.75390625 217.15625 133.56640625 217.359375 Q 133.37890625 217.546875 133.37890625 218.046875 L 133.37890625 218.53125 L 134.84765625 218.53125 L 134.84765625 219.234375 L 133.37890625 219.234375 L 133.37890625 224 L 132.47265625 224 L 132.47265625 219.234375 L 131.61328125 219.234375 L 131.61328125 218.53125 L 132.47265625 218.53125 L 132.47265625 218.15625 Q 132.47265625 217.234375 132.89453125 216.828125 Q 133.31640625 216.40625 134.23828125 216.40625 L 135.09765625 216.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 65 135 C 65 136.65685424949237 63.65685424949238 138 62 138 C 60.34314575050762 138 59 136.65685424949237 59 135 C 59 133.34314575050763 60.34314575050762 132 62 132 C 63.65685424949238 132 65 133.34314575050763 65 135 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 65 135 C 65 136.65685424949237 63.65685424949238 138 62 138 C 60.34314575050762 138 59 136.65685424949237 59 135 C 59 133.34314575050763 60.34314575050762 132 62 132 C 63.65685424949238 132 65 133.34314575050763 65 135 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 68.359375 121.21875 L 68.359375 124.515625 L 69.84375 124.515625 Q 70.671875 124.515625 71.125 124.09375 Q 71.578125 123.65625 71.578125 122.859375 Q 71.578125 122.078125 71.125 121.65625 Q 70.671875 121.21875 69.84375 121.21875 L 68.359375 121.21875 z M 67.171875 120.25 L 69.84375 120.25 Q 71.328125 120.25 72.078125 120.921875 Q 72.828125 121.578125 72.828125 122.859375 Q 72.828125 124.15625 72.078125 124.828125 Q 71.328125 125.484375 69.84375 125.484375 L 68.359375 125.484375 L 68.359375 129 L 67.171875 129 L 67.171875 120.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 74.470703125 133.171875 L 76.095703125 133.171875 L 76.095703125 127.609375 L 74.330078125 127.953125 L 74.330078125 127.0625 L 76.080078125 126.703125 L 77.064453125 126.703125 L 77.064453125 133.171875 L 78.673828125 133.171875 L 78.673828125 134 L 74.470703125 134 L 74.470703125 133.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 158 283 C 158 284.65685424949237 156.65685424949237 286 155 286 C 153.34314575050763 286 152 284.65685424949237 152 283 C 152 281.34314575050763 153.34314575050763 280 155 280 C 156.65685424949237 280 158 281.34314575050763 158 283 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 158 283 C 158 284.65685424949237 156.65685424949237 286 155 286 C 153.34314575050763 286 152 284.65685424949237 152 283 C 152 281.34314575050763 153.34314575050763 280 155 280 C 156.65685424949237 280 158 281.34314575050763 158 283 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 160.171875 268.25 L 161.359375 268.25 L 161.359375 271.84375 L 165.65625 271.84375 L 165.65625 268.25 L 166.84375 268.25 L 166.84375 277 L 165.65625 277 L 165.65625 272.828125 L 161.359375 272.828125 L 161.359375 277 L 160.171875 277 L 160.171875 268.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 83 225 C 83 226.65685424949237 81.65685424949238 228 80 228 C 78.34314575050762 228 77 226.65685424949237 77 225 C 77 223.34314575050763 78.34314575050762 222 80 222 C 81.65685424949238 222 83 223.34314575050763 83 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 83 225 C 83 226.65685424949237 81.65685424949238 228 80 228 C 78.34314575050762 228 77 226.65685424949237 77 225 C 77 223.34314575050763 78.34314575050762 222 80 222 C 81.65685424949238 222 83 223.34314575050763 83 225 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 84.75 210.25 L 86.03125 210.25 L 88.203125 213.5 L 90.390625 210.25 L 91.65625 210.25 L 88.84375 214.453125 L 91.84375 219 L 90.578125 219 L 88.109375 215.28125 L 85.640625 219 L 84.359375 219 L 87.484375 214.328125 L 84.75 210.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8823656448906823, 0, 0, 0.8823656448906823, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 94.189453125 217.515625 L 94.189453125 220.265625 L 95.423828125 220.265625 Q 96.111328125 220.265625 96.486328125 219.90625 Q 96.876953125 219.546875 96.876953125 218.890625 Q 96.876953125 218.234375 96.486328125 217.875 Q 96.111328125 217.515625 95.423828125 217.515625 L 94.189453125 217.515625 z M 93.205078125 216.703125 L 95.423828125 216.703125 Q 96.658203125 216.703125 97.283203125 217.265625 Q 97.908203125 217.8125 97.908203125 218.890625 Q 97.908203125 219.96875 97.283203125 220.515625 Q 96.658203125 221.0625 95.423828125 221.0625 L 94.189453125 221.0625 L 94.189453125 224 L 93.205078125 224 L 93.205078125 216.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 39 KiB

View File

@ -0,0 +1,338 @@
<?xml version="1.0" standalone="no"?>
<svg
version="1.1"
baseProfile="full"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ev="http://www.w3.org/2001/xml-events"
x="0px"
y="0px"
width="308px"
height="243px"
viewBox="0 0 308 243"
>
<title></title>
<desc>Creator: FreeHEP Graphics2D Driver Producer: geogebra.export.SVGExtensions Revision: 12753 Source: Date: Wednesday, December 27, 2017 4:17:43 PM EST</desc>
<g stroke-linejoin="miter" stroke-dashoffset="0" stroke-dasharray="none" stroke-width="1" stroke-miterlimit="10" stroke-linecap="square">
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#ffffff">
<path d="M 0 0 L 385 0 L 385 303 L 0 303 L 0 0 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 65.171875 205.359375 Q 64.421875 205.359375 64.03125 206.109375 Q 63.65625 206.859375 63.65625 208.359375 Q 63.65625 209.859375 64.03125 210.609375 Q 64.421875 211.359375 65.171875 211.359375 Q 65.953125 211.359375 66.328125 210.609375 Q 66.71875 209.859375 66.71875 208.359375 Q 66.71875 206.859375 66.328125 206.109375 Q 65.953125 205.359375 65.171875 205.359375 z M 65.171875 204.578125 Q 66.40625 204.578125 67.046875 205.546875 Q 67.703125 206.515625 67.703125 208.359375 Q 67.703125 210.203125 67.046875 211.171875 Q 66.40625 212.140625 65.171875 212.140625 Q 63.953125 212.140625 63.296875 211.171875 Q 62.65625 210.203125 62.65625 208.359375 Q 62.65625 206.515625 63.296875 205.546875 Q 63.953125 204.578125 65.171875 204.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.63336452454984 198.05787425931192 L 56.63336452454984 202.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 123.171875 205.359375 Q 122.421875 205.359375 122.03125 206.109375 Q 121.65625 206.859375 121.65625 208.359375 Q 121.65625 209.859375 122.03125 210.609375 Q 122.421875 211.359375 123.171875 211.359375 Q 123.953125 211.359375 124.328125 210.609375 Q 124.71875 209.859375 124.71875 208.359375 Q 124.71875 206.859375 124.328125 206.109375 Q 123.953125 205.359375 123.171875 205.359375 z M 123.171875 204.578125 Q 124.40625 204.578125 125.046875 205.546875 Q 125.703125 206.515625 125.703125 208.359375 Q 125.703125 210.203125 125.046875 211.171875 Q 124.40625 212.140625 123.171875 212.140625 Q 121.953125 212.140625 121.296875 211.171875 Q 120.65625 210.203125 120.65625 208.359375 Q 120.65625 206.515625 121.296875 205.546875 Q 121.953125 204.578125 123.171875 204.578125 z M 127.4248046875 210.765625 L 128.4560546875 210.765625 L 128.4560546875 212 L 127.4248046875 212 L 127.4248046875 210.765625 z M 130.619140625 204.703125 L 134.494140625 204.703125 L 134.494140625 205.546875 L 131.525390625 205.546875 L 131.525390625 207.328125 Q 131.744140625 207.25 131.947265625 207.21875 Q 132.166015625 207.1875 132.384765625 207.1875 Q 133.603515625 207.1875 134.306640625 207.859375 Q 135.025390625 208.515625 135.025390625 209.65625 Q 135.025390625 210.84375 134.291015625 211.5 Q 133.572265625 212.140625 132.228515625 212.140625 Q 131.775390625 212.140625 131.291015625 212.0625 Q 130.822265625 211.984375 130.306640625 211.828125 L 130.306640625 210.84375 Q 130.759765625 211.078125 131.228515625 211.203125 Q 131.697265625 211.3125 132.212890625 211.3125 Q 133.056640625 211.3125 133.541015625 210.875 Q 134.041015625 210.421875 134.041015625 209.65625 Q 134.041015625 208.90625 133.541015625 208.46875 Q 133.056640625 208.015625 132.212890625 208.015625 Q 131.822265625 208.015625 131.416015625 208.109375 Q 131.025390625 208.1875 130.619140625 208.375 L 130.619140625 204.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 127.30951231601955 198.05787425931192 L 127.30951231601955 202.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 196.234375 211.171875 L 197.859375 211.171875 L 197.859375 205.609375 L 196.09375 205.953125 L 196.09375 205.0625 L 197.84375 204.703125 L 198.828125 204.703125 L 198.828125 211.171875 L 200.4375 211.171875 L 200.4375 212 L 196.234375 212 L 196.234375 211.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 197.98566010748925 198.05787425931192 L 197.98566010748925 202.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 262.234375 211.171875 L 263.859375 211.171875 L 263.859375 205.609375 L 262.09375 205.953125 L 262.09375 205.0625 L 263.84375 204.703125 L 264.828125 204.703125 L 264.828125 211.171875 L 266.4375 211.171875 L 266.4375 212 L 262.234375 212 L 262.234375 211.171875 z M 268.4248046875 210.765625 L 269.4560546875 210.765625 L 269.4560546875 212 L 268.4248046875 212 L 268.4248046875 210.765625 z M 271.619140625 204.703125 L 275.494140625 204.703125 L 275.494140625 205.546875 L 272.525390625 205.546875 L 272.525390625 207.328125 Q 272.744140625 207.25 272.947265625 207.21875 Q 273.166015625 207.1875 273.384765625 207.1875 Q 274.603515625 207.1875 275.306640625 207.859375 Q 276.025390625 208.515625 276.025390625 209.65625 Q 276.025390625 210.84375 275.291015625 211.5 Q 274.572265625 212.140625 273.228515625 212.140625 Q 272.775390625 212.140625 272.291015625 212.0625 Q 271.822265625 211.984375 271.306640625 211.828125 L 271.306640625 210.84375 Q 271.759765625 211.078125 272.228515625 211.203125 Q 272.697265625 211.3125 273.212890625 211.3125 Q 274.056640625 211.3125 274.541015625 210.875 Q 275.041015625 210.421875 275.041015625 209.65625 Q 275.041015625 208.90625 274.541015625 208.46875 Q 274.056640625 208.015625 273.212890625 208.015625 Q 272.822265625 208.015625 272.416015625 208.109375 Q 272.025390625 208.1875 271.619140625 208.375 L 271.619140625 204.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 268.66180789895895 198.05787425931192 L 268.66180789895895 202.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 338.921875 211.171875 L 342.359375 211.171875 L 342.359375 212 L 337.734375 212 L 337.734375 211.171875 Q 338.296875 210.59375 339.265625 209.609375 Q 340.234375 208.625 340.484375 208.34375 Q 340.953125 207.8125 341.140625 207.453125 Q 341.328125 207.078125 341.328125 206.71875 Q 341.328125 206.140625 340.921875 205.78125 Q 340.515625 205.40625 339.859375 205.40625 Q 339.390625 205.40625 338.875 205.578125 Q 338.375 205.734375 337.78125 206.0625 L 337.78125 205.0625 Q 338.375 204.828125 338.890625 204.703125 Q 339.40625 204.578125 339.84375 204.578125 Q 340.96875 204.578125 341.640625 205.140625 Q 342.328125 205.703125 342.328125 206.65625 Q 342.328125 207.109375 342.15625 207.515625 Q 341.984375 207.90625 341.546875 208.453125 Q 341.421875 208.59375 340.765625 209.28125 Q 340.109375 209.953125 338.921875 211.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 339.33795569042866 198.05787425931192 L 339.33795569042866 202.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 0 198.05787425931192 L 383 198.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 384 198.55787425931192 L 381 195.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 384 197.55787425931192 L 381 201.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 31.484375 268.859375 L 34.125 268.859375 L 34.125 269.65625 L 31.484375 269.65625 L 31.484375 268.859375 z M 37.7802734375 265.359375 Q 37.0302734375 265.359375 36.6396484375 266.109375 Q 36.2646484375 266.859375 36.2646484375 268.359375 Q 36.2646484375 269.859375 36.6396484375 270.609375 Q 37.0302734375 271.359375 37.7802734375 271.359375 Q 38.5615234375 271.359375 38.9365234375 270.609375 Q 39.3271484375 269.859375 39.3271484375 268.359375 Q 39.3271484375 266.859375 38.9365234375 266.109375 Q 38.5615234375 265.359375 37.7802734375 265.359375 z M 37.7802734375 264.578125 Q 39.0146484375 264.578125 39.6552734375 265.546875 Q 40.3115234375 266.515625 40.3115234375 268.359375 Q 40.3115234375 270.203125 39.6552734375 271.171875 Q 39.0146484375 272.140625 37.7802734375 272.140625 Q 36.5615234375 272.140625 35.9052734375 271.171875 Q 35.2646484375 270.203125 35.2646484375 268.359375 Q 35.2646484375 266.515625 35.9052734375 265.546875 Q 36.5615234375 264.578125 37.7802734375 264.578125 z M 42.033203125 270.765625 L 43.064453125 270.765625 L 43.064453125 272 L 42.033203125 272 L 42.033203125 270.765625 z M 45.2275390625 264.703125 L 49.1025390625 264.703125 L 49.1025390625 265.546875 L 46.1337890625 265.546875 L 46.1337890625 267.328125 Q 46.3525390625 267.25 46.5556640625 267.21875 Q 46.7744140625 267.1875 46.9931640625 267.1875 Q 48.2119140625 267.1875 48.9150390625 267.859375 Q 49.6337890625 268.515625 49.6337890625 269.65625 Q 49.6337890625 270.84375 48.8994140625 271.5 Q 48.1806640625 272.140625 46.8369140625 272.140625 Q 46.3837890625 272.140625 45.8994140625 272.0625 Q 45.4306640625 271.984375 44.9150390625 271.828125 L 44.9150390625 270.84375 Q 45.3681640625 271.078125 45.8369140625 271.203125 Q 46.3056640625 271.3125 46.8212890625 271.3125 Q 47.6650390625 271.3125 48.1494140625 270.875 Q 48.6494140625 270.421875 48.6494140625 269.65625 Q 48.6494140625 268.90625 48.1494140625 268.46875 Q 47.6650390625 268.015625 46.8212890625 268.015625 Q 46.4306640625 268.015625 46.0244140625 268.109375 Q 45.6337890625 268.1875 45.2275390625 268.375 L 45.2275390625 264.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52.63336452454984 268.73402205078196 L 56.63336452454984 268.73402205078196"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 47.171875 189.359375 Q 46.421875 189.359375 46.03125 190.109375 Q 45.65625 190.859375 45.65625 192.359375 Q 45.65625 193.859375 46.03125 194.609375 Q 46.421875 195.359375 47.171875 195.359375 Q 47.953125 195.359375 48.328125 194.609375 Q 48.71875 193.859375 48.71875 192.359375 Q 48.71875 190.859375 48.328125 190.109375 Q 47.953125 189.359375 47.171875 189.359375 z M 47.171875 188.578125 Q 48.40625 188.578125 49.046875 189.546875 Q 49.703125 190.515625 49.703125 192.359375 Q 49.703125 194.203125 49.046875 195.171875 Q 48.40625 196.140625 47.171875 196.140625 Q 45.953125 196.140625 45.296875 195.171875 Q 44.65625 194.203125 44.65625 192.359375 Q 44.65625 190.515625 45.296875 189.546875 Q 45.953125 188.578125 47.171875 188.578125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52.63336452454984 198.05787425931194 L 56.63336452454984 198.05787425931194"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 37.171875 124.359375 Q 36.421875 124.359375 36.03125 125.109375 Q 35.65625 125.859375 35.65625 127.359375 Q 35.65625 128.859375 36.03125 129.609375 Q 36.421875 130.359375 37.171875 130.359375 Q 37.953125 130.359375 38.328125 129.609375 Q 38.71875 128.859375 38.71875 127.359375 Q 38.71875 125.859375 38.328125 125.109375 Q 37.953125 124.359375 37.171875 124.359375 z M 37.171875 123.578125 Q 38.40625 123.578125 39.046875 124.546875 Q 39.703125 125.515625 39.703125 127.359375 Q 39.703125 129.203125 39.046875 130.171875 Q 38.40625 131.140625 37.171875 131.140625 Q 35.953125 131.140625 35.296875 130.171875 Q 34.65625 129.203125 34.65625 127.359375 Q 34.65625 125.515625 35.296875 124.546875 Q 35.953125 123.578125 37.171875 123.578125 z M 41.4248046875 129.765625 L 42.4560546875 129.765625 L 42.4560546875 131 L 41.4248046875 131 L 41.4248046875 129.765625 z M 44.619140625 123.703125 L 48.494140625 123.703125 L 48.494140625 124.546875 L 45.525390625 124.546875 L 45.525390625 126.328125 Q 45.744140625 126.25 45.947265625 126.21875 Q 46.166015625 126.1875 46.384765625 126.1875 Q 47.603515625 126.1875 48.306640625 126.859375 Q 49.025390625 127.515625 49.025390625 128.65625 Q 49.025390625 129.84375 48.291015625 130.5 Q 47.572265625 131.140625 46.228515625 131.140625 Q 45.775390625 131.140625 45.291015625 131.0625 Q 44.822265625 130.984375 44.306640625 130.828125 L 44.306640625 129.84375 Q 44.759765625 130.078125 45.228515625 130.203125 Q 45.697265625 130.3125 46.212890625 130.3125 Q 47.056640625 130.3125 47.541015625 129.875 Q 48.041015625 129.421875 48.041015625 128.65625 Q 48.041015625 127.90625 47.541015625 127.46875 Q 47.056640625 127.015625 46.212890625 127.015625 Q 45.822265625 127.015625 45.416015625 127.109375 Q 45.025390625 127.1875 44.619140625 127.375 L 44.619140625 123.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52.63336452454984 127.38172646784193 L 56.63336452454984 127.38172646784193"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 45.234375 59.171875 L 46.859375 59.171875 L 46.859375 53.609375 L 45.09375 53.953125 L 45.09375 53.0625 L 46.84375 52.703125 L 47.828125 52.703125 L 47.828125 59.171875 L 49.4375 59.171875 L 49.4375 60 L 45.234375 60 L 45.234375 59.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 52.63336452454984 56.705578676371914 L 56.63336452454984 56.705578676371914"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.63336452454984 2 L 56.63336452454984 303"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 57.13336452454984 1 L 53.63336452454984 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linecap="butt" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.13336452454984 1 L 59.63336452454984 4"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g id="misc">
</g><!-- misc -->
<g id="layer0">
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 296.9322670155468 198.05787425931192 C 296.9322670155468 252.70457630213457 252.63236215031168 297.00448116736993 197.98566010748925 297.00448116736993 C 143.33895806466683 297.00448116736993 99.03905319943168 252.70457630213457 99.03905319943168 198.05787425931192 C 99.03905319943168 143.41117221648926 143.33895806466683 99.1112673512539 197.98566010748925 99.1112673512539 C 252.63236215031168 99.1112673512539 296.9322670155468 143.41117221648926 296.9322670155468 198.05787425931192 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 33 22 L 133 22"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 50 22 C 50 23.65685424949238 48.65685424949238 25 47 25 C 45.34314575050762 25 44 23.65685424949238 44 22 C 44 20.34314575050762 45.34314575050762 19 47 19 C 48.65685424949238 19 50 20.34314575050762 50 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 50 22 C 50 23.65685424949238 48.65685424949238 25 47 25 C 45.34314575050762 25 44 23.65685424949238 44 22 C 44 20.34314575050762 45.34314575050762 19 47 19 C 48.65685424949238 19 50 20.34314575050762 50 22 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 9.9375 33.4375 Q 9.75 33.34375 9.53125 33.296875 Q 9.328125 33.234375 9.0625 33.234375 Q 8.15625 33.234375 7.65625 33.828125 Q 7.171875 34.421875 7.171875 35.546875 L 7.171875 39 L 6.09375 39 L 6.09375 32.4375 L 7.171875 32.4375 L 7.171875 33.453125 Q 7.515625 32.859375 8.0625 32.578125 Q 8.609375 32.28125 9.390625 32.28125 Q 9.5 32.28125 9.625 32.296875 Q 9.765625 32.3125 9.921875 32.34375 L 9.9375 33.4375 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 11.16796875 43.171875 L 12.79296875 43.171875 L 12.79296875 37.609375 L 11.02734375 37.953125 L 11.02734375 37.0625 L 12.77734375 36.703125 L 13.76171875 36.703125 L 13.76171875 43.171875 L 15.37109375 43.171875 L 15.37109375 44 L 11.16796875 44 L 11.16796875 43.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#000000">
<path d="M 21.3759765625 33.546875 L 28.8916015625 33.546875 L 28.8916015625 34.53125 L 21.3759765625 34.53125 L 21.3759765625 33.546875 z M 21.3759765625 35.9375 L 28.8916015625 35.9375 L 28.8916015625 36.9375 L 21.3759765625 36.9375 L 21.3759765625 35.9375 z M 37.7919921875 31.03125 Q 36.8857421875 31.03125 36.4169921875 31.9375 Q 35.9638671875 32.828125 35.9638671875 34.640625 Q 35.9638671875 36.4375 36.4169921875 37.34375 Q 36.8857421875 38.234375 37.7919921875 38.234375 Q 38.7138671875 38.234375 39.1669921875 37.34375 Q 39.6357421875 36.4375 39.6357421875 34.640625 Q 39.6357421875 32.828125 39.1669921875 31.9375 Q 38.7138671875 31.03125 37.7919921875 31.03125 z M 37.7919921875 30.09375 Q 39.2607421875 30.09375 40.0419921875 31.265625 Q 40.8232421875 32.421875 40.8232421875 34.640625 Q 40.8232421875 36.84375 40.0419921875 38.015625 Q 39.2607421875 39.171875 37.7919921875 39.171875 Q 36.3232421875 39.171875 35.5419921875 38.015625 Q 34.7763671875 36.84375 34.7763671875 34.640625 Q 34.7763671875 32.421875 35.5419921875 31.265625 Q 36.3232421875 30.09375 37.7919921875 30.09375 z M 42.8955078125 37.515625 L 44.1298828125 37.515625 L 44.1298828125 39 L 42.8955078125 39 L 42.8955078125 37.515625 z M 46.4130859375 30.25 L 52.0380859375 30.25 L 52.0380859375 30.75 L 48.8662109375 39 L 47.6318359375 39 L 50.6162109375 31.25 L 46.4130859375 31.25 L 46.4130859375 30.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="0.10196078568696976" fill-rule="nonzero" stroke="none" fill="#006400">
<path d="M 148.8255615234375 130.73641967773438 L 131.6938018798828 143.2465362548828 L 144.20391845703125 160.3782958984375 L 161.33566284179688 147.86817932128906 L 148.8255615234375 130.73641967773438"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#006400">
<path d="M 148.8255615234375 130.73641967773438 L 131.6938018798828 143.2465362548828 L 144.20391845703125 160.3782958984375 L 161.33566284179688 147.86817932128906 L 148.8255615234375 130.73641967773438"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 56.63336452454984 198.05787425931192 L 385 -41.72509929585516"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 148.82555735449304 130.73642394409598 L 197.98566010748925 198.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 232.00000000000009 70 L 232.00000000000009 198.05787425931192"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 201 198 C 201 199.65685424949237 199.65685424949237 201 198 201 C 196.34314575050763 201 195 199.65685424949237 195 198 C 195 196.34314575050763 196.34314575050763 195 198 195 C 199.65685424949237 195 201 196.34314575050763 201 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 201 198 C 201 199.65685424949237 199.65685424949237 201 198 201 C 196.34314575050763 201 195 199.65685424949237 195 198 C 195 196.34314575050763 196.34314575050763 195 198 195 C 199.65685424949237 195 201 196.34314575050763 201 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 209.734375 183.921875 L 209.734375 185.171875 Q 209.125 184.609375 208.453125 184.34375 Q 207.78125 184.0625 207.015625 184.0625 Q 205.515625 184.0625 204.71875 184.984375 Q 203.921875 185.90625 203.921875 187.640625 Q 203.921875 189.359375 204.71875 190.28125 Q 205.515625 191.203125 207.015625 191.203125 Q 207.78125 191.203125 208.453125 190.921875 Q 209.125 190.640625 209.734375 190.09375 L 209.734375 191.328125 Q 209.109375 191.75 208.40625 191.96875 Q 207.71875 192.171875 206.953125 192.171875 Q 204.953125 192.171875 203.8125 190.953125 Q 202.671875 189.734375 202.671875 187.640625 Q 202.671875 185.53125 203.8125 184.3125 Q 204.953125 183.09375 206.953125 183.09375 Q 207.734375 183.09375 208.421875 183.3125 Q 209.125 183.515625 209.734375 183.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 211.61328125 196.171875 L 213.23828125 196.171875 L 213.23828125 190.609375 L 211.47265625 190.953125 L 211.47265625 190.0625 L 213.22265625 189.703125 L 214.20703125 189.703125 L 214.20703125 196.171875 L 215.81640625 196.171875 L 215.81640625 197 L 211.61328125 197 L 211.61328125 196.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 235 70 C 235 71.65685424949238 233.65685424949237 73 232 73 C 230.34314575050763 73 229 71.65685424949238 229 70 C 229 68.34314575050762 230.34314575050763 67 232 67 C 233.65685424949237 67 235 68.34314575050762 235 70 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 235 70 C 235 71.65685424949238 233.65685424949237 73 232 73 C 230.34314575050763 73 229 71.65685424949238 229 70 C 229 68.34314575050762 230.34314575050763 67 232 67 C 233.65685424949237 67 235 68.34314575050762 235 70 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#0000ff">
<path d="M 238.359375 56.21875 L 238.359375 59.515625 L 239.84375 59.515625 Q 240.671875 59.515625 241.125 59.09375 Q 241.578125 58.65625 241.578125 57.859375 Q 241.578125 57.078125 241.125 56.65625 Q 240.671875 56.21875 239.84375 56.21875 L 238.359375 56.21875 z M 237.171875 55.25 L 239.84375 55.25 Q 241.328125 55.25 242.078125 55.921875 Q 242.828125 56.578125 242.828125 57.859375 Q 242.828125 59.15625 242.078125 59.828125 Q 241.328125 60.484375 239.84375 60.484375 L 238.359375 60.484375 L 238.359375 64 L 237.171875 64 L 237.171875 55.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 60 198 C 60 199.65685424949237 58.65685424949238 201 57 201 C 55.34314575050762 201 54 199.65685424949237 54 198 C 54 196.34314575050763 55.34314575050762 195 57 195 C 58.65685424949238 195 60 196.34314575050763 60 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 60 198 C 60 199.65685424949237 58.65685424949238 201 57 201 C 55.34314575050762 201 54 199.65685424949237 54 198 C 54 196.34314575050763 55.34314575050762 195 57 195 C 58.65685424949238 195 60 196.34314575050763 60 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 68.734375 183.921875 L 68.734375 185.171875 Q 68.125 184.609375 67.453125 184.34375 Q 66.78125 184.0625 66.015625 184.0625 Q 64.515625 184.0625 63.71875 184.984375 Q 62.921875 185.90625 62.921875 187.640625 Q 62.921875 189.359375 63.71875 190.28125 Q 64.515625 191.203125 66.015625 191.203125 Q 66.78125 191.203125 67.453125 190.921875 Q 68.125 190.640625 68.734375 190.09375 L 68.734375 191.328125 Q 68.109375 191.75 67.40625 191.96875 Q 66.71875 192.171875 65.953125 192.171875 Q 63.953125 192.171875 62.8125 190.953125 Q 61.671875 189.734375 61.671875 187.640625 Q 61.671875 185.53125 62.8125 184.3125 Q 63.953125 183.09375 65.953125 183.09375 Q 66.734375 183.09375 67.421875 183.3125 Q 68.125 183.515625 68.734375 183.921875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 73.09765625 189.40625 L 73.09765625 190.15625 L 72.23828125 190.15625 Q 71.75390625 190.15625 71.56640625 190.359375 Q 71.37890625 190.546875 71.37890625 191.046875 L 71.37890625 191.53125 L 72.84765625 191.53125 L 72.84765625 192.234375 L 71.37890625 192.234375 L 71.37890625 197 L 70.47265625 197 L 70.47265625 192.234375 L 69.61328125 192.234375 L 69.61328125 191.53125 L 70.47265625 191.53125 L 70.47265625 191.15625 Q 70.47265625 190.234375 70.89453125 189.828125 Q 71.31640625 189.40625 72.23828125 189.40625 L 73.09765625 189.40625 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 195 99 C 195 100.65685424949238 193.65685424949237 102 192 102 C 190.34314575050763 102 189 100.65685424949238 189 99 C 189 97.34314575050762 190.34314575050763 96 192 96 C 193.65685424949237 96 195 97.34314575050762 195 99 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 195 99 C 195 100.65685424949238 193.65685424949237 102 192 102 C 190.34314575050763 102 189 100.65685424949238 189 99 C 189 97.34314575050762 190.34314575050763 96 192 96 C 193.65685424949237 96 195 97.34314575050762 195 99 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 198.359375 85.21875 L 198.359375 88.515625 L 199.84375 88.515625 Q 200.671875 88.515625 201.125 88.09375 Q 201.578125 87.65625 201.578125 86.859375 Q 201.578125 86.078125 201.125 85.65625 Q 200.671875 85.21875 199.84375 85.21875 L 198.359375 85.21875 z M 197.171875 84.25 L 199.84375 84.25 Q 201.328125 84.25 202.078125 84.921875 Q 202.828125 85.578125 202.828125 86.859375 Q 202.828125 88.15625 202.078125 88.828125 Q 201.328125 89.484375 199.84375 89.484375 L 198.359375 89.484375 L 198.359375 93 L 197.171875 93 L 197.171875 84.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 204.470703125 97.171875 L 206.095703125 97.171875 L 206.095703125 91.609375 L 204.330078125 91.953125 L 204.330078125 91.0625 L 206.080078125 90.703125 L 207.064453125 90.703125 L 207.064453125 97.171875 L 208.673828125 97.171875 L 208.673828125 98 L 204.470703125 98 L 204.470703125 97.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 109 162 C 109 163.65685424949237 107.65685424949238 165 106 165 C 104.34314575050762 165 103 163.65685424949237 103 162 C 103 160.34314575050763 104.34314575050762 159 106 159 C 107.65685424949238 159 109 160.34314575050763 109 162 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 109 162 C 109 163.65685424949237 107.65685424949238 165 106 165 C 104.34314575050762 165 103 163.65685424949237 103 162 C 103 160.34314575050763 104.34314575050762 159 106 159 C 107.65685424949238 159 109 160.34314575050763 109 162 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 112.359375 148.21875 L 112.359375 151.515625 L 113.84375 151.515625 Q 114.671875 151.515625 115.125 151.09375 Q 115.578125 150.65625 115.578125 149.859375 Q 115.578125 149.078125 115.125 148.65625 Q 114.671875 148.21875 113.84375 148.21875 L 112.359375 148.21875 z M 111.171875 147.25 L 113.84375 147.25 Q 115.328125 147.25 116.078125 147.921875 Q 116.828125 148.578125 116.828125 149.859375 Q 116.828125 151.15625 116.078125 151.828125 Q 115.328125 152.484375 113.84375 152.484375 L 112.359375 152.484375 L 112.359375 156 L 111.171875 156 L 111.171875 147.25 z M 119.595703125 148.21875 L 119.595703125 151.515625 L 121.080078125 151.515625 Q 121.908203125 151.515625 122.361328125 151.09375 Q 122.814453125 150.65625 122.814453125 149.859375 Q 122.814453125 149.078125 122.361328125 148.65625 Q 121.908203125 148.21875 121.080078125 148.21875 L 119.595703125 148.21875 z M 118.408203125 147.25 L 121.080078125 147.25 Q 122.564453125 147.25 123.314453125 147.921875 Q 124.064453125 148.578125 124.064453125 149.859375 Q 124.064453125 151.15625 123.314453125 151.828125 Q 122.564453125 152.484375 121.080078125 152.484375 L 119.595703125 152.484375 L 119.595703125 156 L 118.408203125 156 L 118.408203125 147.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 125.70703125 160.171875 L 127.33203125 160.171875 L 127.33203125 154.609375 L 125.56640625 154.953125 L 125.56640625 154.0625 L 127.31640625 153.703125 L 128.30078125 153.703125 L 128.30078125 160.171875 L 129.91015625 160.171875 L 129.91015625 161 L 125.70703125 161 L 125.70703125 160.171875 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 152 131 C 152 132.65685424949237 150.65685424949237 134 149 134 C 147.34314575050763 134 146 132.65685424949237 146 131 C 146 129.34314575050763 147.34314575050763 128 149 128 C 150.65685424949237 128 152 129.34314575050763 152 131 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 152 131 C 152 132.65685424949237 150.65685424949237 134 149 134 C 147.34314575050763 134 146 132.65685424949237 146 131 C 146 129.34314575050763 147.34314575050763 128 149 128 C 150.65685424949237 128 152 129.34314575050763 152 131 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 154.171875 116.25 L 155.359375 116.25 L 155.359375 119.84375 L 159.65625 119.84375 L 159.65625 116.25 L 160.84375 116.25 L 160.84375 125 L 159.65625 125 L 159.65625 120.828125 L 155.359375 120.828125 L 155.359375 125 L 154.171875 125 L 154.171875 116.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 235 198 C 235 199.65685424949237 233.65685424949237 201 232 201 C 230.34314575050763 201 229 199.65685424949237 229 198 C 229 196.34314575050763 230.34314575050763 195 232 195 C 233.65685424949237 195 235 196.34314575050763 235 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g stroke-linejoin="round" stroke-linecap="round" fill="none" stroke-opacity="1" stroke="#000000">
<path d="M 235 198 C 235 199.65685424949237 233.65685424949237 201 232 201 C 230.34314575050763 201 229 199.65685424949237 229 198 C 229 196.34314575050763 230.34314575050763 195 232 195 C 233.65685424949237 195 235 196.34314575050763 235 198 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 236.75 183.25 L 238.03125 183.25 L 240.203125 186.5 L 242.390625 183.25 L 243.65625 183.25 L 240.84375 187.453125 L 243.84375 192 L 242.578125 192 L 240.109375 188.28125 L 237.640625 192 L 236.359375 192 L 239.484375 187.328125 L 236.75 183.25 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
<g transform="matrix(0.8021505862642581, 0, 0, 0.8021505862642581, 0, 0)">
<g fill-opacity="1" fill-rule="nonzero" stroke="none" fill="#404040">
<path d="M 246.189453125 190.515625 L 246.189453125 193.265625 L 247.423828125 193.265625 Q 248.111328125 193.265625 248.486328125 192.90625 Q 248.876953125 192.546875 248.876953125 191.890625 Q 248.876953125 191.234375 248.486328125 190.875 Q 248.111328125 190.515625 247.423828125 190.515625 L 246.189453125 190.515625 z M 245.205078125 189.703125 L 247.423828125 189.703125 Q 248.658203125 189.703125 249.283203125 190.265625 Q 249.908203125 190.8125 249.908203125 191.890625 Q 249.908203125 192.96875 249.283203125 193.515625 Q 248.658203125 194.0625 247.423828125 194.0625 L 246.189453125 194.0625 L 246.189453125 197 L 245.205078125 197 L 245.205078125 189.703125 z"/>
</g> <!-- drawing style -->
</g> <!-- transform -->
</g><!-- layer0 -->
</g> <!-- default stroke -->
</svg> <!-- bounding box -->

After

Width:  |  Height:  |  Size: 38 KiB

View File

@ -49,7 +49,7 @@ serializing the PDF file.
## <span id="PDF_Objects_and_Document_Structure">PDF Objects and Document Structure</span> ## <span id="PDF_Objects_and_Document_Structure">PDF Objects and Document Structure</span>
![PDF Logical Document Structure](/dev/design/PdfLogicalDocumentStructure.png) ![PDF Logical Document Structure](../PdfLogicalDocumentStructure.png)
**Background**: The PDF file format has a header, a set of objects and then a **Background**: The PDF file format has a header, a set of objects and then a
footer that contains a table of contents for all of the objects in the document footer that contains a table of contents for all of the objects in the document

Binary file not shown.

After

Width:  |  Height:  |  Size: 188 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 199 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 408 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 312 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 321 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 254 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 189 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

View File

@ -19,13 +19,13 @@ Add the checkout location to your $PATH.
To download the isolated files for a test first visit To download the isolated files for a test first visit
the build status page and find the "isolated output" link: the build status page and find the "isolated output" link:
<img src="Status.png" style="margin-left:30px" width=576 height=271 > <img src="../Status.png" style="margin-left:30px" width=576 height=271 >
Follow that link to find the hash of the isolated outputs: Follow that link to find the hash of the isolated outputs:
<img src="Isolate.png" style="margin-left:30px" width=451 height=301 > <img src="../Isolate.png" style="margin-left:30px" width=451 height=301 >
Then run `isolateserver.py` with --isolated set to that hash: Then run `isolateserver.py` with --isolated set to that hash:

View File

@ -48,14 +48,14 @@ Solution today:
- Blame is not sorted in any particular order - Blame is not sorted in any particular order
- Digests are clustered by runs and the most minimal set of blame - Digests are clustered by runs and the most minimal set of blame
<img src=BlameView.png style="margin-left:30px" align="left" width="800"/> <img src=../BlameView.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
- Select digests for triage - Select digests for triage
- Digests will be listed in order with largest difference first - Digests will be listed in order with largest difference first
- Click to open the digest view with detailed information - Click to open the digest view with detailed information
<img src=Digests.png style="margin-left:40px" align="left" width="780"/> <img src=../Digests.png style="margin-left:40px" align="left" width="780"/>
<br clear="left"> <br clear="left">
- Open bugs for identified owner(s) - Open bugs for identified owner(s)
@ -65,7 +65,7 @@ Solution today:
- The URL reference to the digest in Issue Tracker will link the bug to the - The URL reference to the digest in Issue Tracker will link the bug to the
digest in Gold digest in Gold
<img src="IssueHighlight.png" style="margin-left:60px" align="left" width="720" border=1/> <img src="../IssueHighlight.png" style="margin-left:60px" align="left" width="720" border=1/>
<br clear="left"> <br clear="left">
<br> <br>
@ -88,7 +88,7 @@ To find your results:
- Note: It is not yet implemented in the UI but possible to filter the view by - Note: It is not yet implemented in the UI but possible to filter the view by
CL. Delete hashes in the URL to only include the hash for your CL. CL. Delete hashes in the URL to only include the hash for your CL.
<img src=BlameView.png style="margin-left:30px" align="left" width="800"/> <img src=../BlameView.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
To rebaseline images: To rebaseline images:
@ -96,7 +96,7 @@ To rebaseline images:
- Access the Ignores view and create a new, short-interval (hours) ignore for - Access the Ignores view and create a new, short-interval (hours) ignore for
the most affected configuration(s) the most affected configuration(s)
<img src=Ignores.png style="margin-left:30px" align="left" width="800"/> <img src=../Ignores.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
- Click on the Ignore to bring up a search view filtered by the affected - Click on the Ignore to bring up a search view filtered by the affected
@ -141,7 +141,7 @@ Solution:
- Access the By Test view - Access the By Test view
<img src=ByTest.png style="margin-left:30px" align="left" width="800"/> <img src=../ByTest.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
- Click the magnifier to filter by configuration - Click the magnifier to filter by configuration
@ -150,12 +150,12 @@ Solution:
- Click on configurations under “parameters” to highlight data points and - Click on configurations under “parameters” to highlight data points and
compare compare
<img src=ClusterConfig.png style="margin-left:30px" align="left" width="800"/> <img src=../ClusterConfig.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
- Access the Grid view to see NxN diffs - Access the Grid view to see NxN diffs
<img src=Grid.png style="margin-left:30px" align="left" width="800"/> <img src=../Grid.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
- Access the Dot diagram to see history of commits for the trace - Access the Dot diagram to see history of commits for the trace
@ -163,7 +163,7 @@ Solution:
- Each line represents a configuration - Each line represents a configuration
- Dot colors distinguish between digests - Dot colors distinguish between digests
<img src=DotDiagram.png style="margin-left:30px" align="left" width="800"/> <img src=../DotDiagram.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">
<br> <br>
@ -181,5 +181,5 @@ Solution:
- Access the Search view - Access the Search view
- Select any parameters desired to search across tests - Select any parameters desired to search across tests
<img src=Search.png style="margin-left:30px" align="left" width="800"/> <img src=../Search.png style="margin-left:30px" align="left" width="800"/>
<br clear="left"> <br clear="left">

View File

@ -9,7 +9,7 @@ linkTitle: "Skia Perf"
[Skia Perf](https://perf.skia.org) is a web application for analyzing and [Skia Perf](https://perf.skia.org) is a web application for analyzing and
viewing performance metrics produced by Skia's testing infrastructure. viewing performance metrics produced by Skia's testing infrastructure.
<img src=Perf.png style="margin-left:30px" align="left" width="800"/> <br clear="left"> <img src=../Perf.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
Skia tests across a large number of platforms and configurations, and each Skia tests across a large number of platforms and configurations, and each
commit to Skia generates more than 400,000 individual values that are sent to commit to Skia generates more than 400,000 individual values that are sent to
@ -18,11 +18,11 @@ memory and coverage data.
Perf offers clustering, which is a tool to pick out trends and patterns in large sets of traces. Perf offers clustering, which is a tool to pick out trends and patterns in large sets of traces.
<img src=Cluster.png style="margin-left:30px" align="left" width="400"/> <br clear="left"> <img src=../Cluster.png style="margin-left:30px" align="left" width="400"/> <br clear="left">
And can generate alerts when those trends spot a regression: And can generate alerts when those trends spot a regression:
<img src=Regression.png style="margin-left:30px" align="left" width="800"/> <br clear="left"> <img src=../Regression.png style="margin-left:30px" align="left" width="800"/> <br clear="left">
## Calculations ## Calculations

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -20,7 +20,7 @@ Features:
- Android offscreen layer visualization - Android offscreen layer visualization
- Shared resource viewer - Shared resource viewer
<img src="/dev/tools/onlinedebugger.png" style="display: inline-block;" /> <img src="../onlinedebugger.png" style="display: inline-block;" />
## User Guide ## User Guide
@ -33,8 +33,8 @@ capture one from an android device using the
### Command Playback and Filters ### Command Playback and Filters
Try playing back the commands within the current frame using the lower play Try playing back the commands within the current frame using the lower play
button <img src="/dev/tools/playcommands.png" style="display: inline-block;" />, button <img src="../playcommands.png" style="display: inline-block;" />, (the
(the one not in a circle) You should see the image built up one draw at a time. one not in a circle) You should see the image built up one draw at a time.
Many commands manipulate the matrix or clip but don't make any visible change Many commands manipulate the matrix or clip but don't make any visible change
when run. Try filtering these out by pasting when run. Try filtering these out by pasting
@ -52,18 +52,18 @@ using `,` (comma) and `.` (period).
> at the beginning. > at the beginning.
Any command can be expanded using the Any command can be expanded using the
<img src="/dev/tools/expand.png" style="display: inline-block;" /> icon to see <img src="../expand.png" style="display: inline-block;" /> icon to see all of
all of the parameters that were recorded with that command. the parameters that were recorded with that command.
Commands can be disabled or enabled with the checkbox that becomes available Commands can be disabled or enabled with the checkbox that becomes available
after expanding the command's detail view. after expanding the command's detail view.
Jog the command playhead to the end of the list with the Jog the command playhead to the end of the list with the
<img src="/dev/tools/end.png" style="display: inline-block;" /> button. <img src="../end.png" style="display: inline-block;" /> button.
### Frame playback ### Frame playback
<img src="/dev/tools/frameplayback.png" style="display: inline-block;" /> <img src="../frameplayback.png" style="display: inline-block;" />
The sample file contains multiple frames. Use the encircled play button to play The sample file contains multiple frames. Use the encircled play button to play
back the frames. The current frame is indictated by the slider position, and the back the frames. The current frame is indictated by the slider position, and the
@ -77,7 +77,7 @@ the end of its list. If the command playhead is somewhere in the middle, say
### Resources Tab ### Resources Tab
<img src="/dev/tools/resources.png" style="display: inline-block;" /> <img src="../resources.png" style="display: inline-block;" />
Any resources that were referenced by commands in the file appear here. As of Any resources that were referenced by commands in the file appear here. As of
Dec 2019, this only shows images. Dec 2019, this only shows images.
@ -97,7 +97,7 @@ ids in the process that recorded the SKP.
### Android Layers ### Android Layers
<img src="/dev/tools/layers.png" style="display: inline-block;" /> <img src="../layers.png" style="display: inline-block;" />
When MSKPs are recorded in Android, Extra information about offscreen hardware When MSKPs are recorded in Android, Extra information about offscreen hardware
layers is recorded. The sample google calendar mskp linked above contains this layers is recorded. The sample google calendar mskp linked above contains this
@ -121,7 +121,7 @@ by clicking the `Exit` button on the layer box.
### Crosshair and Breakpoints ### Crosshair and Breakpoints
<img src="/dev/tools/crosshair.png" style="display: inline-block;" /> <img src="../crosshair.png" style="display: inline-block;" />
Clicking any point in the main view will toggle a red crosshair for selecting Clicking any point in the main view will toggle a red crosshair for selecting
pixels. the selected pixel's color is shown in several formats on the right pixels. the selected pixel's color is shown in several formats on the right
@ -135,12 +135,12 @@ command that draws something you see in the viewer.
### GPU Op Bounds and Other settings ### GPU Op Bounds and Other settings
<img src="/dev/tools/settings.png" style="display: inline-block;" /> <img src="../settings.png" style="display: inline-block;" />
Each of the filtered commands from above has a colored number to its right Each of the filtered commands from above has a colored number to its right
<img src="/dev/tools/gpuop.png" style="display: inline-block;" />. This is the <img src="../gpuop.png" style="display: inline-block;" />. This is the GPU
GPU operation id. When multiple commands share a GPU op id, this indicates that operation id. When multiple commands share a GPU op id, this indicates that they
they were batched together when sent to the GPU. In the WASM debugger, this goes were batched together when sent to the GPU. In the WASM debugger, this goes
though WebGL. though WebGL.
There is a "Display GPU Op Bounds" toggle in the upper right of the interface. There is a "Display GPU Op Bounds" toggle in the upper right of the interface.
@ -162,7 +162,7 @@ the pixel was drawn to more than once.
### Image fit and download buttons. ### Image fit and download buttons.
<img src="/dev/tools/settings.png" style="display: inline-block;" /> <img src="../settings.png" style="display: inline-block;" />
These buttons resize the main view. they are, from left to right: These buttons resize the main view. they are, from left to right:

Binary file not shown.

After

Width:  |  Height:  |  Size: 176 KiB

BIN
site/docs/dev/tools/end.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 228 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 678 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 346 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 445 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 243 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.8 KiB

View File

@ -35,13 +35,13 @@ clutter and slowdown in the interface), it's best to run a small number of tests
tracing. Once you have generated a file in this way, go to tracing. Once you have generated a file in this way, go to
[chrome://tracing](chrome://tracing), click Load: [chrome://tracing](chrome://tracing), click Load:
![Load Button](tracing_load.png) ![Load Button](../tracing_load.png)
... then select the JSON file. The data will be loaded and can be navigated/inspected using the ... then select the JSON file. The data will be loaded and can be navigated/inspected using the
tracing tools. Tip: press '?' for a help screen explaining the available keyboard and mouse tracing tools. Tip: press '?' for a help screen explaining the available keyboard and mouse
controls. controls.
![Tracing interface](tracing.png) ![Tracing interface](../tracing.png)
Android ATrace Android ATrace
-------------- --------------

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB