Avoid recursion for (most) stroke tessellation patches
Adds quick accepts to the switch statement in GrStrokeHardwareTessellator::prepare() that allow us to write out most tessellation patches immediately. This avoids making function calls into recursive methods as well as avoiding some of their checks that aren't necessary the first time around. Also adds a microbench that mimics the MotionMark "paths" benchmark and measures our CPU-side prepare() time. This shaves up to 30% off the microbenchmarks. Bug: chromium:1172543 Change-Id: Idc93bebb79db9898a4ec241b1f6c8b9eb9ba7da3 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/372602 Commit-Queue: Chris Dalton <csmartdalton@google.com> Reviewed-by: John Stiles <johnstiles@google.com>
This commit is contained in:
parent
55af50b212
commit
981e4a756c
@ -201,9 +201,80 @@ DEF_PATH_TESS_BENCH(middle_out_triangulation,
|
||||
GrMiddleOutPolygonTriangulator::WritePathInnerFan(vertexData, 3, fPath);
|
||||
}
|
||||
|
||||
using PathStrokeList = GrStrokeTessellator::PathStrokeList;
|
||||
using MakePathStrokesFn = std::vector<PathStrokeList>(*)();
|
||||
|
||||
static std::vector<PathStrokeList> make_simple_cubic_path() {
|
||||
auto path = SkPath().moveTo(0, 0);
|
||||
for (int i = 0; i < kNumCubicsInChalkboard/2; ++i) {
|
||||
path.cubicTo(100, 0, 50, 100, 100, 100);
|
||||
path.cubicTo(0, -100, 200, 100, 0, 0);
|
||||
}
|
||||
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
|
||||
stroke.setStrokeStyle(8);
|
||||
stroke.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kMiter_Join, 4);
|
||||
return {{path, stroke, SK_PMColor4fWHITE}};
|
||||
}
|
||||
|
||||
// Generates a list of paths that resemble the MotionMark benchmark.
|
||||
static std::vector<PathStrokeList> make_motionmark_paths() {
|
||||
std::vector<PathStrokeList> pathStrokes;
|
||||
SkRandom rand;
|
||||
for (int i = 0; i < 8702; ++i) {
|
||||
// The number of paths with a given number of verbs in the MotionMark bench gets cut in half
|
||||
// every time the number of verbs increases by 1.
|
||||
int numVerbs = 28 - SkNextLog2(rand.nextRangeU(0, (1 << 27) - 1));
|
||||
SkPath path;
|
||||
for (int j = 0; j < numVerbs; ++j) {
|
||||
switch (rand.nextU() & 3) {
|
||||
case 0:
|
||||
case 1:
|
||||
path.lineTo(rand.nextRangeF(0, 150), rand.nextRangeF(0, 150));
|
||||
break;
|
||||
case 2:
|
||||
if (rand.nextULessThan(10) == 0) {
|
||||
// Cusp.
|
||||
auto [x, y] = (path.isEmpty())
|
||||
? SkPoint{0,0}
|
||||
: SkPathPriv::PointData(path)[path.countPoints() - 1];
|
||||
path.quadTo(x + rand.nextRangeF(0, 150), y, x - rand.nextRangeF(0, 150), y);
|
||||
} else {
|
||||
path.quadTo(rand.nextRangeF(0, 150), rand.nextRangeF(0, 150),
|
||||
rand.nextRangeF(0, 150), rand.nextRangeF(0, 150));
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
if (rand.nextULessThan(10) == 0) {
|
||||
// Cusp.
|
||||
float y = (path.isEmpty())
|
||||
? 0 : SkPathPriv::PointData(path)[path.countPoints() - 1].fY;
|
||||
path.cubicTo(rand.nextRangeF(0, 150), y, rand.nextRangeF(0, 150), y,
|
||||
rand.nextRangeF(0, 150), y);
|
||||
} else {
|
||||
path.cubicTo(rand.nextRangeF(0, 150), rand.nextRangeF(0, 150),
|
||||
rand.nextRangeF(0, 150), rand.nextRangeF(0, 150),
|
||||
rand.nextRangeF(0, 150), rand.nextRangeF(0, 150));
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
|
||||
// The number of paths with a given stroke width in the MotionMark bench gets cut in half
|
||||
// every time the stroke width increases by 1.
|
||||
float strokeWidth = 21 - log2f(rand.nextRangeF(0, 1 << 20));
|
||||
stroke.setStrokeStyle(strokeWidth);
|
||||
stroke.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kBevel_Join, 0);
|
||||
pathStrokes.emplace_back(path, stroke, SK_PMColor4fWHITE);
|
||||
}
|
||||
return pathStrokes;
|
||||
}
|
||||
|
||||
class GrStrokeHardwareTessellator::TestingOnly_Benchmark : public Benchmark {
|
||||
public:
|
||||
TestingOnly_Benchmark(float matrixScale, const char* suffix) : fMatrixScale(matrixScale) {
|
||||
TestingOnly_Benchmark(MakePathStrokesFn MakePathStrokesFn, float matrixScale,
|
||||
const char* suffix)
|
||||
: fMakePathStrokesFn(MakePathStrokesFn)
|
||||
, fMatrixScale(matrixScale) {
|
||||
fName.printf("tessellate_GrStrokeHardwareTessellator_prepare%s", suffix);
|
||||
}
|
||||
|
||||
@ -213,39 +284,45 @@ private:
|
||||
|
||||
void onDelayedSetup() override {
|
||||
fTarget = std::make_unique<GrMockOpTarget>(make_mock_context());
|
||||
fPath.reset().moveTo(0, 0);
|
||||
for (int i = 0; i < kNumCubicsInChalkboard/2; ++i) {
|
||||
fPath.cubicTo(100, 0, 50, 100, 100, 100);
|
||||
fPath.cubicTo(0, -100, 200, 100, 0, 0);
|
||||
}
|
||||
fStrokeRec.setStrokeStyle(8);
|
||||
fStrokeRec.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kMiter_Join, 4);
|
||||
}
|
||||
|
||||
void onDraw(int loops, SkCanvas*) final {
|
||||
if (!fTarget->mockContext()) {
|
||||
SkDebugf("ERROR: could not create mock context.");
|
||||
return;
|
||||
}
|
||||
SkMatrix matrix = SkMatrix::Scale(fMatrixScale, fMatrixScale);
|
||||
GrStrokeTessellator::PathStrokeList pathStroke(fPath, fStrokeRec, SK_PMColor4fWHITE);
|
||||
for (int i = 0; i < loops; ++i) {
|
||||
GrStrokeHardwareTessellator tessellator(ShaderFlags::kNone, &pathStroke,
|
||||
fPath.countVerbs(),
|
||||
*fTarget->caps().shaderCaps());
|
||||
tessellator.prepare(fTarget.get(), matrix);
|
||||
|
||||
fPathStrokes = fMakePathStrokesFn();
|
||||
for (size_t i = 0; i < fPathStrokes.size(); ++i) {
|
||||
if (i + 1 < fPathStrokes.size()) {
|
||||
fPathStrokes[i].fNext = &fPathStrokes[i + 1];
|
||||
}
|
||||
fTotalVerbCount += fPathStrokes[i].fPath.countVerbs();
|
||||
}
|
||||
}
|
||||
|
||||
void onDraw(int loops, SkCanvas*) final {
|
||||
SkMatrix matrix = SkMatrix::Scale(fMatrixScale, fMatrixScale);
|
||||
for (int i = 0; i < loops; ++i) {
|
||||
GrStrokeHardwareTessellator tessellator(ShaderFlags::kNone, fPathStrokes.data(),
|
||||
fTotalVerbCount, *fTarget->caps().shaderCaps());
|
||||
tessellator.prepare(fTarget.get(), matrix);
|
||||
fTarget->resetAllocator();
|
||||
}
|
||||
}
|
||||
|
||||
const float fMatrixScale;
|
||||
SkString fName;
|
||||
MakePathStrokesFn fMakePathStrokesFn;
|
||||
float fMatrixScale;
|
||||
std::unique_ptr<GrMockOpTarget> fTarget;
|
||||
SkPath fPath;
|
||||
SkStrokeRec fStrokeRec = SkStrokeRec(SkStrokeRec::kFill_InitStyle);
|
||||
std::vector<PathStrokeList> fPathStrokes;
|
||||
SkArenaAlloc fPersistentArena{1024};
|
||||
int fTotalVerbCount = 0;
|
||||
};
|
||||
|
||||
DEF_BENCH( return new GrStrokeHardwareTessellator::TestingOnly_Benchmark(1, ""); )
|
||||
DEF_BENCH( return new GrStrokeHardwareTessellator::TestingOnly_Benchmark(5, "_one_chop"); )
|
||||
DEF_BENCH( return new GrStrokeHardwareTessellator::TestingOnly_Benchmark(make_simple_cubic_path, 1,
|
||||
""); )
|
||||
DEF_BENCH( return new GrStrokeHardwareTessellator::TestingOnly_Benchmark(make_simple_cubic_path, 5,
|
||||
"_one_chop"); )
|
||||
DEF_BENCH( return new GrStrokeHardwareTessellator::TestingOnly_Benchmark(make_motionmark_paths, 1,
|
||||
"_motionmark"); )
|
||||
|
||||
class GrStrokeIndirectTessellator::Benchmark : public ::Benchmark {
|
||||
protected:
|
||||
|
@ -78,6 +78,36 @@ public:
|
||||
fPatchStride);
|
||||
}
|
||||
|
||||
// This is the intolerance value, adjusted for the view matrix, to use with Wang's formulas when
|
||||
// determining how many parametric segments a curve will require.
|
||||
float parametricIntolerance() const {
|
||||
return fTolerances.fParametricIntolerance;
|
||||
}
|
||||
// Will a line and worst-case previous join both fit in a single patch together?
|
||||
bool lineFitsInPatch_withJoin() {
|
||||
return fMaxCombinedSegments_withJoin >= 1;
|
||||
}
|
||||
// Will a stroke with the given number of parametric segments and a worst-case rotation of 180
|
||||
// degrees fit in a single patch?
|
||||
bool stroke180FitsInPatch(float numParametricSegments_pow4) {
|
||||
return numParametricSegments_pow4 <= fMaxParametricSegments180_pow4;
|
||||
}
|
||||
// Will a worst-case 180-degree stroke with the given number of parametric segments, and a
|
||||
// worst-case join fit in a single patch together?
|
||||
bool stroke180FitsInPatch_withJoin(float numParametricSegments_pow4) {
|
||||
return numParametricSegments_pow4 <= fMaxParametricSegments180_pow4_withJoin;
|
||||
}
|
||||
// Will a stroke with the given number of parametric segments and a worst-case rotation of 360
|
||||
// degrees fit in a single patch?
|
||||
bool stroke360FitsInPatch(float numParametricSegments_pow4) {
|
||||
return numParametricSegments_pow4 <= fMaxParametricSegments360_pow4;
|
||||
}
|
||||
// Will a worst-case 360-degree stroke with the given number of parametric segments, and a
|
||||
// worst-case join fit in a single patch together?
|
||||
bool stroke360FitsInPatch_withJoin(float numParametricSegments_pow4) {
|
||||
return numParametricSegments_pow4 <= fMaxParametricSegments360_pow4_withJoin;
|
||||
}
|
||||
|
||||
void updateTolerances(Tolerances tolerances, SkPaint::Join joinType) {
|
||||
// Calculate the worst-case numbers of parametric segments our hardware can support for the
|
||||
// current stroke radius, in the event that there are also enough radial segments to rotate
|
||||
@ -119,6 +149,7 @@ public:
|
||||
fMaxCombinedSegments_withJoin = fMaxTessellationSegments - maxNumSegmentsInJoin - 1;
|
||||
fSoloRoundJoinAlwaysFitsInPatch = (numRadialSegments180 <= fMaxTessellationSegments);
|
||||
fTolerances = tolerances;
|
||||
fStrokeJoinType = JoinType(joinType);
|
||||
}
|
||||
|
||||
void updateDynamicStroke(const SkStrokeRec& stroke) {
|
||||
@ -138,210 +169,94 @@ public:
|
||||
fHasLastControlPoint = false;
|
||||
}
|
||||
|
||||
void lineTo(JoinType prevJoinType, SkPoint p0, SkPoint p1) {
|
||||
// Writes out the given line, possibly chopping its previous join until the segments fit in
|
||||
// tessellation patches.
|
||||
void writeLineTo(SkPoint p0, SkPoint p1) {
|
||||
this->writeLineTo(fStrokeJoinType, p0, p1);
|
||||
}
|
||||
void writeLineTo(JoinType prevJoinType, SkPoint p0, SkPoint p1) {
|
||||
// Zero-length paths need special treatment because they are spec'd to behave differently.
|
||||
if (p0 == p1) {
|
||||
return;
|
||||
}
|
||||
|
||||
SkPoint asPatch[4] = {p0, p0, p1, p1};
|
||||
this->rawStrokeTo(prevJoinType, (fMaxCombinedSegments_withJoin >= 1), asPatch, p1);
|
||||
this->internalPatchTo(prevJoinType, this->lineFitsInPatch_withJoin(), asPatch, p1);
|
||||
}
|
||||
|
||||
void conicTo(JoinType prevJoinType, const SkPoint p[3], float w, int maxDepth = -1) {
|
||||
// Zero-length paths need special treatment because they are spec'd to behave differently.
|
||||
// If the control point is colocated on an endpoint then this might end up being the case.
|
||||
// Fall back on a lineTo and let it make the final check.
|
||||
if (p[1] == p[0] || p[1] == p[2] || w == 0) {
|
||||
this->lineTo(prevJoinType, p[0], p[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
// Convert to a patch.
|
||||
SkPoint asPatch[4];
|
||||
if (w == 1) {
|
||||
GrPathUtils::convertQuadToCubic(p, asPatch);
|
||||
} else {
|
||||
GrPathShader::WriteConicPatch(p, w, asPatch);
|
||||
}
|
||||
|
||||
// Ensure our hardware supports enough tessellation segments to render the curve. This early
|
||||
// out assumes a worst-case quadratic rotation of 180 degrees and a worst-case number of
|
||||
// segments in the join.
|
||||
//
|
||||
// An informal survey of skottie animations and gms revealed that even with a bare minimum
|
||||
// of 64 tessellation segments, 99.9%+ of quadratics take this early out.
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::quadratic_pow4(fTolerances.fParametricIntolerance, p);
|
||||
if (numParametricSegments_pow4 <= fMaxParametricSegments180_pow4_withJoin) {
|
||||
this->rawStrokeTo(prevJoinType, /*prevJoinFitsInPatch=*/true, asPatch, p[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
if (numParametricSegments_pow4 <= fMaxParametricSegments180_pow4 || maxDepth == 0) {
|
||||
this->rawStrokeTo(prevJoinType,
|
||||
(numParametricSegments_pow4 <=
|
||||
fMaxParametricSegments180_pow4_withJoin), asPatch, p[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
// We still might have enough tessellation segments to render the curve. Check again with
|
||||
// the actual rotation.
|
||||
float numRadialSegments =
|
||||
SkMeasureQuadRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
|
||||
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
|
||||
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
|
||||
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
|
||||
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
|
||||
if (numCombinedSegments > fMaxTessellationSegments) {
|
||||
// The hardware doesn't support enough segments for this curve. Chop and recurse.
|
||||
if (maxDepth < 0) {
|
||||
// Decide on an extremely conservative upper bound for when to quit chopping. This
|
||||
// is solely to protect us from infinite recursion in instances where FP error
|
||||
// prevents us from chopping at the correct midtangent.
|
||||
maxDepth = sk_float_nextlog2(numParametricSegments) +
|
||||
sk_float_nextlog2(numRadialSegments) + 1;
|
||||
maxDepth = std::max(maxDepth, 1);
|
||||
}
|
||||
if (w == 1) {
|
||||
SkPoint chops[5];
|
||||
if (numParametricSegments >= numRadialSegments) {
|
||||
SkChopQuadAtHalf(p, chops);
|
||||
} else {
|
||||
SkChopQuadAtMidTangent(p, chops);
|
||||
}
|
||||
this->conicTo(prevJoinType, chops, 1, maxDepth - 1);
|
||||
this->conicTo(JoinType::kBowtie, chops + 2, 1, maxDepth - 1);
|
||||
} else {
|
||||
SkConic conic(p, w);
|
||||
float chopT = (numParametricSegments >= numRadialSegments) ? .5f
|
||||
: conic.findMidTangent();
|
||||
SkConic chops[2];
|
||||
if (conic.chopAt(chopT, chops)) {
|
||||
this->conicTo(prevJoinType, chops[0].fPts, chops[0].fW, maxDepth - 1);
|
||||
this->conicTo(JoinType::kBowtie, chops[1].fPts, chops[1].fW, maxDepth - 1);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
this->rawStrokeTo(prevJoinType, (numCombinedSegments <= fMaxCombinedSegments_withJoin),
|
||||
asPatch, p[2]);
|
||||
// Recursively chops the given conic and its previous join until the segments fit in
|
||||
// tessellation patches.
|
||||
void writeConicPatchesTo(const SkPoint p[3], float w) {
|
||||
this->internalConicPatchesTo(fStrokeJoinType, p, w);
|
||||
}
|
||||
|
||||
// Is a cubic curve convex, and does it rotate no more than 180 degrees?
|
||||
enum class Convex180Status : bool {
|
||||
kUnknown,
|
||||
kYes
|
||||
};
|
||||
|
||||
void cubicTo(JoinType prevJoinType, const SkPoint p[4],
|
||||
Convex180Status convex180Status = Convex180Status::kUnknown, int maxDepth = -1) {
|
||||
// The stroke tessellation shader assigns special meaning to p0==p1==p2 and p1==p2==p3. If
|
||||
// this is the case then we need to rewrite the cubic.
|
||||
if (p[1] == p[2] && (p[1] == p[0] || p[1] == p[3])) {
|
||||
this->lineTo(prevJoinType, p[0], p[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
// Ensure our hardware supports enough tessellation segments to render the curve. This early
|
||||
// out assumes a worst-case cubic rotation of 360 degrees and a worst-case number of
|
||||
// segments in the join.
|
||||
//
|
||||
// An informal survey of skottie animations revealed that with a bare minimum of 64
|
||||
// tessellation segments, 95% of cubics take this early out.
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::cubic_pow4(fTolerances.fParametricIntolerance, p);
|
||||
if (numParametricSegments_pow4 <= fMaxParametricSegments360_pow4_withJoin) {
|
||||
this->rawStrokeTo(prevJoinType, /*prevJoinFitsInPatch=*/true, p, p[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
float maxParametricSegments_pow4 = (convex180Status == Convex180Status::kYes) ?
|
||||
fMaxParametricSegments180_pow4 : fMaxParametricSegments360_pow4;
|
||||
if (numParametricSegments_pow4 <= maxParametricSegments_pow4 || maxDepth == 0) {
|
||||
float maxParametricSegments_pow4_withJoin = (convex180Status == Convex180Status::kYes)
|
||||
? fMaxParametricSegments180_pow4_withJoin
|
||||
: fMaxParametricSegments360_pow4_withJoin;
|
||||
this->rawStrokeTo(prevJoinType,
|
||||
(numParametricSegments_pow4 <= maxParametricSegments_pow4_withJoin),
|
||||
p, p[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
// Ensure the curve does not inflect or rotate >180 degrees before we start subdividing and
|
||||
// measuring rotation.
|
||||
if (convex180Status == Convex180Status::kUnknown) {
|
||||
this->cubicConvex180SegmentsTo(prevJoinType, p);
|
||||
return;
|
||||
}
|
||||
|
||||
// We still might have enough tessellation segments to render the curve. Check again with
|
||||
// its actual rotation.
|
||||
float numRadialSegments =
|
||||
SkMeasureNonInflectCubicRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
|
||||
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
|
||||
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
|
||||
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
|
||||
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
|
||||
if (numCombinedSegments > fMaxTessellationSegments) {
|
||||
// The hardware doesn't support enough segments for this curve. Chop and recurse.
|
||||
SkPoint chops[7];
|
||||
if (maxDepth < 0) {
|
||||
// Decide on an extremely conservative upper bound for when to quit chopping. This
|
||||
// is solely to protect us from infinite recursion in instances where FP error
|
||||
// prevents us from chopping at the correct midtangent.
|
||||
maxDepth = sk_float_nextlog2(numParametricSegments) +
|
||||
sk_float_nextlog2(numRadialSegments) + 1;
|
||||
maxDepth = std::max(maxDepth, 1);
|
||||
}
|
||||
if (numParametricSegments >= numRadialSegments) {
|
||||
SkChopCubicAtHalf(p, chops);
|
||||
} else {
|
||||
SkChopCubicAtMidTangent(p, chops);
|
||||
}
|
||||
this->cubicTo(prevJoinType, chops, Convex180Status::kYes, maxDepth - 1);
|
||||
this->cubicTo(JoinType::kBowtie, chops + 3, Convex180Status::kYes, maxDepth - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
this->rawStrokeTo(prevJoinType, (numCombinedSegments <= fMaxCombinedSegments_withJoin), p,
|
||||
p[3]);
|
||||
}
|
||||
|
||||
void cubicConvex180SegmentsTo(JoinType prevJoinType, const SkPoint p[4]) {
|
||||
// Chops the given cubic at points of inflection and 180-degree rotation, and then recursively
|
||||
// chops the previous join and cubic sections as necessary until the segments fit in
|
||||
// tessellation patches.
|
||||
void writeCubicConvex180PatchesTo(const SkPoint p[4]) {
|
||||
SkPoint chops[10];
|
||||
float chopT[2];
|
||||
bool areCusps = false;
|
||||
int numChops = GrPathUtils::findCubicConvex180Chops(p, chopT, &areCusps);
|
||||
if (numChops == 0) {
|
||||
// The curve is already convex and rotates no more than 180 degrees.
|
||||
this->cubicTo(prevJoinType, p, Convex180Status::kYes);
|
||||
this->internalCubicConvex180PatchesTo(fStrokeJoinType, p);
|
||||
} else if (numChops == 1) {
|
||||
SkChopCubicAt(p, chops, chopT[0]);
|
||||
if (areCusps) {
|
||||
// When chopping on a perfect cusp, these 3 points will be equal.
|
||||
chops[2] = chops[4] = chops[3];
|
||||
}
|
||||
this->cubicTo(prevJoinType, chops, Convex180Status::kYes);
|
||||
this->cubicTo(JoinType::kBowtie, chops + 3, Convex180Status::kYes);
|
||||
this->internalCubicConvex180PatchesTo(fStrokeJoinType, chops);
|
||||
this->internalCubicConvex180PatchesTo(JoinType::kBowtie, chops + 3);
|
||||
} else {
|
||||
SkASSERT(numChops == 2);
|
||||
SkChopCubicAt(p, chops, chopT[0], chopT[1]);
|
||||
// Two cusps are only possible on a flat line with two 180-degree turnarounds.
|
||||
if (areCusps) {
|
||||
this->lineTo(prevJoinType, chops[0], chops[3]);
|
||||
this->lineTo(JoinType::kBowtie, chops[3], chops[6]);
|
||||
this->lineTo(JoinType::kBowtie, chops[6], chops[9]);
|
||||
this->writeLineTo(chops[0], chops[3]);
|
||||
this->writeLineTo(JoinType::kBowtie, chops[3], chops[6]);
|
||||
this->writeLineTo(JoinType::kBowtie, chops[6], chops[9]);
|
||||
return;
|
||||
}
|
||||
this->cubicTo(prevJoinType, chops, Convex180Status::kYes);
|
||||
this->cubicTo(JoinType::kBowtie, chops + 3, Convex180Status::kYes);
|
||||
this->cubicTo(JoinType::kBowtie, chops + 6, Convex180Status::kYes);
|
||||
this->internalCubicConvex180PatchesTo(fStrokeJoinType, chops);
|
||||
this->internalCubicConvex180PatchesTo(JoinType::kBowtie, chops + 3);
|
||||
this->internalCubicConvex180PatchesTo(JoinType::kBowtie, chops + 6);
|
||||
}
|
||||
}
|
||||
|
||||
void close(SkPoint contourEndpoint, const SkMatrix& viewMatrix, const SkStrokeRec& stroke) {
|
||||
// Writes out the given stroke patch exactly as provided, without chopping or checking the
|
||||
// number of segments. Possibly chops its previous join until the segments fit in tessellation
|
||||
// patches.
|
||||
SK_ALWAYS_INLINE void writePatchTo(bool prevJoinFitsInPatch, const SkPoint p[4],
|
||||
SkPoint endControlPoint) {
|
||||
SkASSERT(fStrokeJoinType != JoinType::kBowtie);
|
||||
|
||||
if (!fHasLastControlPoint) {
|
||||
// The first stroke doesn't have a previous join (yet). If the current contour ends up
|
||||
// closing itself, we will add that join as its own patch. TODO: Consider deferring the
|
||||
// first stroke until we know whether the contour will close. This will allow us to use
|
||||
// the closing join as the first patch's previous join.
|
||||
fHasLastControlPoint = true;
|
||||
fCurrContourFirstControlPoint = (p[1] != p[0]) ? p[1] : p[2];
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
} else if (!prevJoinFitsInPatch) {
|
||||
// There aren't enough guaranteed segments to fold the previous join into this patch.
|
||||
// Emit the join in its own separate patch.
|
||||
this->internalJoinTo(fStrokeJoinType, p[0], (p[1] != p[0]) ? p[1] : p[2]);
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
}
|
||||
|
||||
if (this->allocPatch()) {
|
||||
fPatchWriter.write(fLastControlPoint);
|
||||
fPatchWriter.writeArray(p, 4);
|
||||
this->writeDynamicAttribs();
|
||||
}
|
||||
|
||||
fLastControlPoint = endControlPoint;
|
||||
}
|
||||
|
||||
void writeClose(SkPoint contourEndpoint, const SkMatrix& viewMatrix,
|
||||
const SkStrokeRec& stroke) {
|
||||
if (!fHasLastControlPoint) {
|
||||
// Draw caps instead of closing if the subpath is zero length:
|
||||
//
|
||||
@ -350,20 +265,19 @@ public:
|
||||
//
|
||||
// (https://www.w3.org/TR/SVG11/painting.html#StrokeProperties)
|
||||
//
|
||||
this->cap(contourEndpoint, viewMatrix, stroke);
|
||||
this->writeCaps(contourEndpoint, viewMatrix, stroke);
|
||||
return;
|
||||
}
|
||||
|
||||
// Draw a line back to the beginning. (This will be discarded if
|
||||
// contourEndpoint == fCurrContourStartPoint.)
|
||||
auto strokeJoinType = JoinType(stroke.getJoin());
|
||||
this->lineTo(strokeJoinType, contourEndpoint, fCurrContourStartPoint);
|
||||
this->joinTo(strokeJoinType, fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
this->writeLineTo(contourEndpoint, fCurrContourStartPoint);
|
||||
this->internalJoinTo(fStrokeJoinType, fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
|
||||
fHasLastControlPoint = false;
|
||||
}
|
||||
|
||||
void cap(SkPoint contourEndpoint, const SkMatrix& viewMatrix, const SkStrokeRec& stroke) {
|
||||
void writeCaps(SkPoint contourEndpoint, const SkMatrix& viewMatrix, const SkStrokeRec& stroke) {
|
||||
if (!fHasLastControlPoint) {
|
||||
// We don't have any control points to orient the caps. In this case, square and round
|
||||
// caps are specified to be drawn as an axis-aligned square or circle respectively.
|
||||
@ -407,10 +321,10 @@ public:
|
||||
// If our join type isn't round we can alternatively use a bowtie.
|
||||
JoinType roundCapJoinType = (stroke.getJoin() == SkPaint::kRound_Join)
|
||||
? JoinType::kRound : JoinType::kBowtie;
|
||||
this->joinTo(roundCapJoinType, contourEndpoint, fLastControlPoint);
|
||||
this->moveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
this->joinTo(roundCapJoinType, fCurrContourStartPoint,
|
||||
fCurrContourFirstControlPoint);
|
||||
this->internalJoinTo(roundCapJoinType, contourEndpoint, fLastControlPoint);
|
||||
this->internalMoveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
this->internalJoinTo(roundCapJoinType, fCurrContourStartPoint,
|
||||
fCurrContourFirstControlPoint);
|
||||
break;
|
||||
}
|
||||
case SkPaint::kSquare_Cap: {
|
||||
@ -425,8 +339,8 @@ public:
|
||||
lastTangent *=
|
||||
.5f / viewMatrix.mapVector(lastTangent.fX, lastTangent.fY).length();
|
||||
}
|
||||
this->lineTo(strokeJoinType, contourEndpoint, contourEndpoint + lastTangent);
|
||||
this->moveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
this->writeLineTo(strokeJoinType, contourEndpoint, contourEndpoint + lastTangent);
|
||||
this->internalMoveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
|
||||
SkVector firstTangent = fCurrContourFirstControlPoint - fCurrContourStartPoint;
|
||||
if (!stroke.isHairlineStyle()) {
|
||||
// Set the the cap back by 1/2 stroke width.
|
||||
@ -436,8 +350,8 @@ public:
|
||||
firstTangent *=
|
||||
-.5f / viewMatrix.mapVector(firstTangent.fX, firstTangent.fY).length();
|
||||
}
|
||||
this->lineTo(strokeJoinType, fCurrContourStartPoint,
|
||||
fCurrContourStartPoint + firstTangent);
|
||||
this->writeLineTo(strokeJoinType, fCurrContourStartPoint,
|
||||
fCurrContourStartPoint + firstTangent);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -446,52 +360,165 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void moveTo(SkPoint pt, SkPoint lastControlPoint) {
|
||||
void internalMoveTo(SkPoint pt, SkPoint lastControlPoint) {
|
||||
fCurrContourStartPoint = pt;
|
||||
fCurrContourFirstControlPoint = fLastControlPoint = lastControlPoint;
|
||||
fHasLastControlPoint = true;
|
||||
}
|
||||
|
||||
void rawStrokeTo(JoinType prevJoinType, bool prevJoinFitsInPatch, const SkPoint p[4],
|
||||
SkPoint endPt) {
|
||||
SkPoint c1 = (p[1] == p[0]) ? p[2] : p[1];
|
||||
SkPoint c2 = (p[2] == endPt) ? p[1] : p[2];
|
||||
// Recursively chops the given conic and its previous join until the segments fit in
|
||||
// tessellation patches.
|
||||
void internalConicPatchesTo(JoinType prevJoinType, const SkPoint p[3], float w,
|
||||
int maxDepth = -1) {
|
||||
// Zero-length paths need special treatment because they are spec'd to behave differently.
|
||||
// If the control point is colocated on an endpoint then this might end up being the case.
|
||||
// Fall back on a lineTo and let it make the final check.
|
||||
if (p[1] == p[0] || p[1] == p[2] || w == 0) {
|
||||
this->writeLineTo(prevJoinType, p[0], p[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
if (prevJoinType == JoinType::kBowtie) {
|
||||
// Bowties need to go in their own patch if they will have >1 segment. TODO: Investigate
|
||||
// if an optimization like "x < fCosRadiansPerSegment" would be worth it.
|
||||
float rotation = SkMeasureAngleBetweenVectors(p[0] - fLastControlPoint, c1 - p[0]);
|
||||
if (rotation * fTolerances.fNumRadialSegmentsPerRadian > 1) {
|
||||
this->joinTo(prevJoinType, p[0], c1);
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
// Convert to a patch.
|
||||
SkPoint asPatch[4];
|
||||
if (w == 1) {
|
||||
GrPathUtils::convertQuadToCubic(p, asPatch);
|
||||
} else {
|
||||
GrPathShader::WriteConicPatch(p, w, asPatch);
|
||||
}
|
||||
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::quadratic_pow4(fTolerances.fParametricIntolerance, p);
|
||||
if (this->stroke180FitsInPatch(numParametricSegments_pow4) || maxDepth == 0) {
|
||||
this->internalPatchTo(prevJoinType,
|
||||
this->stroke180FitsInPatch_withJoin(numParametricSegments_pow4),
|
||||
asPatch, p[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
// We still might have enough tessellation segments to render the curve. Check again with
|
||||
// the actual rotation.
|
||||
float numRadialSegments =
|
||||
SkMeasureQuadRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
|
||||
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
|
||||
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
|
||||
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
|
||||
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
|
||||
if (numCombinedSegments > fMaxTessellationSegments) {
|
||||
// The hardware doesn't support enough segments for this curve. Chop and recurse.
|
||||
if (maxDepth < 0) {
|
||||
// Decide on an extremely conservative upper bound for when to quit chopping. This
|
||||
// is solely to protect us from infinite recursion in instances where FP error
|
||||
// prevents us from chopping at the correct midtangent.
|
||||
maxDepth = sk_float_nextlog2(numParametricSegments) +
|
||||
sk_float_nextlog2(numRadialSegments) + 1;
|
||||
maxDepth = std::max(maxDepth, 1);
|
||||
}
|
||||
} else if (!fHasLastControlPoint) {
|
||||
// The first stroke doesn't have a previous join (yet). If the current contour ends up
|
||||
// closing itself, we will add that join as its own patch. TODO: Consider deferring the
|
||||
// first stroke until we know whether the contour will close. This will allow us to use
|
||||
// the closing join as the first patch's previous join.
|
||||
fHasLastControlPoint = true;
|
||||
fCurrContourFirstControlPoint = c1;
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
} else if (!prevJoinFitsInPatch) {
|
||||
// The stroke has extremely thick round joins and there aren't enough guaranteed
|
||||
// segments to always combine a join with a line patch. Emit the join in its own
|
||||
// separate patch.
|
||||
this->joinTo(prevJoinType, p[0], c1);
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
if (w == 1) {
|
||||
SkPoint chops[5];
|
||||
if (numParametricSegments >= numRadialSegments) {
|
||||
SkChopQuadAtHalf(p, chops);
|
||||
} else {
|
||||
SkChopQuadAtMidTangent(p, chops);
|
||||
}
|
||||
this->internalConicPatchesTo(prevJoinType, chops, 1, maxDepth - 1);
|
||||
this->internalConicPatchesTo(JoinType::kBowtie, chops + 2, 1, maxDepth - 1);
|
||||
} else {
|
||||
SkConic conic(p, w);
|
||||
float chopT = (numParametricSegments >= numRadialSegments) ? .5f
|
||||
: conic.findMidTangent();
|
||||
SkConic chops[2];
|
||||
if (conic.chopAt(chopT, chops)) {
|
||||
this->internalConicPatchesTo(prevJoinType, chops[0].fPts, chops[0].fW,
|
||||
maxDepth - 1);
|
||||
this->internalConicPatchesTo(JoinType::kBowtie, chops[1].fPts, chops[1].fW,
|
||||
maxDepth - 1);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (this->reservePatch()) {
|
||||
fPatchWriter.write(fLastControlPoint);
|
||||
fPatchWriter.writeArray(p, 4);
|
||||
this->emitDynamicAttribs();
|
||||
}
|
||||
|
||||
fLastControlPoint = c2;
|
||||
this->internalPatchTo(prevJoinType, (numCombinedSegments <= fMaxCombinedSegments_withJoin),
|
||||
asPatch, p[2]);
|
||||
}
|
||||
|
||||
void joinTo(JoinType joinType, SkPoint junctionPoint, SkPoint nextControlPoint,
|
||||
int maxDepth = -1) {
|
||||
// Recursively chops the given cubic and its previous join until the segments fit in
|
||||
// tessellation patches. The cubic must be convex and must not rotate more than 180 degrees.
|
||||
void internalCubicConvex180PatchesTo(JoinType prevJoinType, const SkPoint p[4],
|
||||
int maxDepth = -1) {
|
||||
// The stroke tessellation shader assigns special meaning to p0==p1==p2 and p1==p2==p3. If
|
||||
// this is the case then we need to rewrite the cubic.
|
||||
if (p[1] == p[2] && (p[1] == p[0] || p[1] == p[3])) {
|
||||
this->writeLineTo(prevJoinType, p[0], p[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::cubic_pow4(fTolerances.fParametricIntolerance, p);
|
||||
if (this->stroke180FitsInPatch(numParametricSegments_pow4) || maxDepth == 0) {
|
||||
this->internalPatchTo(prevJoinType,
|
||||
this->stroke180FitsInPatch_withJoin(numParametricSegments_pow4),
|
||||
p, p[3]);
|
||||
return;
|
||||
}
|
||||
|
||||
// We still might have enough tessellation segments to render the curve. Check again with
|
||||
// its actual rotation.
|
||||
float numRadialSegments =
|
||||
SkMeasureNonInflectCubicRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
|
||||
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
|
||||
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
|
||||
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
|
||||
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
|
||||
if (numCombinedSegments > fMaxTessellationSegments) {
|
||||
// The hardware doesn't support enough segments for this curve. Chop and recurse.
|
||||
SkPoint chops[7];
|
||||
if (maxDepth < 0) {
|
||||
// Decide on an extremely conservative upper bound for when to quit chopping. This
|
||||
// is solely to protect us from infinite recursion in instances where FP error
|
||||
// prevents us from chopping at the correct midtangent.
|
||||
maxDepth = sk_float_nextlog2(numParametricSegments) +
|
||||
sk_float_nextlog2(numRadialSegments) + 1;
|
||||
maxDepth = std::max(maxDepth, 1);
|
||||
}
|
||||
if (numParametricSegments >= numRadialSegments) {
|
||||
SkChopCubicAtHalf(p, chops);
|
||||
} else {
|
||||
SkChopCubicAtMidTangent(p, chops);
|
||||
}
|
||||
this->internalCubicConvex180PatchesTo(prevJoinType, chops, maxDepth - 1);
|
||||
this->internalCubicConvex180PatchesTo(JoinType::kBowtie, chops + 3, maxDepth - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
this->internalPatchTo(prevJoinType, (numCombinedSegments <= fMaxCombinedSegments_withJoin),
|
||||
p, p[3]);
|
||||
}
|
||||
|
||||
// Writes out the given stroke patch exactly as provided, without chopping or checking the
|
||||
// number of segments. Possibly chops its previous join until the segments fit in tessellation
|
||||
// patches. It is valid for prevJoinType to be kBowtie.
|
||||
void internalPatchTo(JoinType prevJoinType, bool prevJoinFitsInPatch, const SkPoint p[4],
|
||||
SkPoint endPt) {
|
||||
if (prevJoinType == JoinType::kBowtie) {
|
||||
SkASSERT(fHasLastControlPoint);
|
||||
// Bowties need to go in their own patch if they will have >1 segment. TODO: Investigate
|
||||
// if an optimization like "x < fCosRadiansPerSegment" would be worth it.
|
||||
SkPoint nextControlPoint = (p[1] == p[0]) ? p[2] : p[1];
|
||||
float rotation = SkMeasureAngleBetweenVectors(p[0] - fLastControlPoint,
|
||||
nextControlPoint - p[0]);
|
||||
if (rotation * fTolerances.fNumRadialSegmentsPerRadian > 1) {
|
||||
this->internalJoinTo(prevJoinType, p[0], nextControlPoint);
|
||||
fLastControlPoint = p[0]; // Disables the join section of this patch.
|
||||
prevJoinFitsInPatch = true;
|
||||
}
|
||||
}
|
||||
|
||||
this->writePatchTo(prevJoinFitsInPatch, p, (p[2] != endPt) ? p[2] : p[1]);
|
||||
}
|
||||
|
||||
// Recursively chops the given join until the segments fit in tessellation patches.
|
||||
void internalJoinTo(JoinType joinType, SkPoint junctionPoint, SkPoint nextControlPoint,
|
||||
int maxDepth = -1) {
|
||||
if (!fHasLastControlPoint) {
|
||||
// The first stroke doesn't have a previous join.
|
||||
return;
|
||||
@ -527,10 +554,11 @@ private:
|
||||
c0 = junctionPoint + bisector;
|
||||
c1 = junctionPoint - bisector;
|
||||
} while (c0 - junctionPoint != -(c1 - junctionPoint) && --maxAttempts);
|
||||
this->joinTo(joinType, junctionPoint, c0, maxDepth - 1); // First join half.
|
||||
// First join half.
|
||||
this->internalJoinTo(joinType, junctionPoint, c0, maxDepth - 1);
|
||||
fLastControlPoint = c1;
|
||||
// Second join half.
|
||||
this->joinTo(joinType, junctionPoint, nextControlPoint, maxDepth - 1);
|
||||
this->internalJoinTo(joinType, junctionPoint, nextControlPoint, maxDepth - 1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -538,7 +566,7 @@ private:
|
||||
// We should never write out joins before the first curve.
|
||||
SkASSERT(fHasLastControlPoint);
|
||||
|
||||
if (this->reservePatch()) {
|
||||
if (this->allocPatch()) {
|
||||
fPatchWriter.write(fLastControlPoint, junctionPoint);
|
||||
if (joinType == JoinType::kBowtie) {
|
||||
// {prevControlPoint, [p0, p0, p0, p3]} is a reserved patch pattern that means this
|
||||
@ -547,18 +575,18 @@ private:
|
||||
fPatchWriter.write(junctionPoint, junctionPoint);
|
||||
} else {
|
||||
// {prevControlPoint, [p0, p3, p3, p3]} is a reserved patch pattern that means this
|
||||
// patch is a join only (no curve sections in the patch). The join is anchored on p0 and
|
||||
// its tangent angles go from (p0 - prevControlPoint) to (p3 - p0).
|
||||
// patch is a join only (no curve sections in the patch). The join is anchored on p0
|
||||
// and its tangent angles go from (p0 - prevControlPoint) to (p3 - p0).
|
||||
fPatchWriter.write(nextControlPoint, nextControlPoint);
|
||||
}
|
||||
fPatchWriter.write(nextControlPoint);
|
||||
this->emitDynamicAttribs();
|
||||
this->writeDynamicAttribs();
|
||||
}
|
||||
|
||||
fLastControlPoint = nextControlPoint;
|
||||
}
|
||||
|
||||
void emitDynamicAttribs() {
|
||||
void writeDynamicAttribs() {
|
||||
if (fShaderFlags & ShaderFlags::kDynamicStroke) {
|
||||
fPatchWriter.write(fDynamicStroke);
|
||||
}
|
||||
@ -567,7 +595,7 @@ private:
|
||||
}
|
||||
}
|
||||
|
||||
bool reservePatch() {
|
||||
bool allocPatch() {
|
||||
if (fPatchChunks->back().fPatchCount >= fCurrChunkPatchCapacity) {
|
||||
// The current chunk is full. Time to allocate a new one. (And no need to put back
|
||||
// vertices; the buffer is full.)
|
||||
@ -608,6 +636,7 @@ private:
|
||||
// all curves directly to the hardware without having to chop. We raise to the 4th power because
|
||||
// the "pow4" variants of Wang's formula are the quickest to evaluate.
|
||||
GrStrokeTessellateShader::Tolerances fTolerances;
|
||||
JoinType fStrokeJoinType;
|
||||
float fMaxParametricSegments180_pow4;
|
||||
float fMaxParametricSegments360_pow4;
|
||||
float fMaxParametricSegments180_pow4_withJoin;
|
||||
@ -671,58 +700,147 @@ void GrStrokeHardwareTessellator::prepare(GrMeshDrawOp::Target* target,
|
||||
}
|
||||
|
||||
const SkPath& path = pathStroke->fPath;
|
||||
auto strokeJoinType = JoinType(stroke.getJoin());
|
||||
SkPathVerb previousVerb = SkPathVerb::kClose;
|
||||
bool contourIsEmpty = true;
|
||||
for (auto [verb, p, w] : SkPathPriv::Iterate(path)) {
|
||||
bool prevJoinFitsInPatch;
|
||||
SkPoint scratchPts[4];
|
||||
const SkPoint* patchPts;
|
||||
SkPoint endControlPoint;
|
||||
switch (verb) {
|
||||
case SkPathVerb::kMove:
|
||||
// "A subpath ... consisting of a single moveto shall not be stroked."
|
||||
// https://www.w3.org/TR/SVG11/painting.html#StrokeProperties
|
||||
if (previousVerb != SkPathVerb::kMove && previousVerb != SkPathVerb::kClose) {
|
||||
patchWriter.cap(p[-1], viewMatrix, stroke);
|
||||
if (!contourIsEmpty) {
|
||||
patchWriter.writeCaps(p[-1], viewMatrix, stroke);
|
||||
}
|
||||
patchWriter.moveTo(p[0]);
|
||||
break;
|
||||
contourIsEmpty = true;
|
||||
continue;
|
||||
case SkPathVerb::kClose:
|
||||
patchWriter.writeClose(p[0], viewMatrix, stroke);
|
||||
contourIsEmpty = true;
|
||||
continue;
|
||||
case SkPathVerb::kLine:
|
||||
patchWriter.lineTo(strokeJoinType, p[0], p[1]);
|
||||
break;
|
||||
case SkPathVerb::kQuad:
|
||||
if (conic_has_cusp(p)) {
|
||||
SkPoint cusp = SkEvalQuadAt(p, SkFindQuadMidTangent(p));
|
||||
patchWriter.lineTo(strokeJoinType, p[0], cusp);
|
||||
patchWriter.lineTo(JoinType::kBowtie, cusp, p[2]);
|
||||
} else {
|
||||
patchWriter.conicTo(strokeJoinType, p, 1);
|
||||
// Set this to false first, before the upcoming continue might disrupt our flow.
|
||||
contourIsEmpty = false;
|
||||
if (p[0] == p[1]) {
|
||||
continue;
|
||||
}
|
||||
prevJoinFitsInPatch = patchWriter.lineFitsInPatch_withJoin();
|
||||
scratchPts[0] = scratchPts[1] = p[0];
|
||||
scratchPts[2] = scratchPts[3] = p[1];
|
||||
patchPts = scratchPts;
|
||||
endControlPoint = p[0];
|
||||
break;
|
||||
case SkPathVerb::kConic:
|
||||
case SkPathVerb::kQuad: {
|
||||
contourIsEmpty = false;
|
||||
if (p[1] == p[0] || p[1] == p[2]) {
|
||||
// Zero-length paths need special treatment because they are spec'd to
|
||||
// behave differently. If the control point is colocated on an endpoint then
|
||||
// this might end up being the case. Fall back on a lineTo and let it make
|
||||
// the final check.
|
||||
patchWriter.writeLineTo(p[0], p[2]);
|
||||
continue;
|
||||
}
|
||||
if (conic_has_cusp(p)) {
|
||||
// Cusps are rare, but the tessellation shader can't handle them. Chop the
|
||||
// curve into segments that the shader can handle.
|
||||
SkPoint cusp = SkEvalQuadAt(p, SkFindQuadMidTangent(p));
|
||||
patchWriter.writeLineTo(p[0], cusp);
|
||||
patchWriter.writeLineTo(JoinType::kBowtie, cusp, p[2]);
|
||||
continue;
|
||||
}
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::quadratic_pow4(patchWriter.parametricIntolerance(), p);
|
||||
if (!patchWriter.stroke180FitsInPatch(numParametricSegments_pow4)) {
|
||||
// The curve requires more tessellation segments than the hardware can
|
||||
// support. This is rare. Recursively chop until each sub-curve fits.
|
||||
patchWriter.writeConicPatchesTo(p, 1);
|
||||
continue;
|
||||
}
|
||||
// The curve fits in a single tessellation patch. This is the most common case.
|
||||
// Write it out directly.
|
||||
prevJoinFitsInPatch = patchWriter.stroke180FitsInPatch_withJoin(
|
||||
numParametricSegments_pow4);
|
||||
GrPathUtils::convertQuadToCubic(p, scratchPts);
|
||||
patchPts = scratchPts;
|
||||
endControlPoint = patchPts[2];
|
||||
break;
|
||||
}
|
||||
case SkPathVerb::kConic: {
|
||||
contourIsEmpty = false;
|
||||
if (p[1] == p[0] || p[1] == p[2]) {
|
||||
// Zero-length paths need special treatment because they are spec'd to
|
||||
// behave differently. If the control point is colocated on an endpoint then
|
||||
// this might end up being the case. Fall back on a lineTo and let it make
|
||||
// the final check.
|
||||
patchWriter.writeLineTo(p[0], p[2]);
|
||||
continue;
|
||||
}
|
||||
if (conic_has_cusp(p)) {
|
||||
// Cusps are rare, but the tessellation shader can't handle them. Chop the
|
||||
// curve into segments that the shader can handle.
|
||||
SkConic conic(p, *w);
|
||||
SkPoint cusp = conic.evalAt(conic.findMidTangent());
|
||||
patchWriter.lineTo(strokeJoinType, p[0], cusp);
|
||||
patchWriter.lineTo(JoinType::kBowtie, cusp, p[2]);
|
||||
} else {
|
||||
patchWriter.conicTo(strokeJoinType, p, *w);
|
||||
patchWriter.writeLineTo(p[0], cusp);
|
||||
patchWriter.writeLineTo(JoinType::kBowtie, cusp, p[2]);
|
||||
continue;
|
||||
}
|
||||
// For now, the tessellation shader still uses Wang's quadratic formula when it
|
||||
// draws conics.
|
||||
// TODO: Update here when the shader starts using the real conic formula.
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::quadratic_pow4(patchWriter.parametricIntolerance(), p);
|
||||
if (!patchWriter.stroke180FitsInPatch(numParametricSegments_pow4)) {
|
||||
// The curve requires more tessellation segments than the hardware can
|
||||
// support. This is rare. Recursively chop until each sub-curve fits.
|
||||
patchWriter.writeConicPatchesTo(p, *w);
|
||||
continue;
|
||||
}
|
||||
// The curve fits in a single tessellation patch. This is the most common
|
||||
// case. Write it out directly.
|
||||
prevJoinFitsInPatch = patchWriter.stroke180FitsInPatch_withJoin(
|
||||
numParametricSegments_pow4);
|
||||
GrPathShader::WriteConicPatch(p, *w, scratchPts);
|
||||
patchPts = scratchPts;
|
||||
endControlPoint = p[1];
|
||||
break;
|
||||
case SkPathVerb::kCubic:
|
||||
}
|
||||
case SkPathVerb::kCubic: {
|
||||
contourIsEmpty = false;
|
||||
if (p[1] == p[2] && (p[1] == p[0] || p[1] == p[3])) {
|
||||
// The stroke tessellation shader assigns special meaning to p0==p1==p2 and
|
||||
// p1==p2==p3. If this is the case then we need to rewrite the cubic.
|
||||
patchWriter.writeLineTo(p[0], p[3]);
|
||||
continue;
|
||||
}
|
||||
float numParametricSegments_pow4 =
|
||||
GrWangsFormula::cubic_pow4(patchWriter.parametricIntolerance(), p);
|
||||
bool areCusps;
|
||||
GrPathUtils::findCubicConvex180Chops(p, nullptr, &areCusps);
|
||||
if (areCusps) {
|
||||
patchWriter.cubicConvex180SegmentsTo(strokeJoinType, p);
|
||||
} else {
|
||||
patchWriter.cubicTo(strokeJoinType, p);
|
||||
if (!patchWriter.stroke360FitsInPatch(numParametricSegments_pow4) || areCusps) {
|
||||
// Either the curve requires more tessellation segments than the hardware
|
||||
// can support, or it has cusp(s). Either case is rare. Chop it into
|
||||
// sections that rotate 180 degrees or less (which will naturally be the
|
||||
// cusp points if there are any), and then recursively chop each section
|
||||
// until it fits.
|
||||
patchWriter.writeCubicConvex180PatchesTo(p);
|
||||
continue;
|
||||
}
|
||||
// The curve fits in a single tessellation patch. This is the most common case.
|
||||
// Write it out directly.
|
||||
prevJoinFitsInPatch = patchWriter.stroke360FitsInPatch_withJoin(
|
||||
numParametricSegments_pow4);
|
||||
patchPts = p;
|
||||
endControlPoint = (p[2] != p[3]) ? p[2] : p[1];
|
||||
break;
|
||||
case SkPathVerb::kClose:
|
||||
patchWriter.close(p[0], viewMatrix, stroke);
|
||||
break;
|
||||
}
|
||||
}
|
||||
previousVerb = verb;
|
||||
patchWriter.writePatchTo(prevJoinFitsInPatch, patchPts, endControlPoint);
|
||||
}
|
||||
if (previousVerb != SkPathVerb::kMove && previousVerb != SkPathVerb::kClose) {
|
||||
if (!contourIsEmpty) {
|
||||
const SkPoint* p = SkPathPriv::PointData(path);
|
||||
patchWriter.cap(p[path.countPoints() - 1], viewMatrix, stroke);
|
||||
patchWriter.writeCaps(p[path.countPoints() - 1], viewMatrix, stroke);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user