converted GrCircleBlurFragmentProcessor to sksl
Bug: skia: Change-Id: I1b70ba2003c9e9de2b5b9acadaf25c9ed59b1198 Reviewed-on: https://skia-review.googlesource.com/21727 Commit-Queue: Ethan Nicholas <ethannicholas@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
This commit is contained in:
parent
66828c0245
commit
9b80ffc77b
@ -25,5 +25,6 @@ skia_sksl_sources = [
|
||||
|
||||
skia_gpu_processor_sources = [
|
||||
"$_src/effects/GrAlphaThresholdFragmentProcessor.fp",
|
||||
"$_src/effects/GrCircleBlurFragmentProcessor.fp",
|
||||
"$_src/gpu/effects/GrDitherEffect.fp",
|
||||
]
|
||||
|
@ -9,8 +9,8 @@
|
||||
* This file was autogenerated from GrAlphaThresholdFragmentProcessor.fp; do not modify.
|
||||
*/
|
||||
#include "GrAlphaThresholdFragmentProcessor.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
|
||||
#if SK_SUPPORT_GPU
|
||||
inline GrFragmentProcessor::OptimizationFlags GrAlphaThresholdFragmentProcessor::optFlags(
|
||||
float outerThreshold) {
|
||||
if (outerThreshold >= 1.0) {
|
||||
@ -98,5 +98,4 @@ sk_sp<GrFragmentProcessor> GrAlphaThresholdFragmentProcessor::TestCreate(GrProce
|
||||
bounds);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -45,17 +45,10 @@ in uniform float outerThreshold;
|
||||
}
|
||||
|
||||
@header {
|
||||
#include "SkTypes.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
#include "GrColorSpaceXform.h"
|
||||
}
|
||||
|
||||
@headerEnd {
|
||||
#endif
|
||||
}
|
||||
|
||||
@cpp {
|
||||
#if SK_SUPPORT_GPU
|
||||
inline GrFragmentProcessor::OptimizationFlags GrAlphaThresholdFragmentProcessor::optFlags(
|
||||
float outerThreshold) {
|
||||
if (outerThreshold >= 1.0) {
|
||||
@ -67,10 +60,6 @@ in uniform float outerThreshold;
|
||||
}
|
||||
}
|
||||
|
||||
@cppEnd {
|
||||
#endif
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 color = texture(image, sk_TransformedCoords2D[0], colorXform);
|
||||
vec4 mask_color = texture(mask, sk_TransformedCoords2D[1]);
|
||||
|
@ -10,9 +10,9 @@
|
||||
*/
|
||||
#ifndef GrAlphaThresholdFragmentProcessor_DEFINED
|
||||
#define GrAlphaThresholdFragmentProcessor_DEFINED
|
||||
#include "SkTypes.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
|
||||
#include "SkTypes.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
#include "GrColorSpaceXform.h"
|
||||
#include "GrFragmentProcessor.h"
|
||||
#include "GrCoordTransform.h"
|
||||
@ -75,6 +75,5 @@ private:
|
||||
float fOuterThreshold;
|
||||
typedef GrFragmentProcessor INHERITED;
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1,359 +1,316 @@
|
||||
/*
|
||||
* Copyright 2015 Google Inc.
|
||||
* Copyright 2017 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
|
||||
*/
|
||||
#include "GrCircleBlurFragmentProcessor.h"
|
||||
|
||||
#if SK_SUPPORT_GPU
|
||||
|
||||
#include "GrContext.h"
|
||||
#include "GrResourceProvider.h"
|
||||
#include "glsl/GrGLSLFragmentProcessor.h"
|
||||
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
||||
#include "glsl/GrGLSLProgramDataManager.h"
|
||||
#include "glsl/GrGLSLUniformHandler.h"
|
||||
#include "GrResourceProvider.h"
|
||||
|
||||
#include "SkFixed.h"
|
||||
|
||||
class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor {
|
||||
public:
|
||||
void emitCode(EmitArgs&) override;
|
||||
|
||||
protected:
|
||||
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
|
||||
|
||||
private:
|
||||
GrGLSLProgramDataManager::UniformHandle fDataUniform;
|
||||
|
||||
typedef GrGLSLFragmentProcessor INHERITED;
|
||||
};
|
||||
|
||||
void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) {
|
||||
const char *dataName;
|
||||
|
||||
// The data is formatted as:
|
||||
// x,y - the center of the circle
|
||||
// z - inner radius that should map to 0th entry in the texture.
|
||||
// w - the inverse of the distance over which the texture is stretched.
|
||||
fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
|
||||
kVec4f_GrSLType,
|
||||
kDefault_GrSLPrecision,
|
||||
"data",
|
||||
&dataName);
|
||||
|
||||
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
|
||||
|
||||
if (args.fInputColor) {
|
||||
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
|
||||
} else {
|
||||
fragBuilder->codeAppendf("vec4 src=vec4(1);");
|
||||
}
|
||||
|
||||
// We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
|
||||
// for precision.
|
||||
fragBuilder->codeAppendf("vec2 vec = vec2( (sk_FragCoord.x - %s.x) * %s.w, "
|
||||
"(sk_FragCoord.y - %s.y) * %s.w );",
|
||||
dataName, dataName, dataName, dataName);
|
||||
fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;",
|
||||
dataName, dataName);
|
||||
|
||||
fragBuilder->codeAppendf("float intensity = ");
|
||||
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)");
|
||||
fragBuilder->codeAppend(".a;");
|
||||
|
||||
fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
|
||||
}
|
||||
|
||||
void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
|
||||
const GrFragmentProcessor& proc) {
|
||||
const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
|
||||
const SkRect& circle = cbfp.fCircle;
|
||||
|
||||
// The data is formatted as:
|
||||
// x,y - the center of the circle
|
||||
// z - inner radius that should map to 0th entry in the texture.
|
||||
// w - the inverse of the distance over which the profile texture is stretched.
|
||||
pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius,
|
||||
1.f / cbfp.fTextureRadius);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
|
||||
float textureRadius,
|
||||
float solidRadius,
|
||||
sk_sp<GrTextureProxy> blurProfile)
|
||||
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
|
||||
, fCircle(circle)
|
||||
, fSolidRadius(solidRadius)
|
||||
, fTextureRadius(textureRadius)
|
||||
, fBlurProfileSampler(std::move(blurProfile), GrSamplerParams::kBilerp_FilterMode) {
|
||||
this->initClassID<GrCircleBlurFragmentProcessor>();
|
||||
this->addTextureSampler(&fBlurProfileSampler);
|
||||
}
|
||||
|
||||
GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
|
||||
return new GLSLProcessor;
|
||||
}
|
||||
|
||||
void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
|
||||
GrProcessorKeyBuilder* b) const {
|
||||
// The code for this processor is always the same so there is nothing to add to the key.
|
||||
return;
|
||||
}
|
||||
|
||||
// Computes an unnormalized half kernel (right side). Returns the summation of all the half kernel
|
||||
// values.
|
||||
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
|
||||
const float invSigma = 1.f / sigma;
|
||||
const float b = -0.5f * invSigma * invSigma;
|
||||
float tot = 0.0f;
|
||||
// Compute half kernel values at half pixel steps out from the center.
|
||||
float t = 0.5f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
float value = expf(t * t * b);
|
||||
tot += value;
|
||||
halfKernel[i] = value;
|
||||
t += 1.f;
|
||||
}
|
||||
return tot;
|
||||
}
|
||||
|
||||
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number of
|
||||
// discrete steps. The half kernel is normalized to sum to 0.5.
|
||||
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
|
||||
int halfKernelSize, float sigma) {
|
||||
// The half kernel should sum to 0.5 not 1.0.
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
|
||||
float sum = 0.f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[i] /= tot;
|
||||
sum += halfKernel[i];
|
||||
summedHalfKernel[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
|
||||
// origin with radius circleR.
|
||||
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
|
||||
int halfKernelSize, const float* summedHalfKernelTable) {
|
||||
float x = firstX;
|
||||
for (int i = 0; i < numSteps; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
results[i] = 0;
|
||||
continue;
|
||||
|
||||
|
||||
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
|
||||
const float invSigma = 1.f / sigma;
|
||||
const float b = -0.5f * invSigma * invSigma;
|
||||
float tot = 0.0f;
|
||||
|
||||
float t = 0.5f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
float value = expf(t * t * b);
|
||||
tot += value;
|
||||
halfKernel[i] = value;
|
||||
t += 1.f;
|
||||
}
|
||||
float y = sqrtf(circleR * circleR - x * x);
|
||||
// In the column at x we exit the circle at +y and -y
|
||||
// The summed table entry j is actually reflects an offset of j + 0.5.
|
||||
y -= 0.5f;
|
||||
int yInt = SkScalarFloorToInt(y);
|
||||
SkASSERT(yInt >= -1);
|
||||
if (y < 0) {
|
||||
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
|
||||
} else if (yInt >= halfKernelSize - 1) {
|
||||
results[i] = 0.5f;
|
||||
return tot;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
|
||||
int halfKernelSize, float sigma) {
|
||||
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
|
||||
float sum = 0.f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[i] /= tot;
|
||||
sum += halfKernel[i];
|
||||
summedHalfKernel[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
|
||||
int halfKernelSize, const float* summedHalfKernelTable) {
|
||||
float x = firstX;
|
||||
for (int i = 0; i < numSteps; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
results[i] = 0;
|
||||
continue;
|
||||
}
|
||||
float y = sqrtf(circleR * circleR - x * x);
|
||||
|
||||
|
||||
y -= 0.5f;
|
||||
int yInt = SkScalarFloorToInt(y);
|
||||
SkASSERT(yInt >= -1);
|
||||
if (y < 0) {
|
||||
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
|
||||
} else if (yInt >= halfKernelSize - 1) {
|
||||
results[i] = 0.5f;
|
||||
} else {
|
||||
float yFrac = y - yInt;
|
||||
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
|
||||
yFrac * summedHalfKernelTable[yInt + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
|
||||
const float* yKernelEvaluations) {
|
||||
float acc = 0;
|
||||
|
||||
float x = evalX - halfKernelSize;
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i];
|
||||
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
|
||||
}
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i + halfKernelSize];
|
||||
acc += verticalEval * halfKernel[i];
|
||||
}
|
||||
|
||||
|
||||
return SkUnitScalarClampToByte(2.f * acc);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
|
||||
const int numSteps = profileTextureWidth;
|
||||
uint8_t* weights = new uint8_t[numSteps];
|
||||
|
||||
|
||||
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
|
||||
|
||||
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
|
||||
|
||||
|
||||
int numYSteps = numSteps + 2 * halfKernelSize;
|
||||
|
||||
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
|
||||
float* halfKernel = bulkAlloc.get();
|
||||
float* summedKernel = bulkAlloc.get() + halfKernelSize;
|
||||
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
|
||||
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
|
||||
|
||||
float firstX = -halfKernelSize + 0.5f;
|
||||
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
|
||||
|
||||
for (int i = 0; i < numSteps - 1; ++i) {
|
||||
float evalX = i + 0.5f;
|
||||
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
|
||||
}
|
||||
|
||||
weights[numSteps - 1] = 0;
|
||||
return weights;
|
||||
}
|
||||
|
||||
static uint8_t* create_half_plane_profile(int profileWidth) {
|
||||
SkASSERT(!(profileWidth & 0x1));
|
||||
|
||||
float sigma = profileWidth / 6.f;
|
||||
int halfKernelSize = profileWidth / 2;
|
||||
|
||||
SkAutoTArray<float> halfKernel(halfKernelSize);
|
||||
uint8_t* profile = new uint8_t[profileWidth];
|
||||
|
||||
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
|
||||
sigma);
|
||||
float sum = 0.f;
|
||||
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[halfKernelSize - i - 1] /= tot;
|
||||
sum += halfKernel[halfKernelSize - i - 1];
|
||||
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
sum += halfKernel[i];
|
||||
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
|
||||
profile[profileWidth - 1] = 0;
|
||||
return profile;
|
||||
}
|
||||
|
||||
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle,
|
||||
float sigma,
|
||||
float* solidRadius, float* textureRadius) {
|
||||
float circleR = circle.width() / 2.0f;
|
||||
|
||||
|
||||
SkScalar sigmaToCircleRRatio = sigma / circleR;
|
||||
|
||||
|
||||
|
||||
|
||||
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
|
||||
SkFixed sigmaToCircleRRatioFixed;
|
||||
static const SkScalar kHalfPlaneThreshold = 0.1f;
|
||||
bool useHalfPlaneApprox = false;
|
||||
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
|
||||
useHalfPlaneApprox = true;
|
||||
sigmaToCircleRRatioFixed = 0;
|
||||
*solidRadius = circleR - 3 * sigma;
|
||||
*textureRadius = 6 * sigma;
|
||||
} else {
|
||||
float yFrac = y - yInt;
|
||||
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
|
||||
yFrac * summedHalfKernelTable[yInt + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
|
||||
// This relies on having a half kernel computed for the Gaussian and a table of applications of
|
||||
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
|
||||
// halfKernel) passed in as yKernelEvaluations.
|
||||
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
|
||||
const float* yKernelEvaluations) {
|
||||
float acc = 0;
|
||||
|
||||
float x = evalX - halfKernelSize;
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i];
|
||||
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
|
||||
}
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i + halfKernelSize];
|
||||
acc += verticalEval * halfKernel[i];
|
||||
}
|
||||
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the
|
||||
// x axis).
|
||||
return SkUnitScalarClampToByte(2.f * acc);
|
||||
}
|
||||
|
||||
// This function creates a profile of a blurred circle. It does this by computing a kernel for
|
||||
// half the Gaussian and a matching summed area table. The summed area table is used to compute
|
||||
// an array of vertical applications of the half kernel to the circle along the x axis. The table
|
||||
// of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size
|
||||
// of the profile being computed. Then for each of the n profile entries we walk out k steps in each
|
||||
// horizontal direction multiplying the corresponding y evaluation by the half kernel entry and
|
||||
// sum these values to compute the profile entry.
|
||||
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
|
||||
const int numSteps = profileTextureWidth;
|
||||
uint8_t* weights = new uint8_t[numSteps];
|
||||
|
||||
// The full kernel is 6 sigmas wide.
|
||||
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
|
||||
// round up to next multiple of 2 and then divide by 2
|
||||
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
|
||||
|
||||
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
|
||||
int numYSteps = numSteps + 2 * halfKernelSize;
|
||||
|
||||
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
|
||||
float* halfKernel = bulkAlloc.get();
|
||||
float* summedKernel = bulkAlloc.get() + halfKernelSize;
|
||||
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
|
||||
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
|
||||
|
||||
float firstX = -halfKernelSize + 0.5f;
|
||||
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
|
||||
|
||||
for (int i = 0; i < numSteps - 1; ++i) {
|
||||
float evalX = i + 0.5f;
|
||||
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
|
||||
}
|
||||
// Ensure the tail of the Gaussian goes to zero.
|
||||
weights[numSteps - 1] = 0;
|
||||
return weights;
|
||||
}
|
||||
|
||||
static uint8_t* create_half_plane_profile(int profileWidth) {
|
||||
SkASSERT(!(profileWidth & 0x1));
|
||||
// The full kernel is 6 sigmas wide.
|
||||
float sigma = profileWidth / 6.f;
|
||||
int halfKernelSize = profileWidth / 2;
|
||||
|
||||
SkAutoTArray<float> halfKernel(halfKernelSize);
|
||||
uint8_t* profile = new uint8_t[profileWidth];
|
||||
|
||||
// The half kernel should sum to 0.5.
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
|
||||
float sum = 0.f;
|
||||
// Populate the profile from the right edge to the middle.
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[halfKernelSize - i - 1] /= tot;
|
||||
sum += halfKernel[halfKernelSize - i - 1];
|
||||
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
// Populate the profile from the middle to the left edge (by flipping the half kernel and
|
||||
// continuing the summation).
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
sum += halfKernel[i];
|
||||
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
// Ensure tail goes to 0.
|
||||
profile[profileWidth - 1] = 0;
|
||||
return profile;
|
||||
}
|
||||
|
||||
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle,
|
||||
float sigma,
|
||||
float* solidRadius, float* textureRadius) {
|
||||
float circleR = circle.width() / 2.0f;
|
||||
// Profile textures are cached by the ratio of sigma to circle radius and by the size of the
|
||||
// profile texture (binned by powers of 2).
|
||||
SkScalar sigmaToCircleRRatio = sigma / circleR;
|
||||
// When sigma is really small this becomes a equivalent to convolving a Gaussian with a half-
|
||||
// plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the Guassian
|
||||
// and the profile texture is a just a Gaussian evaluation. However, we haven't yet implemented
|
||||
// this latter optimization.
|
||||
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
|
||||
SkFixed sigmaToCircleRRatioFixed;
|
||||
static const SkScalar kHalfPlaneThreshold = 0.1f;
|
||||
bool useHalfPlaneApprox = false;
|
||||
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
|
||||
useHalfPlaneApprox = true;
|
||||
sigmaToCircleRRatioFixed = 0;
|
||||
*solidRadius = circleR - 3 * sigma;
|
||||
*textureRadius = 6 * sigma;
|
||||
} else {
|
||||
// Convert to fixed point for the key.
|
||||
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
|
||||
// We shave off some bits to reduce the number of unique entries. We could probably shave
|
||||
// off more than we do.
|
||||
sigmaToCircleRRatioFixed &= ~0xff;
|
||||
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
|
||||
sigma = circleR * sigmaToCircleRRatio;
|
||||
*solidRadius = 0;
|
||||
*textureRadius = circleR + 3 * sigma;
|
||||
}
|
||||
|
||||
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
|
||||
GrUniqueKey key;
|
||||
GrUniqueKey::Builder builder(&key, kDomain, 1);
|
||||
builder[0] = sigmaToCircleRRatioFixed;
|
||||
builder.finish();
|
||||
|
||||
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
|
||||
if (!blurProfile) {
|
||||
static constexpr int kProfileTextureWidth = 512;
|
||||
GrSurfaceDesc texDesc;
|
||||
texDesc.fWidth = kProfileTextureWidth;
|
||||
texDesc.fHeight = 1;
|
||||
texDesc.fConfig = kAlpha_8_GrPixelConfig;
|
||||
|
||||
std::unique_ptr<uint8_t[]> profile(nullptr);
|
||||
if (useHalfPlaneApprox) {
|
||||
profile.reset(create_half_plane_profile(kProfileTextureWidth));
|
||||
} else {
|
||||
// Rescale params to the size of the texture we're creating.
|
||||
SkScalar scale = kProfileTextureWidth / *textureRadius;
|
||||
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
|
||||
kProfileTextureWidth));
|
||||
|
||||
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
|
||||
|
||||
|
||||
sigmaToCircleRRatioFixed &= ~0xff;
|
||||
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
|
||||
sigma = circleR * sigmaToCircleRRatio;
|
||||
*solidRadius = 0;
|
||||
*textureRadius = circleR + 3 * sigma;
|
||||
}
|
||||
|
||||
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
|
||||
texDesc, SkBudgeted::kYes, profile.get(), 0);
|
||||
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
|
||||
GrUniqueKey key;
|
||||
GrUniqueKey::Builder builder(&key, kDomain, 1);
|
||||
builder[0] = sigmaToCircleRRatioFixed;
|
||||
builder.finish();
|
||||
|
||||
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
|
||||
if (!blurProfile) {
|
||||
static constexpr int kProfileTextureWidth = 512;
|
||||
GrSurfaceDesc texDesc;
|
||||
texDesc.fWidth = kProfileTextureWidth;
|
||||
texDesc.fHeight = 1;
|
||||
texDesc.fConfig = kAlpha_8_GrPixelConfig;
|
||||
|
||||
std::unique_ptr<uint8_t[]> profile(nullptr);
|
||||
if (useHalfPlaneApprox) {
|
||||
profile.reset(create_half_plane_profile(kProfileTextureWidth));
|
||||
} else {
|
||||
|
||||
SkScalar scale = kProfileTextureWidth / *textureRadius;
|
||||
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
|
||||
kProfileTextureWidth));
|
||||
}
|
||||
|
||||
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
|
||||
texDesc, SkBudgeted::kYes, profile.get(), 0);
|
||||
if (!blurProfile) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
|
||||
}
|
||||
|
||||
return blurProfile;
|
||||
}
|
||||
|
||||
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
|
||||
GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle,
|
||||
float sigma) {
|
||||
float solidRadius;
|
||||
float textureRadius;
|
||||
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
|
||||
&solidRadius, &textureRadius));
|
||||
if (!profile) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
|
||||
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
|
||||
textureRadius,
|
||||
solidRadius,
|
||||
std::move(profile),
|
||||
resourceProvider));
|
||||
}
|
||||
|
||||
return blurProfile;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle, float sigma) {
|
||||
float solidRadius;
|
||||
float textureRadius;
|
||||
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
|
||||
&solidRadius, &textureRadius));
|
||||
if (!profile) {
|
||||
return nullptr;
|
||||
#include "glsl/GrGLSLColorSpaceXformHelper.h"
|
||||
#include "glsl/GrGLSLFragmentProcessor.h"
|
||||
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
||||
#include "glsl/GrGLSLProgramBuilder.h"
|
||||
#include "SkSLCPP.h"
|
||||
#include "SkSLUtil.h"
|
||||
class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
|
||||
public:
|
||||
GrGLSLCircleBlurFragmentProcessor() {}
|
||||
void emitCode(EmitArgs& args) override {
|
||||
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
|
||||
const GrCircleBlurFragmentProcessor& _outer = args.fFp.cast<GrCircleBlurFragmentProcessor>();
|
||||
(void) _outer;
|
||||
fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "circleData");
|
||||
fragBuilder->codeAppendf("vec2 vec = vec2((sk_FragCoord.x - %s.x) * %s.w, (sk_FragCoord.y - %s.y) * %s.w);\nfloat dist = length(vec) + (0.5 - %s.z) * %s.w;\n%s = %s * texture(%s, vec2(dist, 0.5));\n", args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor, args.fInputColor ? args.fInputColor : "vec4(1)", fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str());
|
||||
}
|
||||
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
|
||||
textureRadius, solidRadius,
|
||||
std::move(profile)));
|
||||
private:
|
||||
void onSetData(const GrGLSLProgramDataManager& data, const GrFragmentProcessor& _proc) override {
|
||||
const GrCircleBlurFragmentProcessor& _outer = _proc.cast<GrCircleBlurFragmentProcessor>();
|
||||
auto circleRect = _outer.circleRect();
|
||||
(void) circleRect;
|
||||
auto textureRadius = _outer.textureRadius();
|
||||
(void) textureRadius;
|
||||
auto solidRadius = _outer.solidRadius();
|
||||
(void) solidRadius;
|
||||
UniformHandle& blurProfileSampler = fBlurProfileSamplerVar;
|
||||
(void) blurProfileSampler;
|
||||
UniformHandle& circleData = fCircleDataVar;
|
||||
(void) circleData;
|
||||
|
||||
data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
|
||||
1.f / textureRadius);
|
||||
}
|
||||
UniformHandle fCircleDataVar;
|
||||
UniformHandle fBlurProfileSamplerVar;
|
||||
};
|
||||
GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
|
||||
return new GrGLSLCircleBlurFragmentProcessor();
|
||||
}
|
||||
void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
|
||||
}
|
||||
bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const {
|
||||
const GrCircleBlurFragmentProcessor& that = other.cast<GrCircleBlurFragmentProcessor>();
|
||||
(void) that;
|
||||
if (fCircleRect != that.fCircleRect) return false;
|
||||
if (fTextureRadius != that.fTextureRadius) return false;
|
||||
if (fSolidRadius != that.fSolidRadius) return false;
|
||||
if (fBlurProfileSampler != that.fBlurProfileSampler) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
|
||||
|
||||
#if GR_TEST_UTILS
|
||||
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
|
||||
SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
|
||||
SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
|
||||
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* testData) {
|
||||
|
||||
SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
|
||||
SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
|
||||
SkRect circle = SkRect::MakeWH(wh, wh);
|
||||
return GrCircleBlurFragmentProcessor::Make(d->resourceProvider(), circle, sigma);
|
||||
return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
289
src/effects/GrCircleBlurFragmentProcessor.fp
Normal file
289
src/effects/GrCircleBlurFragmentProcessor.fp
Normal file
@ -0,0 +1,289 @@
|
||||
in vec4 circleRect;
|
||||
in float textureRadius;
|
||||
in float solidRadius;
|
||||
in uniform sampler2D blurProfileSampler;
|
||||
|
||||
// The data is formatted as:
|
||||
// x, y - the center of the circle
|
||||
// z - inner radius that should map to 0th entry in the texture.
|
||||
// w - the inverse of the distance over which the texture is stretched.
|
||||
uniform vec4 circleData;
|
||||
|
||||
@optimizationFlags {
|
||||
kCompatibleWithCoverageAsAlpha_OptimizationFlag
|
||||
}
|
||||
|
||||
@constructorParams {
|
||||
GrResourceProvider* resourceProvider
|
||||
}
|
||||
|
||||
@make {
|
||||
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle, float sigma);
|
||||
}
|
||||
|
||||
@setData(data) {
|
||||
data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
|
||||
1.f / textureRadius);
|
||||
}
|
||||
|
||||
@cpp {
|
||||
#include "GrResourceProvider.h"
|
||||
|
||||
// Computes an unnormalized half kernel (right side). Returns the summation of all the half
|
||||
// kernel values.
|
||||
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
|
||||
const float invSigma = 1.f / sigma;
|
||||
const float b = -0.5f * invSigma * invSigma;
|
||||
float tot = 0.0f;
|
||||
// Compute half kernel values at half pixel steps out from the center.
|
||||
float t = 0.5f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
float value = expf(t * t * b);
|
||||
tot += value;
|
||||
halfKernel[i] = value;
|
||||
t += 1.f;
|
||||
}
|
||||
return tot;
|
||||
}
|
||||
|
||||
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
|
||||
// of discrete steps. The half kernel is normalized to sum to 0.5.
|
||||
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
|
||||
int halfKernelSize, float sigma) {
|
||||
// The half kernel should sum to 0.5 not 1.0.
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
|
||||
float sum = 0.f;
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[i] /= tot;
|
||||
sum += halfKernel[i];
|
||||
summedHalfKernel[i] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
|
||||
// origin with radius circleR.
|
||||
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
|
||||
int halfKernelSize, const float* summedHalfKernelTable) {
|
||||
float x = firstX;
|
||||
for (int i = 0; i < numSteps; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
results[i] = 0;
|
||||
continue;
|
||||
}
|
||||
float y = sqrtf(circleR * circleR - x * x);
|
||||
// In the column at x we exit the circle at +y and -y
|
||||
// The summed table entry j is actually reflects an offset of j + 0.5.
|
||||
y -= 0.5f;
|
||||
int yInt = SkScalarFloorToInt(y);
|
||||
SkASSERT(yInt >= -1);
|
||||
if (y < 0) {
|
||||
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
|
||||
} else if (yInt >= halfKernelSize - 1) {
|
||||
results[i] = 0.5f;
|
||||
} else {
|
||||
float yFrac = y - yInt;
|
||||
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
|
||||
yFrac * summedHalfKernelTable[yInt + 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
|
||||
// This relies on having a half kernel computed for the Gaussian and a table of applications of
|
||||
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
|
||||
// halfKernel) passed in as yKernelEvaluations.
|
||||
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
|
||||
const float* yKernelEvaluations) {
|
||||
float acc = 0;
|
||||
|
||||
float x = evalX - halfKernelSize;
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i];
|
||||
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
|
||||
}
|
||||
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
|
||||
if (x < -circleR || x > circleR) {
|
||||
continue;
|
||||
}
|
||||
float verticalEval = yKernelEvaluations[i + halfKernelSize];
|
||||
acc += verticalEval * halfKernel[i];
|
||||
}
|
||||
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
|
||||
// the x axis).
|
||||
return SkUnitScalarClampToByte(2.f * acc);
|
||||
}
|
||||
|
||||
// This function creates a profile of a blurred circle. It does this by computing a kernel for
|
||||
// half the Gaussian and a matching summed area table. The summed area table is used to compute
|
||||
// an array of vertical applications of the half kernel to the circle along the x axis. The
|
||||
// table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
|
||||
// the size of the profile being computed. Then for each of the n profile entries we walk out k
|
||||
// steps in each horizontal direction multiplying the corresponding y evaluation by the half
|
||||
// kernel entry and sum these values to compute the profile entry.
|
||||
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
|
||||
const int numSteps = profileTextureWidth;
|
||||
uint8_t* weights = new uint8_t[numSteps];
|
||||
|
||||
// The full kernel is 6 sigmas wide.
|
||||
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
|
||||
// round up to next multiple of 2 and then divide by 2
|
||||
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
|
||||
|
||||
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
|
||||
int numYSteps = numSteps + 2 * halfKernelSize;
|
||||
|
||||
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
|
||||
float* halfKernel = bulkAlloc.get();
|
||||
float* summedKernel = bulkAlloc.get() + halfKernelSize;
|
||||
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
|
||||
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
|
||||
|
||||
float firstX = -halfKernelSize + 0.5f;
|
||||
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
|
||||
|
||||
for (int i = 0; i < numSteps - 1; ++i) {
|
||||
float evalX = i + 0.5f;
|
||||
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
|
||||
}
|
||||
// Ensure the tail of the Gaussian goes to zero.
|
||||
weights[numSteps - 1] = 0;
|
||||
return weights;
|
||||
}
|
||||
|
||||
static uint8_t* create_half_plane_profile(int profileWidth) {
|
||||
SkASSERT(!(profileWidth & 0x1));
|
||||
// The full kernel is 6 sigmas wide.
|
||||
float sigma = profileWidth / 6.f;
|
||||
int halfKernelSize = profileWidth / 2;
|
||||
|
||||
SkAutoTArray<float> halfKernel(halfKernelSize);
|
||||
uint8_t* profile = new uint8_t[profileWidth];
|
||||
|
||||
// The half kernel should sum to 0.5.
|
||||
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
|
||||
sigma);
|
||||
float sum = 0.f;
|
||||
// Populate the profile from the right edge to the middle.
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
halfKernel[halfKernelSize - i - 1] /= tot;
|
||||
sum += halfKernel[halfKernelSize - i - 1];
|
||||
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
// Populate the profile from the middle to the left edge (by flipping the half kernel and
|
||||
// continuing the summation).
|
||||
for (int i = 0; i < halfKernelSize; ++i) {
|
||||
sum += halfKernel[i];
|
||||
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
|
||||
}
|
||||
// Ensure tail goes to 0.
|
||||
profile[profileWidth - 1] = 0;
|
||||
return profile;
|
||||
}
|
||||
|
||||
static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle,
|
||||
float sigma,
|
||||
float* solidRadius, float* textureRadius) {
|
||||
float circleR = circle.width() / 2.0f;
|
||||
// Profile textures are cached by the ratio of sigma to circle radius and by the size of the
|
||||
// profile texture (binned by powers of 2).
|
||||
SkScalar sigmaToCircleRRatio = sigma / circleR;
|
||||
// When sigma is really small this becomes a equivalent to convolving a Gaussian with a
|
||||
// half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
|
||||
// Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
|
||||
// implemented this latter optimization.
|
||||
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
|
||||
SkFixed sigmaToCircleRRatioFixed;
|
||||
static const SkScalar kHalfPlaneThreshold = 0.1f;
|
||||
bool useHalfPlaneApprox = false;
|
||||
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
|
||||
useHalfPlaneApprox = true;
|
||||
sigmaToCircleRRatioFixed = 0;
|
||||
*solidRadius = circleR - 3 * sigma;
|
||||
*textureRadius = 6 * sigma;
|
||||
} else {
|
||||
// Convert to fixed point for the key.
|
||||
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
|
||||
// We shave off some bits to reduce the number of unique entries. We could probably
|
||||
// shave off more than we do.
|
||||
sigmaToCircleRRatioFixed &= ~0xff;
|
||||
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
|
||||
sigma = circleR * sigmaToCircleRRatio;
|
||||
*solidRadius = 0;
|
||||
*textureRadius = circleR + 3 * sigma;
|
||||
}
|
||||
|
||||
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
|
||||
GrUniqueKey key;
|
||||
GrUniqueKey::Builder builder(&key, kDomain, 1);
|
||||
builder[0] = sigmaToCircleRRatioFixed;
|
||||
builder.finish();
|
||||
|
||||
sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
|
||||
if (!blurProfile) {
|
||||
static constexpr int kProfileTextureWidth = 512;
|
||||
GrSurfaceDesc texDesc;
|
||||
texDesc.fWidth = kProfileTextureWidth;
|
||||
texDesc.fHeight = 1;
|
||||
texDesc.fConfig = kAlpha_8_GrPixelConfig;
|
||||
|
||||
std::unique_ptr<uint8_t[]> profile(nullptr);
|
||||
if (useHalfPlaneApprox) {
|
||||
profile.reset(create_half_plane_profile(kProfileTextureWidth));
|
||||
} else {
|
||||
// Rescale params to the size of the texture we're creating.
|
||||
SkScalar scale = kProfileTextureWidth / *textureRadius;
|
||||
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
|
||||
kProfileTextureWidth));
|
||||
}
|
||||
|
||||
blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
|
||||
texDesc, SkBudgeted::kYes, profile.get(), 0);
|
||||
if (!blurProfile) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
|
||||
}
|
||||
|
||||
return blurProfile;
|
||||
}
|
||||
|
||||
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
|
||||
GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle,
|
||||
float sigma) {
|
||||
float solidRadius;
|
||||
float textureRadius;
|
||||
sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
|
||||
&solidRadius, &textureRadius));
|
||||
if (!profile) {
|
||||
return nullptr;
|
||||
}
|
||||
return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
|
||||
textureRadius,
|
||||
solidRadius,
|
||||
std::move(profile),
|
||||
resourceProvider));
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
// We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to
|
||||
// rearrange for precision.
|
||||
vec2 vec = vec2((sk_FragCoord.x - circleData.x) * circleData.w,
|
||||
(sk_FragCoord.y - circleData.y) * circleData.w);
|
||||
float dist = length(vec) + (0.5 - circleData.z) * circleData.w;
|
||||
sk_OutColor = sk_InColor * texture(blurProfileSampler, vec2(dist, 0.5));
|
||||
}
|
||||
|
||||
@test(testData) {
|
||||
SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
|
||||
SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
|
||||
SkRect circle = SkRect::MakeWH(wh, wh);
|
||||
return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
|
||||
}
|
@ -1,73 +1,52 @@
|
||||
/*
|
||||
* Copyright 2015 Google Inc.
|
||||
* Copyright 2017 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
|
||||
*/
|
||||
#ifndef GrCircleBlurFragmentProcessor_DEFINED
|
||||
#define GrCircleBlurFragmentProcessor_DEFINED
|
||||
|
||||
#include "SkString.h"
|
||||
#include "SkTypes.h"
|
||||
|
||||
#if SK_SUPPORT_GPU
|
||||
|
||||
#include "GrFragmentProcessor.h"
|
||||
#include "GrProcessorUnitTest.h"
|
||||
|
||||
class GrResourceProvider;
|
||||
|
||||
// This FP handles the special case of a blurred circle. It uses a 1D
|
||||
// profile that is just rotated about the origin of the circle.
|
||||
#include "GrCoordTransform.h"
|
||||
#include "effects/GrProxyMove.h"
|
||||
class GrCircleBlurFragmentProcessor : public GrFragmentProcessor {
|
||||
public:
|
||||
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider*, const SkRect& circle, float sigma);
|
||||
|
||||
~GrCircleBlurFragmentProcessor() override {}
|
||||
|
||||
const char* name() const override { return "CircleBlur"; }
|
||||
|
||||
SkString dumpInfo() const override {
|
||||
SkString str;
|
||||
str.appendf("Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], solidR: %.2f, textureR: %.2f",
|
||||
fCircle.fLeft, fCircle.fTop, fCircle.fRight, fCircle.fBottom,
|
||||
fSolidRadius, fTextureRadius);
|
||||
return str;
|
||||
}
|
||||
SkRect circleRect() const { return fCircleRect; }
|
||||
float textureRadius() const { return fTextureRadius; }
|
||||
float solidRadius() const { return fSolidRadius; }
|
||||
|
||||
static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
|
||||
const SkRect& circle, float sigma);
|
||||
const char* name() const override { return "CircleBlurFragmentProcessor"; }
|
||||
private:
|
||||
// This nested GLSL processor implementation is defined in the cpp file.
|
||||
class GLSLProcessor;
|
||||
|
||||
/**
|
||||
* Creates a profile texture for the circle and sigma. The texture will have a height of 1.
|
||||
* The x texture coord should map from 0 to 1 across the radius range of solidRadius to
|
||||
* solidRadius + textureRadius.
|
||||
*/
|
||||
GrCircleBlurFragmentProcessor(const SkRect& circle,
|
||||
float textureRadius, float innerRadius,
|
||||
sk_sp<GrTextureProxy> blurProfile);
|
||||
|
||||
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
|
||||
|
||||
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
|
||||
|
||||
bool onIsEqual(const GrFragmentProcessor& other) const override {
|
||||
const GrCircleBlurFragmentProcessor& cbfp = other.cast<GrCircleBlurFragmentProcessor>();
|
||||
return fCircle == cbfp.fCircle && fSolidRadius == cbfp.fSolidRadius &&
|
||||
fTextureRadius == cbfp.fTextureRadius;
|
||||
GrCircleBlurFragmentProcessor(SkRect circleRect, float textureRadius, float solidRadius, sk_sp<GrTextureProxy> blurProfileSampler,
|
||||
GrResourceProvider* resourceProvider
|
||||
)
|
||||
: INHERITED((OptimizationFlags)
|
||||
kCompatibleWithCoverageAsAlpha_OptimizationFlag
|
||||
)
|
||||
, fCircleRect(circleRect)
|
||||
, fTextureRadius(textureRadius)
|
||||
, fSolidRadius(solidRadius)
|
||||
, fBlurProfileSampler(std::move(blurProfileSampler)) {
|
||||
this->addTextureSampler(&fBlurProfileSampler);
|
||||
this->initClassID<GrCircleBlurFragmentProcessor>();
|
||||
}
|
||||
|
||||
SkRect fCircle;
|
||||
SkScalar fSolidRadius;
|
||||
float fTextureRadius;
|
||||
TextureSampler fBlurProfileSampler;
|
||||
|
||||
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
|
||||
void onGetGLSLProcessorKey(const GrShaderCaps&,GrProcessorKeyBuilder*) const override;
|
||||
bool onIsEqual(const GrFragmentProcessor&) const override;
|
||||
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
|
||||
|
||||
SkRect fCircleRect;
|
||||
float fTextureRadius;
|
||||
float fSolidRadius;
|
||||
TextureSampler fBlurProfileSampler;
|
||||
typedef GrFragmentProcessor INHERITED;
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -9,6 +9,7 @@
|
||||
* This file was autogenerated from GrDitherEffect.fp; do not modify.
|
||||
*/
|
||||
#include "GrDitherEffect.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
#include "glsl/GrGLSLColorSpaceXformHelper.h"
|
||||
#include "glsl/GrGLSLFragmentProcessor.h"
|
||||
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
||||
@ -45,3 +46,4 @@ sk_sp<GrFragmentProcessor> GrDitherEffect::TestCreate(GrProcessorTestData* testD
|
||||
return GrDitherEffect::Make();
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@ -10,6 +10,8 @@
|
||||
*/
|
||||
#ifndef GrDitherEffect_DEFINED
|
||||
#define GrDitherEffect_DEFINED
|
||||
#include "SkTypes.h"
|
||||
#if SK_SUPPORT_GPU
|
||||
#include "GrFragmentProcessor.h"
|
||||
#include "GrCoordTransform.h"
|
||||
#include "effects/GrProxyMove.h"
|
||||
@ -31,3 +33,4 @@ private:
|
||||
typedef GrFragmentProcessor INHERITED;
|
||||
};
|
||||
#endif
|
||||
#endif
|
||||
|
@ -542,7 +542,8 @@ bool CPPCodeGenerator::generateCode() {
|
||||
const char* baseName = fName.c_str();
|
||||
const char* fullName = fFullName.c_str();
|
||||
this->writef(kFragmentProcessorHeader, fullName);
|
||||
this->writef("#include \"%s.h\"\n", fullName);
|
||||
this->writef("#include \"%s.h\"\n"
|
||||
"#if SK_SUPPORT_GPU\n", fullName);
|
||||
this->writeSection(CPP_SECTION);
|
||||
this->writef("#include \"glsl/GrGLSLColorSpaceXformHelper.h\"\n"
|
||||
"#include \"glsl/GrGLSLFragmentProcessor.h\"\n"
|
||||
@ -593,6 +594,7 @@ bool CPPCodeGenerator::generateCode() {
|
||||
"}\n");
|
||||
this->writeTest();
|
||||
this->writeSection(CPP_END_SECTION);
|
||||
this->write("#endif\n");
|
||||
result &= 0 == fErrors.errorCount();
|
||||
return result;
|
||||
}
|
||||
|
@ -201,6 +201,8 @@ bool HCodeGenerator::generateCode() {
|
||||
"#define %s_DEFINED\n",
|
||||
fFullName.c_str(),
|
||||
fFullName.c_str());
|
||||
this->writef("#include \"SkTypes.h\"\n"
|
||||
"#if SK_SUPPORT_GPU\n");
|
||||
this->writeSection(HEADER_SECTION);
|
||||
this->writef("#include \"GrFragmentProcessor.h\"\n"
|
||||
"#include \"GrCoordTransform.h\"\n"
|
||||
@ -231,7 +233,8 @@ bool HCodeGenerator::generateCode() {
|
||||
this->writef(" typedef GrFragmentProcessor INHERITED;\n"
|
||||
"};\n");
|
||||
this->writeSection(HEADER_END_SECTION);
|
||||
this->writef("#endif\n");
|
||||
this->writef("#endif\n"
|
||||
"#endif\n");
|
||||
return 0 == fErrors.errorCount();
|
||||
}
|
||||
|
||||
|
@ -78,6 +78,8 @@ DEF_TEST(SkSLFPHelloWorld, r) {
|
||||
" */\n"
|
||||
"#ifndef GrTest_DEFINED\n"
|
||||
"#define GrTest_DEFINED\n"
|
||||
"#include \"SkTypes.h\"\n"
|
||||
"#if SK_SUPPORT_GPU\n"
|
||||
"#include \"GrFragmentProcessor.h\"\n"
|
||||
"#include \"GrCoordTransform.h\"\n"
|
||||
"#include \"effects/GrProxyMove.h\"\n"
|
||||
@ -100,6 +102,7 @@ DEF_TEST(SkSLFPHelloWorld, r) {
|
||||
" typedef GrFragmentProcessor INHERITED;\n"
|
||||
"};\n"
|
||||
"#endif\n"
|
||||
"#endif\n"
|
||||
},
|
||||
{
|
||||
"/*\n"
|
||||
@ -113,6 +116,7 @@ DEF_TEST(SkSLFPHelloWorld, r) {
|
||||
" * This file was autogenerated from GrTest.fp; do not modify.\n"
|
||||
" */\n"
|
||||
"#include \"GrTest.h\"\n"
|
||||
"#if SK_SUPPORT_GPU\n"
|
||||
"#include \"glsl/GrGLSLColorSpaceXformHelper.h\"\n"
|
||||
"#include \"glsl/GrGLSLFragmentProcessor.h\"\n"
|
||||
"#include \"glsl/GrGLSLFragmentShaderBuilder.h\"\n"
|
||||
@ -144,6 +148,7 @@ DEF_TEST(SkSLFPHelloWorld, r) {
|
||||
" (void) that;\n"
|
||||
" return true;\n"
|
||||
"}\n"
|
||||
"#endif\n"
|
||||
});
|
||||
}
|
||||
|
||||
@ -211,7 +216,7 @@ DEF_TEST(SkSLFPSections, r) {
|
||||
"}",
|
||||
*SkSL::ShaderCapsFactory::Default(),
|
||||
{
|
||||
"#define GrTest_DEFINED\n header section"
|
||||
"#if SK_SUPPORT_GPU\n header section"
|
||||
},
|
||||
{});
|
||||
test(r,
|
||||
|
Loading…
Reference in New Issue
Block a user