use initial device coordinates as subrun positions

Originally, the positions had a bias of -initialOrigin,
so all that was needed was to add the new drawingOrigin
in. Store the actual device coordinates thus eliminating
the -initialOrigin, and calculate the origin offset
drawingOrigin - initialOrigin at vertex fill time.

Change-Id: I5a7fe0074f0c7fd01c5fe90a47e67509631379fe
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/333127
Reviewed-by: Ben Wagner <bungeman@google.com>
Commit-Queue: Herb Derby <herb@google.com>
This commit is contained in:
Herb Derby 2020-11-09 10:28:50 -05:00 committed by Skia Commit-Bot
parent cd2e148ea4
commit 9c81e52171
3 changed files with 34 additions and 109 deletions

View File

@ -75,6 +75,8 @@ SkPoint SkDrawableGlyphBuffer::startGPUDevice(
fInputSize = source.size();
fDrawableSize = 0;
// Build up the mapping from source space to device space. Add the rounding constant
// halfSampleFreq so we just need to floor to get the device result.
SkMatrix device = viewMatrix;
SkPoint halfSampleFreq = roundingSpec.halfAxisSampleFreq;
device.postTranslate(halfSampleFreq.x(), halfSampleFreq.y());
@ -87,19 +89,19 @@ SkPoint SkDrawableGlyphBuffer::startGPUDevice(
return {SkScalarFloorToScalar(pt.x()), SkScalarFloorToScalar(pt.y())};
};
// q = [Q](0,0,1) = [R][V][O](0,0,1).
SkPoint q = device.mapXY(0, 0);
SkPoint qFloor = floor(q);
// Map the origin from source space to device space without the halfSampleFreq offset.
SkPoint originMappedToDevice = viewMatrix.mapXY(origin.x(), origin.y());
for (auto [packedGlyphID, glyphID, pos]
: SkMakeZip(fMultiBuffer.get(), source.get<0>(), fPositions.get())) {
packedGlyphID = SkPackedGlyphID{glyphID, pos, roundingSpec.ignorePositionFieldMask};
pos = floor(pos - qFloor);
// Store rounded device coords back in pos.
pos = floor(pos);
}
SkDEBUGCODE(fPhase = kInput);
// Return the residual = Floor(q) - q + (rx,ry,0).
return qFloor - q + roundingSpec.halfAxisSampleFreq;
// Return the origin mapped through the initial matrix.
return originMappedToDevice;
}

View File

@ -155,95 +155,20 @@ public:
// Load the buffer with SkPackedGlyphIDs, calculating positions so they can be constant.
//
// We are looking for constant values for the x,y positions for all the glyphs that are not
// dependant on the device origin mapping Q such that we can just add a new value to translate
// all the glyph positions to a new device origin mapping Q'. We want (cx,cy,0) + [Q'](0,0,1)
// draw the blob with device origin Q'. Ultimately we show there is an integer solution for
// the glyph positions where (ix,iy,0) + ([Q'](0,0,1) + (sx,sy,0)) both parts of the top
// level + are integers, and preserve all the flooring properties.
// The positions are calculated integer positions in devices space, and the mapping of the
// the source origin through the initial matrix is returned. It is given that these positions
// are only reused when the blob is translated by an integral amount. Thus the shifted
// positions are given by the following equation where (ix, iy) is the integer positions of
// the glyph, initialMappedOrigin is (0,0) in source mapped to the device using the initial
// matrix, and newMappedOrigin is (0,0) in source mapped to the device using the current
// drawing matrix.
//
// Given (px,py) the glyph origin in source space. The glyph origin in device space (x,y) is:
// (x,y,1) = Floor([R][V][O](px,py,1))
// where:
// * R - is the rounding matrix given as translate(sampling_freq_x/2, sampling_freq_y/2).
// * V - is the mapping from source space to device space.
// * O - is the blob origin given, as translate(origin.x(), origin.y()).
// * (px,py,1) - is the vector of the glyph origin in source space. There is a position for
// each glyph.
// (ix', iy') = (ix, iy) + round(newMappedOrigin - initialMappedOrigin)
//
// It is given that if there is a change in position from V to V', and O to O' that the upper
// 2x2 of V and V' are the same.
// In theory, newMappedOrigin - initialMappedOrigin should be integer, but the vagaries of
// floating point don't guarantee that, so force it to integer.
//
// The three matrices R,V, and O constitute the device mapping [Q] = [R][V][O], and the
// device origin is given by q = [Q](0,0,1). Thus,
// (x,y,1) = Floor([Q](0,0,1) + [V](px,py,0)) = Floor(q + [V](px,py,0))
// Note: [V](px,py,0) is the vector transformed without the translation portion of V. That
// translation of V is accounted for in q.
//
// If we want to translate the blob from the device mapping Q to the device mapping
// [Q'] = [R'][V'][O], we can use the following translation. Restate as q' - q.
// (x',y',1) = Floor(q + [V](px,py,0) + q' - q).
//
// We are given that q' - q is an integer translation. We can move the integer translation out
// from the Floor expression as:
// (x',y',1) = Floor(q + [V](px,py,0)) + q' - q (1)
//
// We can now see that (cx,cy,0) is constructed by dropping q' from above.
// (cx,cy,0) = Floor(q + [V](px,py,0)) - q
//
// Notice that cx and cy are not guaranteed to be integers because q is not
// constrained to be integer; only q' - q is constrained to be an integer.
//
// Let Floor(q) be the integer portion the vector elements and {q} be the fractional portion
// which is calculated as q - Floor(q). This vector has a zero in the third place due to the
// subtraction.
// Rewriting (1) with this substitution of Floor(q) + {q} for q.
// (x',y',1) = Floor(q + [V](px,py,0)) + q' - q
// becomes,
// (x',y',1) = Floor(Floor(q) + {q} + [V](px,py,0)) + q' - (q + {q})
// simplifying by moving Floor(q) out of the Floor() because it is integer,
// (x',y',1) = Floor({q} + [V](px,py,0)) + q' + Floor(q) - Floor(q) - {q}
// removing terms that result in zero gives,
// (x',y',1) = Floor({q} + [V](px,py,0)) + q' - {q}
// Notice that q' - {q} and Floor({q} + [V](px,py,0)) are integer.
// Let,
// (ix,iy,0) = Floor({q} + [V](px,py,0)),
// (sx,sy,0) = -{q}.
// I call the (sx,sy,0) value the residual.
// Thus,
// (x',y',1) = (ix,iy,0) + (q' + (sx,sy,0)). (2)
//
// As a matter of practicality, we have the following already calculated for sub-pixel
// positioning, and use it to calculate (ix,iy,0):
// (fx,fy,1) = [R][V][O](px,py,1)
// = [Q](0,0,1) + [V](px,py,0)
// = q + [V](px,py,0)
// = Floor(q) + {q} + [V](px,py,0)
// So,
// (ix,iy,0) = Floor((fx,fy,1) - Floor(q)).
//
// When calculating [Q'] = [R][V'][O'] we don't have the values for [R]. Notice that [R] is a
// post translation to [V'][O']. This means that the values of R are added directly to the
// translation values of [V'][O']. So, if [V'][O'](0,0,1) results in the vector (tx,ty,1)
// then [R](tx,ty,0) = (tx + rx, ty + ry, 0). So, in practice we don't have the full [Q'] what
// is available is [Q''] = [V'][O']. We can add the rounding terms to the residual
// to account for not having [R]. Substituting -{q} for (sx,sy,0) in (2), gives:
// (x',y',1) = (ix,iy,0) + (q' - {q}).
// = (ix,iy,0) + ([Q'](0,0,1) - {q})
// = (ix,iy,0) + ([R][V'][O'](0,0,1) - {q})
// = (ix,iy,0) + ((rx,ry,0) + [V'][O'](0,0,1) - {q})
// = (ix,iy,0) + ([V'][O'](0,0,1) + (rx,ry,0) - {q}.
// So we redefine the residual to include the needed rounding terms.
// (sx',sy',0) = (rx,ry,0) - (q - Floor(q))
// = (rx,ry,0) + Floor(q) - q.
//
// Putting it all together:
// Q'' = [V'][O'](0,0,1)
// q'' = Q''(0, 0, 1)
// (x',y',1) = (ix,iy,0) + (q'' + (sx',sy',0)).
// Returns the residual -- (sx',sy',0).
// Returns the origin mapped through the initial matrix.
SkPoint startGPUDevice(
const SkZip<const SkGlyphID, const SkPoint>& source,
SkPoint origin, const SkMatrix& viewMatrix,

View File

@ -93,11 +93,11 @@ SkPMColor4f calculate_colors(GrRenderTargetContext* rtc,
// The 99% case. No clip. Non-color only.
void direct_2D(SkZip<Mask2DVertex[4], const GrGlyph*, const SkIPoint> quadData,
GrColor color,
SkIPoint deviceOrigin) {
SkIPoint integralOriginOffset) {
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
SkScalar dl = leftTop.x() + deviceOrigin.x(),
dt = leftTop.y() + deviceOrigin.y(),
SkScalar dl = leftTop.x() + integralOriginOffset.x(),
dt = leftTop.y() + integralOriginOffset.y(),
dr = dl + (ar - al),
db = dt + (ab - at);
@ -117,13 +117,13 @@ auto ltbr(const Rect& r) {
template<typename Quad, typename VertexData>
void generalized_direct_2D(SkZip<Quad, const GrGlyph*, const VertexData> quadData,
GrColor color,
SkIPoint deviceOrigin,
SkIPoint integralOriginOffset,
SkIRect* clip = nullptr) {
for (auto[quad, glyph, leftTop] : quadData) {
auto[al, at, ar, ab] = glyph->fAtlasLocator.getUVs();
uint16_t w = ar - al,
h = ab - at;
auto[l, t] = leftTop + deviceOrigin;
auto[l, t] = leftTop + integralOriginOffset;
if (clip == nullptr) {
auto[dl, dt, dr, db] = SkRect::MakeLTRB(l, t, l + w, t + h);
quad[0] = {{dl, dt}, color, {al, at}}; // L,T
@ -556,7 +556,7 @@ private:
SkRect deviceRect(const SkMatrix& drawMatrix, SkPoint drawOrigin) const;
const GrMaskFormat fMaskFormat;
const SkPoint fResidual;
const SkPoint fInitialMappedOrigin;
GrTextBlob* const fBlob;
// The vertex bounds in device space. The bounds are the joined rectangles of all the glyphs.
const SkRect fVertexBounds;
@ -574,7 +574,7 @@ DirectMaskSubRun::DirectMaskSubRun(GrMaskFormat format,
SkSpan<const VertexData> vertexData,
GlyphVector glyphs)
: fMaskFormat{format}
, fResidual{residual}
, fInitialMappedOrigin{residual}
, fBlob{blob}
, fVertexBounds{bounds}
, fVertexData{vertexData}
@ -724,39 +724,37 @@ void DirectMaskSubRun::fillVertexData(void* vertexDst, int offset, int count, Gr
fVertexData.subspan(offset, count));
};
SkMatrix matrix = drawMatrix;
matrix.preTranslate(drawOrigin.x(), drawOrigin.y());
SkPoint o = matrix.mapXY(0, 0) + fResidual;
SkIPoint originInDeviceSpace = {SkScalarRoundToInt(o.x()), SkScalarRoundToInt(o.y())};
SkPoint originOffset = drawMatrix.mapXY(drawOrigin.x(), drawOrigin.y()) - fInitialMappedOrigin;
SkIPoint integralOriginOffset =
{SkScalarRoundToInt(originOffset.x()), SkScalarRoundToInt(originOffset.y())};
if (clip.isEmpty()) {
if (fMaskFormat != kARGB_GrMaskFormat) {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Quad) == this->vertexStride() * kVerticesPerGlyph);
direct_2D(quadData((Quad*)vertexDst), color, originInDeviceSpace);
direct_2D(quadData((Quad*)vertexDst), color, integralOriginOffset);
} else {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(Quad) == this->vertexStride() * kVerticesPerGlyph);
generalized_direct_2D(quadData((Quad*)vertexDst), color, originInDeviceSpace);
generalized_direct_2D(quadData((Quad*)vertexDst), color, integralOriginOffset);
}
} else {
if (fMaskFormat != kARGB_GrMaskFormat) {
using Quad = Mask2DVertex[4];
SkASSERT(sizeof(Quad) == this->vertexStride() * kVerticesPerGlyph);
generalized_direct_2D(quadData((Quad*)vertexDst), color, originInDeviceSpace, &clip);
generalized_direct_2D(quadData((Quad*)vertexDst), color, integralOriginOffset, &clip);
} else {
using Quad = ARGB2DVertex[4];
SkASSERT(sizeof(Quad) == this->vertexStride() * kVerticesPerGlyph);
generalized_direct_2D(quadData((Quad*)vertexDst), color, originInDeviceSpace, &clip);
generalized_direct_2D(quadData((Quad*)vertexDst), color, integralOriginOffset, &clip);
}
}
}
SkRect DirectMaskSubRun::deviceRect(const SkMatrix& drawMatrix, SkPoint drawOrigin) const {
SkRect outBounds = fVertexBounds;
SkPoint offset = drawMatrix.mapXY(drawOrigin.x(), drawOrigin.y());
SkPoint offset = drawMatrix.mapXY(drawOrigin.x(), drawOrigin.y()) - fInitialMappedOrigin;
// The vertex bounds are already {0, 0} based, so just add the new origin offset.
outBounds.offset(offset);