Move Dashing filterPath to a dashing utils file

From inside GrContext, we have a need to create an SkPath an original path and
some dashing info. We do not have access to the original path effect so we need
a way to make the FilterPath function accessible outside of the effect. So I moved
the core filterPath code (and all need helper functions) out of SkDashPathEffect
and created a SkDashPath in utils to store these helper functions.

BUG=skia:

Committed: https://skia.googlesource.com/skia/+/576dcdc793a762ec63fbecdbfd5768066b548fe5

Author: egdaniel@google.com

Review URL: https://codereview.chromium.org/314623004
This commit is contained in:
egdaniel 2014-06-11 06:51:51 -07:00 committed by Commit bot
parent 35fcd15d05
commit a22ea18823
5 changed files with 373 additions and 302 deletions

View File

@ -56,6 +56,8 @@
'<(skia_src_path)/utils/SkCanvasStateUtils.cpp',
'<(skia_src_path)/utils/SkCubicInterval.cpp',
'<(skia_src_path)/utils/SkCullPoints.cpp',
'<(skia_src_path)/utils/SkDashPath.cpp',
'<(skia_src_path)/utils/SkDashPathPriv.h',
'<(skia_src_path)/utils/SkDeferredCanvas.cpp',
'<(skia_src_path)/utils/SkDumpCanvas.cpp',
'<(skia_src_path)/utils/SkEventTracer.cpp',

View File

@ -61,8 +61,6 @@ protected:
virtual void flatten(SkWriteBuffer&) const SK_OVERRIDE;
private:
void setInternalMembers(SkScalar phase);
SkScalar* fIntervals;
int32_t fCount;
SkScalar fPhase;

View File

@ -6,74 +6,10 @@
*/
#include "SkDashPathEffect.h"
#include "SkDashPathPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPathMeasure.h"
static inline int is_even(int x) {
return (~x) << 31;
}
static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase,
int32_t* index, int count) {
for (int i = 0; i < count; ++i) {
if (phase > intervals[i]) {
phase -= intervals[i];
} else {
*index = i;
return intervals[i] - phase;
}
}
// If we get here, phase "appears" to be larger than our length. This
// shouldn't happen with perfect precision, but we can accumulate errors
// during the initial length computation (rounding can make our sum be too
// big or too small. In that event, we just have to eat the error here.
*index = 0;
return intervals[0];
}
void SkDashPathEffect::setInternalMembers(SkScalar phase) {
SkScalar len = 0;
for (int i = 0; i < fCount; i++) {
len += fIntervals[i];
}
fIntervalLength = len;
// watch out for values that might make us go out of bounds
if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
// Adjust phase to be between 0 and len, "flipping" phase if negative.
// e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
if (phase < 0) {
phase = -phase;
if (phase > len) {
phase = SkScalarMod(phase, len);
}
phase = len - phase;
// Due to finite precision, it's possible that phase == len,
// even after the subtract (if len >>> phase), so fix that here.
// This fixes http://crbug.com/124652 .
SkASSERT(phase <= len);
if (phase == len) {
phase = 0;
}
} else if (phase >= len) {
phase = SkScalarMod(phase, len);
}
SkASSERT(phase >= 0 && phase < len);
fPhase = phase;
fInitialDashLength = FindFirstInterval(fIntervals, fPhase,
&fInitialDashIndex, fCount);
SkASSERT(fInitialDashLength >= 0);
SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount);
} else {
fInitialDashLength = -1; // signal bad dash intervals
}
}
SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count,
SkScalar phase) {
@ -87,247 +23,19 @@ SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count,
fIntervals[i] = intervals[i];
}
this->setInternalMembers(phase);
// set the internal data members
SkDashPath::CalcDashParameters(phase, fIntervals, fCount, &fInitialDashLength,
&fInitialDashIndex, &fIntervalLength, &fPhase);
}
SkDashPathEffect::~SkDashPathEffect() {
sk_free(fIntervals);
}
static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
SkScalar radius = SkScalarHalf(rec.getWidth());
if (0 == radius) {
radius = SK_Scalar1; // hairlines
}
if (SkPaint::kMiter_Join == rec.getJoin()) {
radius = SkScalarMul(radius, rec.getMiter());
}
rect->outset(radius, radius);
}
// Only handles lines for now. If returns true, dstPath is the new (smaller)
// path. If returns false, then dstPath parameter is ignored.
static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
const SkRect* cullRect, SkScalar intervalLength,
SkPath* dstPath) {
if (NULL == cullRect) {
return false;
}
SkPoint pts[2];
if (!srcPath.isLine(pts)) {
return false;
}
SkRect bounds = *cullRect;
outset_for_stroke(&bounds, rec);
SkScalar dx = pts[1].x() - pts[0].x();
SkScalar dy = pts[1].y() - pts[0].y();
// just do horizontal lines for now (lazy)
if (dy) {
return false;
}
SkScalar minX = pts[0].fX;
SkScalar maxX = pts[1].fX;
if (maxX < bounds.fLeft || minX > bounds.fRight) {
return false;
}
if (dx < 0) {
SkTSwap(minX, maxX);
}
// Now we actually perform the chop, removing the excess to the left and
// right of the bounds (keeping our new line "in phase" with the dash,
// hence the (mod intervalLength).
if (minX < bounds.fLeft) {
minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
intervalLength);
}
if (maxX > bounds.fRight) {
maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
intervalLength);
}
SkASSERT(maxX >= minX);
if (dx < 0) {
SkTSwap(minX, maxX);
}
pts[0].fX = minX;
pts[1].fX = maxX;
dstPath->moveTo(pts[0]);
dstPath->lineTo(pts[1]);
return true;
}
class SpecialLineRec {
public:
bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
int intervalCount, SkScalar intervalLength) {
if (rec->isHairlineStyle() || !src.isLine(fPts)) {
return false;
}
// can relax this in the future, if we handle square and round caps
if (SkPaint::kButt_Cap != rec->getCap()) {
return false;
}
SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
fTangent = fPts[1] - fPts[0];
if (fTangent.isZero()) {
return false;
}
fPathLength = pathLength;
fTangent.scale(SkScalarInvert(pathLength));
fTangent.rotateCCW(&fNormal);
fNormal.scale(SkScalarHalf(rec->getWidth()));
// now estimate how many quads will be added to the path
// resulting segments = pathLen * intervalCount / intervalLen
// resulting points = 4 * segments
SkScalar ptCount = SkScalarMulDiv(pathLength,
SkIntToScalar(intervalCount),
intervalLength);
int n = SkScalarCeilToInt(ptCount) << 2;
dst->incReserve(n);
// we will take care of the stroking
rec->setFillStyle();
return true;
}
void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
SkASSERT(d0 < fPathLength);
// clamp the segment to our length
if (d1 > fPathLength) {
d1 = fPathLength;
}
SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
SkPoint pts[4];
pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
}
private:
SkPoint fPts[2];
SkVector fTangent;
SkVector fNormal;
SkScalar fPathLength;
};
bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src,
SkStrokeRec* rec, const SkRect* cullRect) const {
// we do nothing if the src wants to be filled, or if our dashlength is 0
if (rec->isFillStyle() || fInitialDashLength < 0) {
return false;
}
const SkScalar* intervals = fIntervals;
SkScalar dashCount = 0;
int segCount = 0;
SkPath cullPathStorage;
const SkPath* srcPtr = &src;
if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) {
srcPtr = &cullPathStorage;
}
SpecialLineRec lineRec;
bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength);
SkPathMeasure meas(*srcPtr, false);
do {
bool skipFirstSegment = meas.isClosed();
bool addedSegment = false;
SkScalar length = meas.getLength();
int index = fInitialDashIndex;
// Since the path length / dash length ratio may be arbitrarily large, we can exert
// significant memory pressure while attempting to build the filtered path. To avoid this,
// we simply give up dashing beyond a certain threshold.
//
// The original bug report (http://crbug.com/165432) is based on a path yielding more than
// 90 million dash segments and crashing the memory allocator. A limit of 1 million
// segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
// maximum dash memory overhead at roughly 17MB per path.
static const SkScalar kMaxDashCount = 1000000;
dashCount += length * (fCount >> 1) / fIntervalLength;
if (dashCount > kMaxDashCount) {
dst->reset();
return false;
}
// Using double precision to avoid looping indefinitely due to single precision rounding
// (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
double distance = 0;
double dlen = fInitialDashLength;
while (distance < length) {
SkASSERT(dlen >= 0);
addedSegment = false;
if (is_even(index) && dlen > 0 && !skipFirstSegment) {
addedSegment = true;
++segCount;
if (specialLine) {
lineRec.addSegment(SkDoubleToScalar(distance),
SkDoubleToScalar(distance + dlen),
dst);
} else {
meas.getSegment(SkDoubleToScalar(distance),
SkDoubleToScalar(distance + dlen),
dst, true);
}
}
distance += dlen;
// clear this so we only respect it the first time around
skipFirstSegment = false;
// wrap around our intervals array if necessary
index += 1;
SkASSERT(index <= fCount);
if (index == fCount) {
index = 0;
}
// fetch our next dlen
dlen = intervals[index];
}
// extend if we ended on a segment and we need to join up with the (skipped) initial segment
if (meas.isClosed() && is_even(fInitialDashIndex) &&
fInitialDashLength > 0) {
meas.getSegment(0, fInitialDashLength, dst, !addedSegment);
++segCount;
}
} while (meas.nextContour());
if (segCount > 1) {
dst->setConvexity(SkPath::kConcave_Convexity);
}
return true;
return SkDashPath::FilterDashPath(dst, src, rec, cullRect, fIntervals, fCount,
fInitialDashLength, fInitialDashIndex, fIntervalLength);
}
// Currently asPoints is more restrictive then it needs to be. In the future
@ -570,6 +278,9 @@ SkDashPathEffect::SkDashPathEffect(SkReadBuffer& buffer) : INHERITED(buffer) {
fPhase += fIntervals[fInitialDashIndex] - fInitialDashLength;
}
} else {
this->setInternalMembers(fPhase);
// set the internal data members, fPhase should have been between 0 and intervalLength
// when written to buffer so no need to adjust it
SkDashPath::CalcDashParameters(fPhase, fIntervals, fCount, &fInitialDashLength,
&fInitialDashIndex, &fIntervalLength);
}
}

328
src/utils/SkDashPath.cpp Normal file
View File

@ -0,0 +1,328 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDashPathPriv.h"
#include "SkPathMeasure.h"
static inline int is_even(int x) {
return (~x) << 31;
}
static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
int32_t* index, int count) {
for (int i = 0; i < count; ++i) {
if (phase > intervals[i]) {
phase -= intervals[i];
} else {
*index = i;
return intervals[i] - phase;
}
}
// If we get here, phase "appears" to be larger than our length. This
// shouldn't happen with perfect precision, but we can accumulate errors
// during the initial length computation (rounding can make our sum be too
// big or too small. In that event, we just have to eat the error here.
*index = 0;
return intervals[0];
}
void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
SkScalar* initialDashLength, int32_t* initialDashIndex,
SkScalar* intervalLength, SkScalar* adjustedPhase) {
SkScalar len = 0;
for (int i = 0; i < count; i++) {
len += intervals[i];
}
*intervalLength = len;
// watch out for values that might make us go out of bounds
if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
// Adjust phase to be between 0 and len, "flipping" phase if negative.
// e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
if (adjustedPhase) {
if (phase < 0) {
phase = -phase;
if (phase > len) {
phase = SkScalarMod(phase, len);
}
phase = len - phase;
// Due to finite precision, it's possible that phase == len,
// even after the subtract (if len >>> phase), so fix that here.
// This fixes http://crbug.com/124652 .
SkASSERT(phase <= len);
if (phase == len) {
phase = 0;
}
} else if (phase >= len) {
phase = SkScalarMod(phase, len);
}
*adjustedPhase = phase;
}
SkASSERT(phase >= 0 && phase < len);
*initialDashLength = find_first_interval(intervals, phase,
initialDashIndex, count);
SkASSERT(*initialDashLength >= 0);
SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
} else {
*initialDashLength = -1; // signal bad dash intervals
}
}
static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
SkScalar radius = SkScalarHalf(rec.getWidth());
if (0 == radius) {
radius = SK_Scalar1; // hairlines
}
if (SkPaint::kMiter_Join == rec.getJoin()) {
radius = SkScalarMul(radius, rec.getMiter());
}
rect->outset(radius, radius);
}
// Only handles lines for now. If returns true, dstPath is the new (smaller)
// path. If returns false, then dstPath parameter is ignored.
static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
const SkRect* cullRect, SkScalar intervalLength,
SkPath* dstPath) {
if (NULL == cullRect) {
return false;
}
SkPoint pts[2];
if (!srcPath.isLine(pts)) {
return false;
}
SkRect bounds = *cullRect;
outset_for_stroke(&bounds, rec);
SkScalar dx = pts[1].x() - pts[0].x();
SkScalar dy = pts[1].y() - pts[0].y();
// just do horizontal lines for now (lazy)
if (dy) {
return false;
}
SkScalar minX = pts[0].fX;
SkScalar maxX = pts[1].fX;
if (maxX < bounds.fLeft || minX > bounds.fRight) {
return false;
}
if (dx < 0) {
SkTSwap(minX, maxX);
}
// Now we actually perform the chop, removing the excess to the left and
// right of the bounds (keeping our new line "in phase" with the dash,
// hence the (mod intervalLength).
if (minX < bounds.fLeft) {
minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
intervalLength);
}
if (maxX > bounds.fRight) {
maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
intervalLength);
}
SkASSERT(maxX >= minX);
if (dx < 0) {
SkTSwap(minX, maxX);
}
pts[0].fX = minX;
pts[1].fX = maxX;
dstPath->moveTo(pts[0]);
dstPath->lineTo(pts[1]);
return true;
}
class SpecialLineRec {
public:
bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
int intervalCount, SkScalar intervalLength) {
if (rec->isHairlineStyle() || !src.isLine(fPts)) {
return false;
}
// can relax this in the future, if we handle square and round caps
if (SkPaint::kButt_Cap != rec->getCap()) {
return false;
}
SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
fTangent = fPts[1] - fPts[0];
if (fTangent.isZero()) {
return false;
}
fPathLength = pathLength;
fTangent.scale(SkScalarInvert(pathLength));
fTangent.rotateCCW(&fNormal);
fNormal.scale(SkScalarHalf(rec->getWidth()));
// now estimate how many quads will be added to the path
// resulting segments = pathLen * intervalCount / intervalLen
// resulting points = 4 * segments
SkScalar ptCount = SkScalarMulDiv(pathLength,
SkIntToScalar(intervalCount),
intervalLength);
int n = SkScalarCeilToInt(ptCount) << 2;
dst->incReserve(n);
// we will take care of the stroking
rec->setFillStyle();
return true;
}
void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
SkASSERT(d0 < fPathLength);
// clamp the segment to our length
if (d1 > fPathLength) {
d1 = fPathLength;
}
SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
SkPoint pts[4];
pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
}
private:
SkPoint fPts[2];
SkVector fTangent;
SkVector fNormal;
SkScalar fPathLength;
};
bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
const SkRect* cullRect, const SkScalar aIntervals[],
int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
SkScalar intervalLength) {
// we do nothing if the src wants to be filled, or if our dashlength is 0
if (rec->isFillStyle() || initialDashLength < 0) {
return false;
}
const SkScalar* intervals = aIntervals;
SkScalar dashCount = 0;
int segCount = 0;
SkPath cullPathStorage;
const SkPath* srcPtr = &src;
if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
srcPtr = &cullPathStorage;
}
SpecialLineRec lineRec;
bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
SkPathMeasure meas(*srcPtr, false);
do {
bool skipFirstSegment = meas.isClosed();
bool addedSegment = false;
SkScalar length = meas.getLength();
int index = initialDashIndex;
// Since the path length / dash length ratio may be arbitrarily large, we can exert
// significant memory pressure while attempting to build the filtered path. To avoid this,
// we simply give up dashing beyond a certain threshold.
//
// The original bug report (http://crbug.com/165432) is based on a path yielding more than
// 90 million dash segments and crashing the memory allocator. A limit of 1 million
// segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
// maximum dash memory overhead at roughly 17MB per path.
static const SkScalar kMaxDashCount = 1000000;
dashCount += length * (count >> 1) / intervalLength;
if (dashCount > kMaxDashCount) {
dst->reset();
return false;
}
// Using double precision to avoid looping indefinitely due to single precision rounding
// (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
double distance = 0;
double dlen = initialDashLength;
while (distance < length) {
SkASSERT(dlen >= 0);
addedSegment = false;
if (is_even(index) && dlen > 0 && !skipFirstSegment) {
addedSegment = true;
++segCount;
if (specialLine) {
lineRec.addSegment(SkDoubleToScalar(distance),
SkDoubleToScalar(distance + dlen),
dst);
} else {
meas.getSegment(SkDoubleToScalar(distance),
SkDoubleToScalar(distance + dlen),
dst, true);
}
}
distance += dlen;
// clear this so we only respect it the first time around
skipFirstSegment = false;
// wrap around our intervals array if necessary
index += 1;
SkASSERT(index <= count);
if (index == count) {
index = 0;
}
// fetch our next dlen
dlen = intervals[index];
}
// extend if we ended on a segment and we need to join up with the (skipped) initial segment
if (meas.isClosed() && is_even(initialDashIndex) &&
initialDashLength > 0) {
meas.getSegment(0, initialDashLength, dst, !addedSegment);
++segCount;
}
} while (meas.nextContour());
if (segCount > 1) {
dst->setConvexity(SkPath::kConcave_Convexity);
}
return true;
}
bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
SkScalar initialDashLength = 0;
int32_t initialDashIndex = 0;
SkScalar intervalLength = 0;
CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
&initialDashLength, &initialDashIndex, &intervalLength);
return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
initialDashIndex, intervalLength);
}

View File

@ -0,0 +1,32 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkDashPathPriv_DEFINED
#define SkDashPathPriv_DEFINED
#include "SkPathEffect.h"
namespace SkDashPath {
/*
* Calculates the initialDashLength, initialDashIndex, and intervalLength based on the
* inputed phase and intervals. If adjustedPhase is passed in, then the phase will be
* adjusted to be between 0 and intervalLength. The result will be stored in adjustedPhase.
* If adjustedPhase is NULL then it is assumed phase is already between 0 and intervalLength
*/
void CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
SkScalar* initialDashLength, int32_t* initialDashIndex,
SkScalar* intervalLength, SkScalar* adjustedPhase = NULL);
bool FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec*, const SkRect*,
const SkScalar aIntervals[], int32_t count, SkScalar initialDashLength,
int32_t initialDashIndex, SkScalar intervalLength);
bool FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec*, const SkRect*,
const SkPathEffect::DashInfo& info);
}
#endif