Add analytic clip FPs that read from the CCPR atlas

Bug: skia:7190
Change-Id: Ie31d368f52910e6917efdeb1b024370b06fc11ee
Reviewed-on: https://skia-review.googlesource.com/77160
Commit-Queue: Chris Dalton <csmartdalton@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
This commit is contained in:
Chris Dalton 2017-12-05 10:05:21 -07:00 committed by Skia Commit-Bot
parent f32b27d2e4
commit a32a3c32c3
20 changed files with 854 additions and 270 deletions

View File

@ -359,6 +359,34 @@ DEF_SIMPLE_GM(bug339297, canvas, 640, 480) {
canvas->drawPath(path, paint);
}
DEF_SIMPLE_GM(bug339297_as_clip, canvas, 640, 480) {
SkPath path;
path.moveTo(-469515, -10354890);
path.cubicTo(771919.62f, -10411179, 2013360.1f, -10243774, 3195542.8f, -9860664);
path.lineTo(3195550, -9860655);
path.lineTo(3195539, -9860652);
path.lineTo(3195539, -9860652);
path.lineTo(3195539, -9860652);
path.cubicTo(2013358.1f, -10243761, 771919.25f, -10411166, -469513.84f, -10354877);
path.lineTo(-469515, -10354890);
path.close();
canvas->translate(258, 10365663);
canvas->save();
canvas->clipPath(path, true);
canvas->clear(SK_ColorBLACK);
canvas->restore();
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kFill_Style);
paint.setColor(SK_ColorRED);
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(1);
canvas->drawPath(path, paint);
}
DEF_SIMPLE_GM(bug6987, canvas, 200, 200) {
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);

View File

@ -296,6 +296,8 @@ skia_gpu_sources = [
# coverage counting path renderer
"$_src/gpu/ccpr/GrCCPRAtlas.cpp",
"$_src/gpu/ccpr/GrCCPRAtlas.h",
"$_src/gpu/ccpr/GrCCPRClipProcessor.cpp",
"$_src/gpu/ccpr/GrCCPRClipProcessor.h",
"$_src/gpu/ccpr/GrCCPRCoverageOp.cpp",
"$_src/gpu/ccpr/GrCCPRCoverageOp.h",
"$_src/gpu/ccpr/GrCCPRCoverageProcessor.cpp",

View File

@ -49,6 +49,13 @@ public:
this->didRemoveRefOrPendingIO();
}
#ifdef SK_DEBUG
bool isUnique_debugOnly() const { // For asserts.
SkASSERT(fRefCnt >= 0 && fPendingWrites >= 0 && fPendingReads >= 0);
return 1 == fRefCnt + fPendingWrites + fPendingReads;
}
#endif
void validate() const {
#ifdef SK_DEBUG
SkASSERT(fRefCnt >= 0);

View File

@ -66,14 +66,13 @@ public:
void onDrawContent(SkCanvas* canvas) override {
if (fDoClip) {
SkMatrix oldMatrix = canvas->getTotalMatrix();
canvas->setMatrix(SkMatrix::MakeScale(this->width(), this->height()));
SkPath deviceSpaceClipPath = fClipPath;
deviceSpaceClipPath.transform(SkMatrix::MakeScale(this->width(), this->height()));
canvas->save();
canvas->clipPath(fClipPath, SkClipOp::kDifference, true);
canvas->clipPath(deviceSpaceClipPath, SkClipOp::kDifference, true);
canvas->clear(SK_ColorBLACK);
canvas->restore();
canvas->clipPath(fClipPath, SkClipOp::kIntersect, true);
canvas->setMatrix(oldMatrix);
canvas->clipPath(deviceSpaceClipPath, SkClipOp::kIntersect, true);
}
this->drawGlyphs(canvas);
}

View File

@ -11,9 +11,9 @@
#include "GrContextPriv.h"
#include "GrDeferredProxyUploader.h"
#include "GrDrawingManager.h"
#include "GrRenderTargetContextPriv.h"
#include "GrFixedClip.h"
#include "GrGpuResourcePriv.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "GrStencilAttachment.h"
#include "GrSWMaskHelper.h"
@ -190,6 +190,8 @@ bool GrClipStackClip::apply(GrContext* context, GrRenderTargetContext* renderTar
return true;
}
const auto* caps = context->caps()->shaderCaps();
int maxWindowRectangles = renderTargetContext->priv().maxWindowRectangles();
int maxAnalyticFPs = context->caps()->maxClipAnalyticFPs();
if (GrFSAAType::kNone != renderTargetContext->fsaaType()) {
// With mixed samples (non-msaa color buffer), any coverage info is lost from color once it
@ -200,10 +202,13 @@ bool GrClipStackClip::apply(GrContext* context, GrRenderTargetContext* renderTar
}
SkASSERT(!context->caps()->avoidStencilBuffers()); // We disable MSAA when avoiding stencil.
}
auto* ccpr = context->contextPriv().drawingManager()->getCoverageCountingPathRenderer();
const auto* caps = context->caps()->shaderCaps();
GrReducedClip reducedClip(*fStack, devBounds, caps,
renderTargetContext->priv().maxWindowRectangles(), maxAnalyticFPs);
GrReducedClip reducedClip(*fStack, devBounds, caps, maxWindowRectangles, maxAnalyticFPs, ccpr);
if (InitialState::kAllOut == reducedClip.initialState() &&
reducedClip.maskElements().isEmpty()) {
return false;
}
if (reducedClip.hasScissor() && !GrClip::IsInsideClip(reducedClip.scissor(), devBounds)) {
out->hardClip().addScissor(reducedClip.scissor(), bounds);
@ -214,14 +219,27 @@ bool GrClipStackClip::apply(GrContext* context, GrRenderTargetContext* renderTar
GrWindowRectsState::Mode::kExclusive);
}
if (std::unique_ptr<GrFragmentProcessor> clipFPs = reducedClip.detachAnalyticFPs()) {
if (!reducedClip.maskElements().isEmpty()) {
if (!this->applyClipMask(context, renderTargetContext, reducedClip, hasUserStencilSettings,
out)) {
return false;
}
}
// The opList ID must not be looked up until AFTER producing the clip mask (if any). That step
// can cause a flush or otherwise change which opList our draw is going into.
uint32_t opListID = renderTargetContext->getOpList()->uniqueID();
int rtWidth = renderTargetContext->width(), rtHeight = renderTargetContext->height();
if (auto clipFPs = reducedClip.finishAndDetachAnalyticFPs(opListID, rtWidth, rtHeight)) {
out->addCoverageFP(std::move(clipFPs));
}
if (reducedClip.maskElements().isEmpty()) {
return InitialState::kAllIn == reducedClip.initialState();
}
return true;
}
bool GrClipStackClip::applyClipMask(GrContext* context, GrRenderTargetContext* renderTargetContext,
const GrReducedClip& reducedClip, bool hasUserStencilSettings,
GrAppliedClip* out) const {
#ifdef SK_DEBUG
SkASSERT(reducedClip.hasScissor());
SkIRect rtIBounds = SkIRect::MakeWH(renderTargetContext->width(),

View File

@ -46,6 +46,9 @@ private:
GrPathRenderer** prOut,
bool needsStencil);
bool applyClipMask(GrContext*, GrRenderTargetContext*, const GrReducedClip&,
bool hasUserStencilSettings, GrAppliedClip*) const;
// Creates an alpha mask of the clip. The mask is a rasterization of elements through the
// rect specified by clipSpaceIBounds.
sk_sp<GrTextureProxy> createAlphaClipMask(GrContext*, const GrReducedClip&) const;

View File

@ -102,7 +102,7 @@ public:
*/
virtual GrRenderTargetOpList* asRenderTargetOpList() { return nullptr; }
int32_t uniqueID() const { return fUniqueID; }
uint32_t uniqueID() const { return fUniqueID; }
/*
* Dump out the GrOpList dependency DAG

View File

@ -67,6 +67,7 @@ public:
enum ClassID {
kBigKeyProcessor_ClassID,
kBlockInputFragmentProcessor_ClassID,
kCCPRClipProcessor_ClassID,
kCircleGeometryProcessor_ClassID,
kCircleInside2PtConicalEffect_ClassID,
kCircleOutside2PtConicalEffect_ClassID,

View File

@ -21,6 +21,8 @@
#include "GrStyle.h"
#include "GrUserStencilSettings.h"
#include "SkClipOpPriv.h"
#include "ccpr/GrCoverageCountingPathRenderer.h"
#include "effects/GrAARectEffect.h"
#include "effects/GrConvexPolyEffect.h"
#include "effects/GrRRectEffect.h"
@ -32,8 +34,12 @@
* take a rect in case the caller knows a bound on what is to be drawn through this clip.
*/
GrReducedClip::GrReducedClip(const SkClipStack& stack, const SkRect& queryBounds,
const GrShaderCaps* caps, int maxWindowRectangles, int maxAnalyticFPs)
: fCaps(caps), fMaxWindowRectangles(maxWindowRectangles), fMaxAnalyticFPs(maxAnalyticFPs) {
const GrShaderCaps* caps, int maxWindowRectangles, int maxAnalyticFPs,
GrCoverageCountingPathRenderer* ccpr)
: fCaps(caps)
, fMaxWindowRectangles(maxWindowRectangles)
, fMaxAnalyticFPs(maxAnalyticFPs)
, fCCPR(fMaxAnalyticFPs ? ccpr : nullptr) {
SkASSERT(!queryBounds.isEmpty());
SkASSERT(fMaxWindowRectangles <= GrWindowRectangles::kMaxWindows);
fHasScissor = false;
@ -175,6 +181,12 @@ void GrReducedClip::walkStack(const SkClipStack& stack, const SkRect& queryBound
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllOut;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipInsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
} else {
if (element->contains(relaxedQueryBounds)) {
@ -204,6 +216,12 @@ void GrReducedClip::walkStack(const SkClipStack& stack, const SkRect& queryBound
skippable = true;
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipOutsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
skippable = (ClipResult::kClipped == result);
}
} else {
if (element->contains(relaxedQueryBounds)) {
@ -305,6 +323,15 @@ void GrReducedClip::walkStack(const SkClipStack& stack, const SkRect& queryBound
} else if (GrClip::IsOutsideClip(element->getBounds(), queryBounds)) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
} else if (!embiggens) {
ClipResult result = this->clipOutsideElement(element);
if (ClipResult::kMadeEmpty == result) {
return;
}
if (ClipResult::kClipped == result) {
initialTriState = InitialTriState::kAllIn;
skippable = true;
}
}
} else {
if (element->contains(relaxedQueryBounds)) {
@ -466,6 +493,7 @@ GrReducedClip::ClipResult GrReducedClip::clipInsideElement(const Element* elemen
case Element::DeviceSpaceType::kRect:
SkASSERT(element->getBounds() == element->getDeviceSpaceRect());
SkASSERT(!element->isInverseFilled());
if (element->isAA()) {
if (SK_InvalidGenID == fAAClipRectGenID) { // No AA clip rect yet?
fAAClipRect = element->getDeviceSpaceRect();
@ -483,12 +511,13 @@ GrReducedClip::ClipResult GrReducedClip::clipInsideElement(const Element* elemen
return ClipResult::kClipped;
case Element::DeviceSpaceType::kRRect:
SkASSERT(!element->isInverseFilled());
return this->addAnalyticFP(element->getDeviceSpaceRRect(), Invert::kNo,
GrAA(element->isAA()));
case Element::DeviceSpaceType::kPath:
return this->addAnalyticFP(element->getDeviceSpacePath(), Invert::kNo,
GrAA(element->isAA()));
return this->addAnalyticFP(element->getDeviceSpacePath(),
Invert(element->isInverseFilled()), GrAA(element->isAA()));
}
SK_ABORT("Unexpected DeviceSpaceType");
@ -501,6 +530,7 @@ GrReducedClip::ClipResult GrReducedClip::clipOutsideElement(const Element* eleme
return ClipResult::kMadeEmpty;
case Element::DeviceSpaceType::kRect:
SkASSERT(!element->isInverseFilled());
if (fWindowRects.count() < fMaxWindowRectangles) {
// Clip out the inside of every rect. We won't be able to entirely skip the AA ones,
// but it saves processing time.
@ -513,6 +543,7 @@ GrReducedClip::ClipResult GrReducedClip::clipOutsideElement(const Element* eleme
GrAA(element->isAA()));
case Element::DeviceSpaceType::kRRect: {
SkASSERT(!element->isInverseFilled());
const SkRRect& clipRRect = element->getDeviceSpaceRRect();
ClipResult clipResult = this->addAnalyticFP(clipRRect, Invert::kYes,
GrAA(element->isAA()));
@ -552,8 +583,8 @@ GrReducedClip::ClipResult GrReducedClip::clipOutsideElement(const Element* eleme
}
case Element::DeviceSpaceType::kPath:
return this->addAnalyticFP(element->getDeviceSpacePath(), Invert::kYes,
GrAA(element->isAA()));
return this->addAnalyticFP(element->getDeviceSpacePath(),
Invert(!element->isInverseFilled()), GrAA(element->isAA()));
}
SK_ABORT("Unexpected DeviceSpaceType");
@ -572,47 +603,67 @@ inline void GrReducedClip::addWindowRectangle(const SkRect& elementInteriorRect,
}
}
template<typename T>
inline GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const T& deviceSpaceShape,
Invert invert, GrAA aa) {
if (fAnalyticFPs.count() >= fMaxAnalyticFPs) {
GrClipEdgeType GrReducedClip::GetClipEdgeType(Invert invert, GrAA aa) {
if (Invert::kNo == invert) {
return (GrAA::kYes == aa) ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
} else {
return (GrAA::kYes == aa) ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
}
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRect& deviceSpaceRect,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
GrClipEdgeType edgeType;
if (Invert::kNo == invert) {
edgeType = (GrAA::kYes == aa) ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
} else {
edgeType = (GrAA::kYes == aa) ? GrClipEdgeType::kInverseFillAA
: GrClipEdgeType::kInverseFillBW;
fAnalyticFPs.push_back(GrAARectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRect));
SkASSERT(fAnalyticFPs.back());
return ClipResult::kClipped;
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkRRect& deviceSpaceRRect,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
if (auto fp = make_analytic_clip_fp(edgeType, deviceSpaceShape, *fCaps)) {
if (auto fp = GrRRectEffect::Make(GetClipEdgeType(invert, aa), deviceSpaceRRect, *fCaps)) {
fAnalyticFPs.push_back(std::move(fp));
return ClipResult::kClipped;
}
SkPath deviceSpacePath;
deviceSpacePath.setIsVolatile(true);
deviceSpacePath.addRRect(deviceSpaceRRect);
return this->addAnalyticFP(deviceSpacePath, invert, aa);
}
GrReducedClip::ClipResult GrReducedClip::addAnalyticFP(const SkPath& deviceSpacePath,
Invert invert, GrAA aa) {
if (this->numAnalyticFPs() >= fMaxAnalyticFPs) {
return ClipResult::kNotClipped;
}
if (auto fp = GrConvexPolyEffect::Make(GetClipEdgeType(invert, aa), deviceSpacePath)) {
fAnalyticFPs.push_back(std::move(fp));
return ClipResult::kClipped;
}
if (fCCPR && GrAA::kYes == aa && fCCPR->canMakeClipProcessor(deviceSpacePath)) {
// Set aside CCPR paths for later. We will create their clip FPs once we know the ID of the
// opList they will operate in.
SkPath& ccprClipPath = fCCPRClipPaths.push_back(deviceSpacePath);
if (Invert::kYes == invert) {
ccprClipPath.toggleInverseFillType();
}
return ClipResult::kClipped;
}
return ClipResult::kNotClipped;
}
std::unique_ptr<GrFragmentProcessor> make_analytic_clip_fp(GrClipEdgeType edgeType,
const SkRect& deviceSpaceRect,
const GrShaderCaps&) {
return GrConvexPolyEffect::Make(edgeType, deviceSpaceRect);
}
std::unique_ptr<GrFragmentProcessor> make_analytic_clip_fp(GrClipEdgeType edgeType,
const SkRRect& deviceSpaceRRect,
const GrShaderCaps& caps) {
return GrRRectEffect::Make(edgeType, deviceSpaceRRect, caps);
}
std::unique_ptr<GrFragmentProcessor> make_analytic_clip_fp(GrClipEdgeType edgeType,
const SkPath& deviceSpacePath,
const GrShaderCaps&) {
return GrConvexPolyEffect::Make(edgeType, deviceSpacePath);
}
void GrReducedClip::makeEmpty() {
fHasScissor = false;
fAAClipRectGenID = SK_InvalidGenID;
@ -902,3 +953,22 @@ bool GrReducedClip::drawStencilClipMask(GrContext* context,
}
return true;
}
std::unique_ptr<GrFragmentProcessor> GrReducedClip::finishAndDetachAnalyticFPs(uint32_t opListID,
int rtWidth,
int rtHeight) {
// Make sure finishAndDetachAnalyticFPs hasn't been called already.
SkDEBUGCODE(for (const auto& fp : fAnalyticFPs) { SkASSERT(fp); })
if (!fCCPRClipPaths.empty()) {
fAnalyticFPs.reserve(fAnalyticFPs.count() + fCCPRClipPaths.count());
for (const SkPath& ccprClipPath : fCCPRClipPaths) {
SkASSERT(fHasScissor);
auto fp = fCCPR->makeClipProcessor(opListID, ccprClipPath, fScissor, rtWidth, rtHeight);
fAnalyticFPs.push_back(std::move(fp));
}
fCCPRClipPaths.reset();
}
return GrFragmentProcessor::RunInSeries(fAnalyticFPs.begin(), fAnalyticFPs.count());
}

View File

@ -14,6 +14,7 @@
#include "SkTLList.h"
class GrContext;
class GrCoverageCountingPathRenderer;
class GrRenderTargetContext;
/**
@ -26,7 +27,15 @@ public:
using ElementList = SkTLList<SkClipStack::Element, 16>;
GrReducedClip(const SkClipStack&, const SkRect& queryBounds, const GrShaderCaps* caps,
int maxWindowRectangles = 0, int maxAnalyticFPs = 0);
int maxWindowRectangles = 0, int maxAnalyticFPs = 0,
GrCoverageCountingPathRenderer* = nullptr);
enum class InitialState : bool {
kAllIn,
kAllOut
};
InitialState initialState() const { return fInitialState; }
/**
* If hasScissor() is true, the clip mask is not valid outside this rect and the caller must
@ -50,13 +59,6 @@ public:
*/
const GrWindowRectangles& windowRectangles() const { return fWindowRects; }
int numAnalyticFPs() const { return fAnalyticFPs.count(); }
std::unique_ptr<GrFragmentProcessor> detachAnalyticFPs() {
SkDEBUGCODE(for (const auto& fp : fAnalyticFPs) { SkASSERT(fp); })
return GrFragmentProcessor::RunInSeries(fAnalyticFPs.begin(), fAnalyticFPs.count());
}
/**
* An ordered list of clip elements that could not be skipped or implemented by other means. If
* nonempty, the caller must create an alpha and/or stencil mask for these elements and apply it
@ -67,8 +69,10 @@ public:
/**
* If maskElements() are nonempty, uniquely identifies the region of the clip mask that falls
* inside of scissor().
*
* NOTE: since clip elements might fall outside the query bounds, different regions of the same
* clip stack might have more or less restrictive IDs.
*
* FIXME: this prevents us from reusing a sub-rect of a perfectly good mask when that rect has
* been assigned a less restrictive ID.
*/
@ -79,16 +83,23 @@ public:
*/
bool maskRequiresAA() const { SkASSERT(!fMaskElements.isEmpty()); return fMaskRequiresAA; }
enum class InitialState : bool {
kAllIn,
kAllOut
};
InitialState initialState() const { return fInitialState; }
bool drawAlphaClipMask(GrRenderTargetContext*) const;
bool drawStencilClipMask(GrContext*, GrRenderTargetContext*) const;
int numAnalyticFPs() const { return fAnalyticFPs.count() + fCCPRClipPaths.count(); }
/**
* Called once the client knows the ID of the opList that the clip FPs will operate in. This
* method finishes any outstanding work that was waiting for the opList ID, then detaches and
* returns this class's list of FPs that complete the clip.
*
* NOTE: this must be called AFTER producing the clip mask (if any) because draw calls on
* the render target context, surface allocations, and even switching render targets (pre MDB)
* may cause flushes or otherwise change which opList the actual draw is going into.
*/
std::unique_ptr<GrFragmentProcessor> finishAndDetachAnalyticFPs(uint32_t opListID, int rtWidth,
int rtHeight);
private:
void walkStack(const SkClipStack&, const SkRect& queryBounds);
@ -98,11 +109,11 @@ private:
kMadeEmpty
};
// Clips the the given element's interior out of the final clip.
// Intersects the clip with the element's interior, regardless of inverse fill type.
// NOTE: do not call for elements followed by ops that can grow the clip.
ClipResult clipInsideElement(const Element*);
// Clips the the given element's exterior out of the final clip.
// Intersects the clip with the element's exterior, regardless of inverse fill type.
// NOTE: do not call for elements followed by ops that can grow the clip.
ClipResult clipOutsideElement(const Element*);
@ -113,23 +124,29 @@ private:
kYes = true
};
template<typename T> ClipResult addAnalyticFP(const T& deviceSpaceShape, Invert, GrAA);
static GrClipEdgeType GetClipEdgeType(Invert, GrAA);
ClipResult addAnalyticFP(const SkRect& deviceSpaceRect, Invert, GrAA);
ClipResult addAnalyticFP(const SkRRect& deviceSpaceRRect, Invert, GrAA);
ClipResult addAnalyticFP(const SkPath& deviceSpacePath, Invert, GrAA);
void makeEmpty();
const GrShaderCaps* fCaps;
const int fMaxWindowRectangles;
const int fMaxAnalyticFPs;
GrCoverageCountingPathRenderer* const fCCPR;
InitialState fInitialState;
SkIRect fScissor;
bool fHasScissor;
SkRect fAAClipRect;
uint32_t fAAClipRectGenID; // GenID the mask will have if includes the AA clip rect.
GrWindowRectangles fWindowRects;
SkSTArray<4, std::unique_ptr<GrFragmentProcessor>> fAnalyticFPs;
ElementList fMaskElements;
uint32_t fMaskGenID;
bool fMaskRequiresAA;
InitialState fInitialState;
SkSTArray<4, std::unique_ptr<GrFragmentProcessor>> fAnalyticFPs;
SkSTArray<4, SkPath> fCCPRClipPaths; // Will convert to FPs once we have an opList ID for CCPR.
};
#endif

View File

@ -108,6 +108,7 @@ public:
return fRenderTargetContext->fRenderTargetProxy->uniqueID();
}
uint32_t testingOnly_getOpListID();
uint32_t testingOnly_addDrawOp(std::unique_ptr<GrDrawOp>);
uint32_t testingOnly_addDrawOp(const GrClip&, std::unique_ptr<GrDrawOp>);

View File

@ -36,7 +36,7 @@ public:
sk_sp<GrRenderTargetContext> SK_WARN_UNUSED_RESULT finalize(GrOnFlushResourceProvider*,
std::unique_ptr<GrDrawOp> atlasOp);
sk_sp<GrTextureProxy> textureProxy() const { return fTextureProxy; }
GrTextureProxy* textureProxy() const { return fTextureProxy.get(); }
private:
class Node;

View File

@ -0,0 +1,114 @@
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPRClipProcessor.h"
#include "GrTexture.h"
#include "GrTextureProxy.h"
#include "SkMakeUnique.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
GrCCPRClipProcessor::GrCCPRClipProcessor(const ClipPath* clipPath, MustCheckBounds mustCheckBounds,
SkPath::FillType overrideFillType)
: INHERITED(kCCPRClipProcessor_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fClipPath(clipPath)
, fMustCheckBounds((bool)mustCheckBounds)
, fOverrideFillType(overrideFillType)
, fAtlasAccess(sk_ref_sp(fClipPath->atlasLazyProxy()), GrSamplerState::Filter::kNearest,
GrSamplerState::WrapMode::kClamp, kFragment_GrShaderFlag) {
this->addTextureSampler(&fAtlasAccess);
}
std::unique_ptr<GrFragmentProcessor> GrCCPRClipProcessor::clone() const {
return skstd::make_unique<GrCCPRClipProcessor>(fClipPath, MustCheckBounds(fMustCheckBounds),
fOverrideFillType);
}
void GrCCPRClipProcessor::onGetGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
b->add32((fOverrideFillType << 1) | (int)fMustCheckBounds);
}
bool GrCCPRClipProcessor::onIsEqual(const GrFragmentProcessor& fp) const {
const GrCCPRClipProcessor& that = fp.cast<GrCCPRClipProcessor>();
// Each ClipPath path has a unique atlas proxy, so hasSameSamplersAndAccesses should have
// already weeded out FPs with different ClipPaths.
SkASSERT(that.fClipPath->deviceSpacePath().getGenerationID() ==
fClipPath->deviceSpacePath().getGenerationID());
return that.fOverrideFillType == fOverrideFillType;
}
class GrCCPRClipProcessor::Impl : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const GrCCPRClipProcessor& proc = args.fFp.cast<GrCCPRClipProcessor>();
GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppend ("half coverage;");
if (proc.fMustCheckBounds) {
const char* pathIBounds;
fPathIBoundsUniform = uniHandler->addUniform(kFragment_GrShaderFlag, kFloat4_GrSLType,
"path_ibounds", &pathIBounds);
f->codeAppendf("if (all(greaterThan(float4(sk_FragCoord.xy, %s.zw), "
"float4(%s.xy, sk_FragCoord.xy)))) {",
pathIBounds, pathIBounds);
}
const char* atlasTransform;
fAtlasTransformUniform = uniHandler->addUniform(kFragment_GrShaderFlag, kFloat4_GrSLType,
"atlas_transform", &atlasTransform);
f->codeAppendf("float2 texcoord = sk_FragCoord.xy * %s.xy + %s.zw;",
atlasTransform, atlasTransform);
f->codeAppend ("half coverage_count = ");
f->appendTextureLookup(args.fTexSamplers[0], "texcoord", kHalf2_GrSLType);
f->codeAppend (".a;");
if (SkPath::kEvenOdd_FillType == proc.fOverrideFillType ||
SkPath::kInverseEvenOdd_FillType == proc.fOverrideFillType) {
f->codeAppend ("half t = mod(abs(coverage_count), 2);");
f->codeAppend ("coverage = 1 - abs(t - 1);");
} else {
f->codeAppend ("coverage = min(abs(coverage_count), 1);");
}
if (proc.fMustCheckBounds) {
f->codeAppend ("} else {");
f->codeAppend ( "coverage = 0;");
f->codeAppend ("}");
}
if (SkPath::IsInverseFillType(proc.fOverrideFillType)) {
f->codeAppend ("coverage = 1 - coverage;");
}
f->codeAppendf("%s = %s * coverage;", args.fOutputColor, args.fInputColor);
}
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& fp) override {
const GrCCPRClipProcessor& proc = fp.cast<GrCCPRClipProcessor>();
if (proc.fMustCheckBounds) {
const SkRect pathIBounds = SkRect::Make(proc.fClipPath->pathDevIBounds());
pdman.set4f(fPathIBoundsUniform, pathIBounds.left(), pathIBounds.top(),
pathIBounds.right(), pathIBounds.bottom());
}
const SkVector& scale = proc.fClipPath->atlasScale();
const SkVector& trans = proc.fClipPath->atlasTranslate();
pdman.set4f(fAtlasTransformUniform, scale.x(), scale.y(), trans.x(), trans.y());
}
private:
UniformHandle fPathIBoundsUniform;
UniformHandle fAtlasTransformUniform;
};
GrGLSLFragmentProcessor* GrCCPRClipProcessor::onCreateGLSLInstance() const {
return new Impl();
}

View File

@ -0,0 +1,42 @@
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrCCPRClipProcessor_DEFINED
#define GrCCPRClipProcessor_DEFINED
#include "GrFragmentProcessor.h"
#include "ccpr/GrCoverageCountingPathRenderer.h"
class GrCCPRClipProcessor : public GrFragmentProcessor {
public:
using ClipPath = GrCoverageCountingPathRenderer::ClipPath;
enum class MustCheckBounds : bool {
kNo = false,
kYes = true
};
GrCCPRClipProcessor(const ClipPath*, MustCheckBounds, SkPath::FillType overrideFillType);
const char* name() const override { return "GrCCPRClipProcessor"; }
std::unique_ptr<GrFragmentProcessor> clone() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
private:
const ClipPath* const fClipPath;
const bool fMustCheckBounds;
const SkPath::FillType fOverrideFillType;
const TextureSampler fAtlasAccess;
class Impl;
typedef GrFragmentProcessor INHERITED;
};
#endif

View File

@ -77,6 +77,10 @@ void GrCCPRCoverageOpsBuilder::parsePath(const SkMatrix& m, const SkPath& path,
this->parsePath(path, fLocalDevPtsBuffer.get());
}
void GrCCPRCoverageOpsBuilder::parseDeviceSpacePath(const SkPath& deviceSpacePath) {
this->parsePath(deviceSpacePath, SkPathPriv::PointData(deviceSpacePath));
}
void GrCCPRCoverageOpsBuilder::parsePath(const SkPath& path, const SkPoint* deviceSpacePts) {
SkASSERT(!fParsingPath);
SkDEBUGCODE(fParsingPath = true);

View File

@ -64,6 +64,11 @@ public:
// | 1 1 |
void parsePath(const SkMatrix&, const SkPath&, SkRect* devBounds, SkRect* devBounds45);
// Parses a device-space SkPath into a temporary staging area. The path will not yet be included
// in the next Op unless there is a matching call to saveParsedPath. The user must complement
// this with a following call to either saveParsedPath or discardParsedPath.
void parseDeviceSpacePath(const SkPath&);
// Commits the currently-parsed path from staging to the next Op, and specifies whether the mask
// should be rendered with a scissor clip in effect. Accepts an optional post-device-space
// translate for placement in an atlas.

View File

@ -16,10 +16,25 @@
#include "SkPathOps.h"
#include "GrOpFlushState.h"
#include "GrRenderTargetOpList.h"
#include "GrTexture.h"
#include "GrStyle.h"
#include "ccpr/GrCCPRPathProcessor.h"
#include "ccpr/GrCCPRClipProcessor.h"
using DrawPathsOp = GrCoverageCountingPathRenderer::DrawPathsOp;
// Shorthand for keeping line lengths under control with nested classes...
using CCPR = GrCoverageCountingPathRenderer;
// If a path spans more pixels than this, we need to crop it or else analytic AA can run out of fp32
// precision.
static constexpr float kPathCropThreshold = 1 << 16;
static void crop_path(const SkPath& path, const SkIRect& cropbox, SkPath* out) {
SkPath cropPath;
cropPath.addRect(SkRect::Make(cropbox));
if (!Op(cropPath, path, kIntersect_SkPathOp, out)) {
// This can fail if the PathOps encounter NaN or infinities.
out->reset();
}
}
bool GrCoverageCountingPathRenderer::IsSupported(const GrCaps& caps) {
const GrShaderCaps& shaderCaps = *caps.shaderCaps();
@ -92,36 +107,31 @@ bool GrCoverageCountingPathRenderer::onDrawPath(const DrawPathArgs& args) {
return true;
}
GrCoverageCountingPathRenderer::DrawPathsOp::DrawPathsOp(GrCoverageCountingPathRenderer* ccpr,
const DrawPathArgs& args, GrColor color)
CCPR::DrawPathsOp::DrawPathsOp(GrCoverageCountingPathRenderer* ccpr, const DrawPathArgs& args,
GrColor color)
: INHERITED(ClassID())
, fCCPR(ccpr)
, fSRGBFlags(GrPipeline::SRGBFlagsFromPaint(args.fPaint))
, fProcessors(std::move(args.fPaint))
, fTailDraw(&fHeadDraw)
, fOwningRTPendingOps(nullptr) {
, fOwningRTPendingPaths(nullptr) {
SkDEBUGCODE(++fCCPR->fPendingDrawOpsCount);
SkDEBUGCODE(fBaseInstance = -1);
SkDEBUGCODE(fDebugInstanceCount = 1;)
SkDEBUGCODE(fDebugSkippedInstances = 0;)
SkDEBUGCODE(fInstanceCount = 1;)
SkDEBUGCODE(fNumSkippedInstances = 0;)
GrRenderTargetContext* const rtc = args.fRenderTargetContext;
SkRect devBounds;
args.fViewMatrix->mapRect(&devBounds, args.fShape->bounds());
args.fClip->getConservativeBounds(rtc->width(), rtc->height(), &fHeadDraw.fClipIBounds,
nullptr);
if (SkTMax(devBounds.height(), devBounds.width()) > (1 << 16)) {
// The path is too large. We need to crop it or risk running out of fp32 precision for
// analytic AA.
SkPath cropPath, path;
cropPath.addRect(SkRect::Make(fHeadDraw.fClipIBounds));
if (SkTMax(devBounds.height(), devBounds.width()) > kPathCropThreshold) {
// The path is too large. We need to crop it or analytic AA can run out of fp32 precision.
SkPath path;
args.fShape->asPath(&path);
path.transform(*args.fViewMatrix);
fHeadDraw.fMatrix.setIdentity();
if (!Op(cropPath, path, kIntersect_SkPathOp, &fHeadDraw.fPath)) {
// This can fail if the PathOps encounter NaN or infinities.
fHeadDraw.fPath.reset();
}
crop_path(path, fHeadDraw.fClipIBounds, &fHeadDraw.fPath);
devBounds = fHeadDraw.fPath.getBounds();
} else {
fHeadDraw.fMatrix = *args.fViewMatrix;
@ -134,20 +144,20 @@ GrCoverageCountingPathRenderer::DrawPathsOp::DrawPathsOp(GrCoverageCountingPathR
this->setBounds(devBounds, GrOp::HasAABloat::kYes, GrOp::IsZeroArea::kNo);
}
GrCoverageCountingPathRenderer::DrawPathsOp::~DrawPathsOp() {
if (fOwningRTPendingOps) {
CCPR::DrawPathsOp::~DrawPathsOp() {
if (fOwningRTPendingPaths) {
// Remove CCPR's dangling pointer to this Op before deleting it.
SkASSERT(!fCCPR->fFlushing);
fOwningRTPendingOps->fOpList.remove(this);
fOwningRTPendingPaths->fDrawOps.remove(this);
}
SkDEBUGCODE(--fCCPR->fPendingDrawOpsCount);
}
GrDrawOp::RequiresDstTexture DrawPathsOp::finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrPixelConfigIsClamped dstIsClamped) {
GrDrawOp::RequiresDstTexture CCPR::DrawPathsOp::finalize(const GrCaps& caps,
const GrAppliedClip* clip,
GrPixelConfigIsClamped dstIsClamped) {
SkASSERT(!fCCPR->fFlushing);
// There should only be one single path draw in this Op right now.
SkASSERT(1 == fDebugInstanceCount);
SkASSERT(1 == fInstanceCount);
SkASSERT(&fHeadDraw == fTailDraw);
GrProcessorSet::Analysis analysis = fProcessors.finalize(
fHeadDraw.fColor, GrProcessorAnalysisCoverage::kSingleChannel, clip, false, caps,
@ -155,14 +165,14 @@ GrDrawOp::RequiresDstTexture DrawPathsOp::finalize(const GrCaps& caps, const GrA
return analysis.requiresDstTexture() ? RequiresDstTexture::kYes : RequiresDstTexture::kNo;
}
bool DrawPathsOp::onCombineIfPossible(GrOp* op, const GrCaps& caps) {
bool CCPR::DrawPathsOp::onCombineIfPossible(GrOp* op, const GrCaps& caps) {
DrawPathsOp* that = op->cast<DrawPathsOp>();
SkASSERT(fCCPR == that->fCCPR);
SkASSERT(!fCCPR->fFlushing);
SkASSERT(fOwningRTPendingOps);
SkASSERT(fDebugInstanceCount);
SkASSERT(!that->fOwningRTPendingOps || that->fOwningRTPendingOps == fOwningRTPendingOps);
SkASSERT(that->fDebugInstanceCount);
SkASSERT(fOwningRTPendingPaths);
SkASSERT(fInstanceCount);
SkASSERT(!that->fOwningRTPendingPaths || that->fOwningRTPendingPaths == fOwningRTPendingPaths);
SkASSERT(that->fInstanceCount);
if (this->getFillType() != that->getFillType() ||
fSRGBFlags != that->fSRGBFlags ||
@ -170,83 +180,152 @@ bool DrawPathsOp::onCombineIfPossible(GrOp* op, const GrCaps& caps) {
return false;
}
fTailDraw->fNext = &fOwningRTPendingOps->fDrawsAllocator.push_back(that->fHeadDraw);
fTailDraw->fNext = &fOwningRTPendingPaths->fDrawsAllocator.push_back(that->fHeadDraw);
fTailDraw = (that->fTailDraw == &that->fHeadDraw) ? fTailDraw->fNext : that->fTailDraw;
this->joinBounds(*that);
SkDEBUGCODE(fDebugInstanceCount += that->fDebugInstanceCount;)
SkDEBUGCODE(that->fDebugInstanceCount = 0);
SkDEBUGCODE(fInstanceCount += that->fInstanceCount;)
SkDEBUGCODE(that->fInstanceCount = 0);
return true;
}
void DrawPathsOp::wasRecorded(GrRenderTargetOpList* opList) {
void CCPR::DrawPathsOp::wasRecorded(GrRenderTargetOpList* opList) {
SkASSERT(!fCCPR->fFlushing);
SkASSERT(!fOwningRTPendingOps);
fOwningRTPendingOps = &fCCPR->fRTPendingOpsMap[opList->uniqueID()];
fOwningRTPendingOps->fOpList.addToTail(this);
SkASSERT(!fOwningRTPendingPaths);
fOwningRTPendingPaths = &fCCPR->fRTPendingPathsMap[opList->uniqueID()];
fOwningRTPendingPaths->fDrawOps.addToTail(this);
}
bool GrCoverageCountingPathRenderer::canMakeClipProcessor(const SkPath& deviceSpacePath) const {
if (!fDrawCachablePaths && !deviceSpacePath.isVolatile()) {
return false;
}
if (SkPathPriv::ConicWeightCnt(deviceSpacePath)) {
return false;
}
return true;
}
std::unique_ptr<GrFragmentProcessor>
GrCoverageCountingPathRenderer::makeClipProcessor(uint32_t opListID, const SkPath& deviceSpacePath,
const SkIRect& accessRect, int rtWidth,
int rtHeight) {
using MustCheckBounds = GrCCPRClipProcessor::MustCheckBounds;
SkASSERT(!fFlushing);
SkASSERT(this->canMakeClipProcessor(deviceSpacePath));
ClipPath& clipPath = fRTPendingPathsMap[opListID].fClipPaths[deviceSpacePath.getGenerationID()];
if (clipPath.isUninitialized()) {
// This ClipPath was just created during lookup. Initialize it.
clipPath.init(deviceSpacePath, accessRect, rtWidth, rtHeight);
} else {
clipPath.addAccess(accessRect);
}
bool mustCheckBounds = !clipPath.pathDevIBounds().contains(accessRect);
return skstd::make_unique<GrCCPRClipProcessor>(&clipPath, MustCheckBounds(mustCheckBounds),
deviceSpacePath.getFillType());
}
void CCPR::ClipPath::init(const SkPath& deviceSpacePath, const SkIRect& accessRect, int rtWidth,
int rtHeight) {
SkASSERT(this->isUninitialized());
fAtlasLazyProxy = GrSurfaceProxy::MakeLazy([this](GrResourceProvider* resourceProvider,
GrSurfaceOrigin* outOrigin) {
SkASSERT(fHasAtlas);
SkASSERT(!fHasAtlasTransform);
GrTextureProxy* textureProxy = fAtlas ? fAtlas->textureProxy() : nullptr;
if (!textureProxy || !textureProxy->instantiate(resourceProvider)) {
fAtlasScale = fAtlasTranslate = {0, 0};
SkDEBUGCODE(fHasAtlasTransform = true);
return sk_sp<GrTexture>();
}
fAtlasScale = {1.f / textureProxy->width(), 1.f / textureProxy->height()};
fAtlasTranslate = {fAtlasOffsetX * fAtlasScale.x(), fAtlasOffsetY * fAtlasScale.y()};
if (kBottomLeft_GrSurfaceOrigin == textureProxy->origin()) {
fAtlasScale.fY = -fAtlasScale.y();
fAtlasTranslate.fY = 1 - fAtlasTranslate.y();
}
SkDEBUGCODE(fHasAtlasTransform = true);
*outOrigin = textureProxy->origin();
return sk_ref_sp(textureProxy->priv().peekTexture());
}, GrSurfaceProxy::Renderable::kYes, kAlpha_half_GrPixelConfig);
const SkRect& pathDevBounds = deviceSpacePath.getBounds();
if (SkTMax(pathDevBounds.height(), pathDevBounds.width()) > kPathCropThreshold) {
// The path is too large. We need to crop it or analytic AA can run out of fp32 precision.
crop_path(deviceSpacePath, SkIRect::MakeWH(rtWidth, rtHeight), &fDeviceSpacePath);
} else {
fDeviceSpacePath = deviceSpacePath;
}
deviceSpacePath.getBounds().roundOut(&fPathDevIBounds);
fAccessRect = accessRect;
}
void GrCoverageCountingPathRenderer::preFlush(GrOnFlushResourceProvider* onFlushRP,
const uint32_t* opListIDs, int numOpListIDs,
SkTArray<sk_sp<GrRenderTargetContext>>* results) {
SkASSERT(!fFlushing);
SkDEBUGCODE(fFlushing = true;)
if (fRTPendingOpsMap.empty()) {
return; // Nothing to draw.
}
this->setupPerFlushResources(onFlushRP, opListIDs, numOpListIDs, results);
// Erase these last, once we are done accessing data from the SingleDraw allocators.
for (int i = 0; i < numOpListIDs; ++i) {
fRTPendingOpsMap.erase(opListIDs[i]);
}
}
void GrCoverageCountingPathRenderer::setupPerFlushResources(GrOnFlushResourceProvider* onFlushRP,
const uint32_t* opListIDs,
int numOpListIDs,
SkTArray<sk_sp<GrRenderTargetContext>>* results) {
using ScissorMode = GrCCPRCoverageOpsBuilder::ScissorMode;
using PathInstance = GrCCPRPathProcessor::Instance;
SkASSERT(!fFlushing);
SkASSERT(!fPerFlushIndexBuffer);
SkASSERT(!fPerFlushVertexBuffer);
SkASSERT(!fPerFlushInstanceBuffer);
SkASSERT(fPerFlushAtlases.empty());
SkDEBUGCODE(fFlushing = true;)
if (fRTPendingPathsMap.empty()) {
return; // Nothing to draw.
}
fPerFlushResourcesAreValid = false;
// Gather the Ops that are being flushed.
// Count the paths that are being flushed.
int maxTotalPaths = 0, maxPathPoints = 0, numSkPoints = 0, numSkVerbs = 0;
SkTInternalLList<DrawPathsOp> flushingOps;
SkDEBUGCODE(int numClipPaths = 0;)
for (int i = 0; i < numOpListIDs; ++i) {
auto it = fRTPendingOpsMap.find(opListIDs[i]);
if (fRTPendingOpsMap.end() == it) {
auto it = fRTPendingPathsMap.find(opListIDs[i]);
if (fRTPendingPathsMap.end() == it) {
continue;
}
SkTInternalLList<DrawPathsOp>::Iter iter;
SkTInternalLList<DrawPathsOp>& rtFlushingOps = it->second.fOpList;
iter.init(rtFlushingOps, SkTInternalLList<DrawPathsOp>::Iter::kHead_IterStart);
while (DrawPathsOp* flushingOp = iter.get()) {
for (const auto* draw = &flushingOp->fHeadDraw; draw; draw = draw->fNext) {
const RTPendingPaths& rtPendingPaths = it->second;
SkTInternalLList<DrawPathsOp>::Iter drawOpsIter;
drawOpsIter.init(rtPendingPaths.fDrawOps,
SkTInternalLList<DrawPathsOp>::Iter::kHead_IterStart);
while (DrawPathsOp* op = drawOpsIter.get()) {
for (const DrawPathsOp::SingleDraw* draw = op->head(); draw; draw = draw->fNext) {
++maxTotalPaths;
maxPathPoints = SkTMax(draw->fPath.countPoints(), maxPathPoints);
numSkPoints += draw->fPath.countPoints();
numSkVerbs += draw->fPath.countVerbs();
}
flushingOp->fOwningRTPendingOps = nullptr; // Owner is about to change to 'flushingOps'.
iter.next();
drawOpsIter.next();
}
maxTotalPaths += rtPendingPaths.fClipPaths.size();
SkDEBUGCODE(numClipPaths += rtPendingPaths.fClipPaths.size());
for (const auto& clipsIter : rtPendingPaths.fClipPaths) {
const SkPath& path = clipsIter.second.deviceSpacePath();
maxPathPoints = SkTMax(path.countPoints(), maxPathPoints);
numSkPoints += path.countPoints();
numSkVerbs += path.countVerbs();
}
flushingOps.concat(std::move(rtFlushingOps));
}
if (flushingOps.isEmpty()) {
if (!maxTotalPaths) {
return; // Nothing to draw.
}
// Allocate GPU buffers.
fPerFlushIndexBuffer = GrCCPRPathProcessor::FindOrMakeIndexBuffer(onFlushRP);
if (!fPerFlushIndexBuffer) {
SkDebugf("WARNING: failed to allocate ccpr path index buffer.\n");
@ -260,7 +339,7 @@ void GrCoverageCountingPathRenderer::setupPerFlushResources(GrOnFlushResourcePro
}
fPerFlushInstanceBuffer = onFlushRP->makeBuffer(kVertex_GrBufferType,
maxTotalPaths * sizeof(PathInstance));
maxTotalPaths * sizeof(PathInstance));
if (!fPerFlushInstanceBuffer) {
SkDebugf("WARNING: failed to allocate path instance buffer. No paths will be drawn.\n");
return;
@ -271,86 +350,39 @@ void GrCoverageCountingPathRenderer::setupPerFlushResources(GrOnFlushResourcePro
int pathInstanceIdx = 0;
GrCCPRCoverageOpsBuilder atlasOpsBuilder(maxTotalPaths, maxPathPoints, numSkPoints, numSkVerbs);
GrCCPRAtlas* atlas = nullptr;
SkDEBUGCODE(int skippedTotalPaths = 0;)
SkTInternalLList<DrawPathsOp>::Iter iter;
iter.init(flushingOps, SkTInternalLList<DrawPathsOp>::Iter::kHead_IterStart);
while (DrawPathsOp* drawPathOp = iter.get()) {
SkASSERT(drawPathOp->fDebugInstanceCount > 0);
SkASSERT(-1 == drawPathOp->fBaseInstance);
drawPathOp->fBaseInstance = pathInstanceIdx;
// Allocate atlas(es) and fill out GPU instance buffers.
for (int i = 0; i < numOpListIDs; ++i) {
auto it = fRTPendingPathsMap.find(opListIDs[i]);
if (fRTPendingPathsMap.end() == it) {
continue;
}
RTPendingPaths& rtPendingPaths = it->second;
for (const auto* draw = &drawPathOp->fHeadDraw; draw; draw = draw->fNext) {
// parsePath gives us two tight bounding boxes: one in device space, as well as a second
// one rotated an additional 45 degrees. The path vertex shader uses these two bounding
// boxes to generate an octagon that circumscribes the path.
SkRect devBounds, devBounds45;
atlasOpsBuilder.parsePath(draw->fMatrix, draw->fPath, &devBounds, &devBounds45);
ScissorMode scissorMode;
SkIRect clippedDevIBounds;
devBounds.roundOut(&clippedDevIBounds);
if (draw->fClipIBounds.contains(clippedDevIBounds)) {
scissorMode = ScissorMode::kNonScissored;
} else if (clippedDevIBounds.intersect(draw->fClipIBounds)) {
scissorMode = ScissorMode::kScissored;
} else {
SkDEBUGCODE(++drawPathOp->fDebugSkippedInstances);
atlasOpsBuilder.discardParsedPath();
continue;
}
SkIPoint16 atlasLocation;
const int h = clippedDevIBounds.height(), w = clippedDevIBounds.width();
if (atlas && !atlas->addRect(w, h, &atlasLocation)) {
// The atlas is out of room and can't grow any bigger.
atlasOpsBuilder.emitOp(atlas->drawBounds());
if (pathInstanceIdx > drawPathOp->fBaseInstance) {
drawPathOp->addAtlasBatch(atlas, pathInstanceIdx);
}
atlas = nullptr;
}
if (!atlas) {
atlas = &fPerFlushAtlases.emplace_back(*onFlushRP->caps(), w, h);
SkAssertResult(atlas->addRect(w, h, &atlasLocation));
}
const SkMatrix& m = draw->fMatrix;
const int16_t offsetX = atlasLocation.x() - static_cast<int16_t>(clippedDevIBounds.x()),
offsetY = atlasLocation.y() - static_cast<int16_t>(clippedDevIBounds.y());
pathInstanceData[pathInstanceIdx++] = {
devBounds,
devBounds45,
{{m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY()}},
{{m.getTranslateX(), m.getTranslateY()}},
{{offsetX, offsetY}},
draw->fColor
};
atlasOpsBuilder.saveParsedPath(scissorMode, clippedDevIBounds, offsetX, offsetY);
SkTInternalLList<DrawPathsOp>::Iter drawOpsIter;
drawOpsIter.init(rtPendingPaths.fDrawOps,
SkTInternalLList<DrawPathsOp>::Iter::kHead_IterStart);
while (DrawPathsOp* op = drawOpsIter.get()) {
pathInstanceIdx = op->setupResources(onFlushRP, &atlasOpsBuilder, pathInstanceData,
pathInstanceIdx);
drawOpsIter.next();
SkDEBUGCODE(skippedTotalPaths += op->numSkippedInstances_debugOnly();)
}
SkASSERT(pathInstanceIdx == drawPathOp->fBaseInstance + drawPathOp->fDebugInstanceCount -
drawPathOp->fDebugSkippedInstances);
if (pathInstanceIdx > drawPathOp->fBaseInstance) {
drawPathOp->addAtlasBatch(atlas, pathInstanceIdx);
for (auto& clipsIter : rtPendingPaths.fClipPaths) {
clipsIter.second.placePathInAtlas(this, onFlushRP, &atlasOpsBuilder);
}
iter.next();
SkDEBUGCODE(skippedTotalPaths += drawPathOp->fDebugSkippedInstances;)
}
SkASSERT(pathInstanceIdx == maxTotalPaths - skippedTotalPaths);
if (atlas) {
atlasOpsBuilder.emitOp(atlas->drawBounds());
}
fPerFlushInstanceBuffer->unmap();
// Draw the coverage ops into their respective atlases.
SkASSERT(pathInstanceIdx == maxTotalPaths - skippedTotalPaths - numClipPaths);
if (!fPerFlushAtlases.empty()) {
atlasOpsBuilder.emitOp(fPerFlushAtlases.back().drawBounds());
}
SkSTArray<4, std::unique_ptr<GrCCPRCoverageOp>> atlasOps(fPerFlushAtlases.count());
if (!atlasOpsBuilder.finalize(onFlushRP, &atlasOps)) {
SkDebugf("WARNING: failed to allocate ccpr atlas buffers. No paths will be drawn.\n");
@ -358,6 +390,7 @@ void GrCoverageCountingPathRenderer::setupPerFlushResources(GrOnFlushResourcePro
}
SkASSERT(atlasOps.count() == fPerFlushAtlases.count());
// Draw the coverage ops into their respective atlases.
GrTAllocator<GrCCPRAtlas>::Iter atlasIter(&fPerFlushAtlases);
for (std::unique_ptr<GrCCPRCoverageOp>& atlasOp : atlasOps) {
SkAssertResult(atlasIter.next());
@ -373,7 +406,109 @@ void GrCoverageCountingPathRenderer::setupPerFlushResources(GrOnFlushResourcePro
fPerFlushResourcesAreValid = true;
}
void DrawPathsOp::onExecute(GrOpFlushState* flushState) {
int CCPR::DrawPathsOp::setupResources(GrOnFlushResourceProvider* onFlushRP,
GrCCPRCoverageOpsBuilder* atlasOpsBuilder,
GrCCPRPathProcessor::Instance* pathInstanceData,
int pathInstanceIdx) {
const GrCCPRAtlas* currentAtlas = nullptr;
SkASSERT(fInstanceCount > 0);
SkASSERT(-1 == fBaseInstance);
fBaseInstance = pathInstanceIdx;
for (const SingleDraw* draw = this->head(); draw; draw = draw->fNext) {
// parsePath gives us two tight bounding boxes: one in device space, as well as a second
// one rotated an additional 45 degrees. The path vertex shader uses these two bounding
// boxes to generate an octagon that circumscribes the path.
SkRect devBounds, devBounds45;
atlasOpsBuilder->parsePath(draw->fMatrix, draw->fPath, &devBounds, &devBounds45);
SkIRect devIBounds;
devBounds.roundOut(&devIBounds);
int16_t offsetX, offsetY;
GrCCPRAtlas* atlas = fCCPR->placeParsedPathInAtlas(onFlushRP, draw->fClipIBounds,
devIBounds, &offsetX, &offsetY,
atlasOpsBuilder);
if (!atlas) {
SkDEBUGCODE(++fNumSkippedInstances);
continue;
}
if (currentAtlas != atlas) {
if (currentAtlas) {
this->addAtlasBatch(currentAtlas, pathInstanceIdx);
}
currentAtlas = atlas;
}
const SkMatrix& m = draw->fMatrix;
pathInstanceData[pathInstanceIdx++] = {
devBounds,
devBounds45,
{{m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY()}},
{{m.getTranslateX(), m.getTranslateY()}},
{{offsetX, offsetY}},
draw->fColor
};
}
SkASSERT(pathInstanceIdx == fBaseInstance + fInstanceCount - fNumSkippedInstances);
if (currentAtlas) {
this->addAtlasBatch(currentAtlas, pathInstanceIdx);
}
return pathInstanceIdx;
}
void CCPR::ClipPath::placePathInAtlas(GrCoverageCountingPathRenderer* ccpr,
GrOnFlushResourceProvider* onFlushRP,
GrCCPRCoverageOpsBuilder* atlasOpsBuilder) {
SkASSERT(!this->isUninitialized());
SkASSERT(!fHasAtlas);
atlasOpsBuilder->parseDeviceSpacePath(fDeviceSpacePath);
fAtlas = ccpr->placeParsedPathInAtlas(onFlushRP, fAccessRect, fPathDevIBounds, &fAtlasOffsetX,
&fAtlasOffsetY, atlasOpsBuilder);
SkDEBUGCODE(fHasAtlas = true);
}
GrCCPRAtlas*
GrCoverageCountingPathRenderer::placeParsedPathInAtlas(GrOnFlushResourceProvider* onFlushRP,
const SkIRect& clipIBounds,
const SkIRect& pathIBounds,
int16_t* atlasOffsetX,
int16_t* atlasOffsetY,
GrCCPRCoverageOpsBuilder* atlasOpsBuilder) {
using ScissorMode = GrCCPRCoverageOpsBuilder::ScissorMode;
ScissorMode scissorMode;
SkIRect clippedPathIBounds;
if (clipIBounds.contains(pathIBounds)) {
clippedPathIBounds = pathIBounds;
scissorMode = ScissorMode::kNonScissored;
} else if (clippedPathIBounds.intersect(clipIBounds, pathIBounds)) {
scissorMode = ScissorMode::kScissored;
} else {
atlasOpsBuilder->discardParsedPath();
return nullptr;
}
SkIPoint16 atlasLocation;
const int h = clippedPathIBounds.height(), w = clippedPathIBounds.width();
if (fPerFlushAtlases.empty() || !fPerFlushAtlases.back().addRect(w, h, &atlasLocation)) {
if (!fPerFlushAtlases.empty()) {
// The atlas is out of room and can't grow any bigger.
atlasOpsBuilder->emitOp(fPerFlushAtlases.back().drawBounds());
}
fPerFlushAtlases.emplace_back(*onFlushRP->caps(), w, h).addRect(w, h, &atlasLocation);
}
*atlasOffsetX = atlasLocation.x() - static_cast<int16_t>(clippedPathIBounds.left());
*atlasOffsetY = atlasLocation.y() - static_cast<int16_t>(clippedPathIBounds.top());
atlasOpsBuilder->saveParsedPath(scissorMode, clippedPathIBounds, *atlasOffsetX, *atlasOffsetY);
return &fPerFlushAtlases.back();
}
void CCPR::DrawPathsOp::onExecute(GrOpFlushState* flushState) {
SkASSERT(fCCPR->fFlushing);
SkASSERT(flushState->rtCommandBuffer());
@ -381,7 +516,7 @@ void DrawPathsOp::onExecute(GrOpFlushState* flushState) {
return; // Setup failed.
}
SkASSERT(fBaseInstance >= 0); // Make sure setupPerFlushResources has set us up.
SkASSERT(fBaseInstance >= 0); // Make sure setupResources has been called.
GrPipeline::InitArgs initArgs;
initArgs.fFlags = fSRGBFlags;
@ -401,8 +536,9 @@ void DrawPathsOp::onExecute(GrOpFlushState* flushState) {
continue; // Atlas failed to allocate.
}
GrCCPRPathProcessor coverProc(flushState->resourceProvider(), batch.fAtlas->textureProxy(),
this->getFillType(), *flushState->gpu()->caps()->shaderCaps());
GrCCPRPathProcessor coverProc(flushState->resourceProvider(),
sk_ref_sp(batch.fAtlas->textureProxy()), this->getFillType(),
*flushState->gpu()->caps()->shaderCaps());
GrMesh mesh(GrPrimitiveType::kTriangles);
mesh.setIndexedInstanced(fCCPR->fPerFlushIndexBuffer.get(),
@ -414,7 +550,7 @@ void DrawPathsOp::onExecute(GrOpFlushState* flushState) {
flushState->rtCommandBuffer()->draw(pipeline, coverProc, &mesh, nullptr, 1, this->bounds());
}
SkASSERT(baseInstance == fBaseInstance + fDebugInstanceCount - fDebugSkippedInstances);
SkASSERT(baseInstance == fBaseInstance + fInstanceCount - fNumSkippedInstances);
}
void GrCoverageCountingPathRenderer::postFlush(GrDeferredUploadToken, const uint32_t* opListIDs,
@ -424,5 +560,9 @@ void GrCoverageCountingPathRenderer::postFlush(GrDeferredUploadToken, const uint
fPerFlushInstanceBuffer.reset();
fPerFlushVertexBuffer.reset();
fPerFlushIndexBuffer.reset();
// We wait to erase these until after flush, once Ops and FPs are done accessing their data.
for (int i = 0; i < numOpListIDs; ++i) {
fRTPendingPathsMap.erase(opListIDs[i]);
}
SkDEBUGCODE(fFlushing = false;)
}

View File

@ -14,6 +14,7 @@
#include "SkTInternalLList.h"
#include "ccpr/GrCCPRAtlas.h"
#include "ccpr/GrCCPRCoverageOp.h"
#include "ccpr/GrCCPRPathProcessor.h"
#include "ops/GrDrawOp.h"
#include <map>
@ -28,7 +29,7 @@ class GrCoverageCountingPathRenderer
: public GrPathRenderer
, public GrOnFlushCallbackObject {
struct RTPendingOps;
struct RTPendingPaths;
public:
static bool IsSupported(const GrCaps&);
@ -36,23 +37,11 @@ public:
bool drawCachablePaths);
~GrCoverageCountingPathRenderer() override {
// Ensure nothing exists that could have a dangling pointer back into this class.
SkASSERT(fRTPendingOpsMap.empty());
// Ensure no Ops exist that could have a dangling pointer back into this class.
SkASSERT(fRTPendingPathsMap.empty());
SkASSERT(0 == fPendingDrawOpsCount);
}
// GrPathRenderer overrides.
StencilSupport onGetStencilSupport(const GrShape&) const override {
return GrPathRenderer::kNoSupport_StencilSupport;
}
CanDrawPath onCanDrawPath(const CanDrawPathArgs& args) const override;
bool onDrawPath(const DrawPathArgs&) final;
// GrOnFlushCallbackObject overrides.
void preFlush(GrOnFlushResourceProvider*, const uint32_t* opListIDs, int numOpListIDs,
SkTArray<sk_sp<GrRenderTargetContext>>* results) override;
void postFlush(GrDeferredUploadToken, const uint32_t* opListIDs, int numOpListIDs) override;
// This is the Op that ultimately draws a path into its final destination, using the atlas we
// generate at flush time.
class DrawPathsOp : public GrDrawOp {
@ -63,38 +52,46 @@ public:
DrawPathsOp(GrCoverageCountingPathRenderer*, const DrawPathArgs&, GrColor);
~DrawPathsOp() override;
const char* name() const override { return "GrCoverageCountingPathRenderer::DrawPathsOp"; }
struct SingleDraw {
SkIRect fClipIBounds;
SkMatrix fMatrix;
SkPath fPath;
GrColor fColor;
SingleDraw* fNext = nullptr;
};
void visitProxies(const VisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
const SingleDraw* head() const {
SkASSERT(fInstanceCount >= 1);
return &fHeadDraw;
}
SkDEBUGCODE(int numSkippedInstances_debugOnly() const { return fNumSkippedInstances; })
// GrDrawOp overrides.
const char* name() const override { return "GrCoverageCountingPathRenderer::DrawPathsOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*,
GrPixelConfigIsClamped) override;
void wasRecorded(GrRenderTargetOpList*) override;
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override;
void visitProxies(const VisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
}
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*) override;
int setupResources(GrOnFlushResourceProvider*, GrCCPRCoverageOpsBuilder*,
GrCCPRPathProcessor::Instance* pathInstanceData, int pathInstanceIdx);
private:
SkPath::FillType getFillType() const {
SkASSERT(fDebugInstanceCount >= 1);
SkASSERT(fInstanceCount >= 1);
return fHeadDraw.fPath.getFillType();
}
struct SingleDraw {
SkIRect fClipIBounds;
SkMatrix fMatrix;
SkPath fPath;
GrColor fColor;
SingleDraw* fNext = nullptr;
};
struct AtlasBatch {
const GrCCPRAtlas* fAtlas;
int fEndInstanceIdx;
const GrCCPRAtlas* fAtlas;
int fEndInstanceIdx;
};
void addAtlasBatch(const GrCCPRAtlas* atlas, int endInstanceIdx) {
@ -104,46 +101,130 @@ public:
fAtlasBatches.push_back() = {atlas, endInstanceIdx};
}
GrCoverageCountingPathRenderer* const fCCPR;
const uint32_t fSRGBFlags;
GrProcessorSet fProcessors;
SingleDraw fHeadDraw;
SingleDraw* fTailDraw;
RTPendingOps* fOwningRTPendingOps;
int fBaseInstance;
SkDEBUGCODE(int fDebugInstanceCount;)
SkDEBUGCODE(int fDebugSkippedInstances;)
SkSTArray<1, AtlasBatch, true> fAtlasBatches;
friend class GrCoverageCountingPathRenderer;
GrCoverageCountingPathRenderer* const fCCPR;
const uint32_t fSRGBFlags;
GrProcessorSet fProcessors;
SingleDraw fHeadDraw;
SingleDraw* fTailDraw;
RTPendingPaths* fOwningRTPendingPaths;
int fBaseInstance;
SkDEBUGCODE(int fInstanceCount;)
SkDEBUGCODE(int fNumSkippedInstances;)
SkSTArray<1, AtlasBatch, true> fAtlasBatches;
typedef GrDrawOp INHERITED;
};
// GrPathRenderer overrides.
StencilSupport onGetStencilSupport(const GrShape&) const override {
return GrPathRenderer::kNoSupport_StencilSupport;
}
CanDrawPath onCanDrawPath(const CanDrawPathArgs& args) const override;
bool onDrawPath(const DrawPathArgs&) final;
// These are keyed by SkPath generation ID, and store which device-space paths are accessed and
// where by clip FPs in a given opList. A single ClipPath can be referenced by multiple FPs. At
// flush time their coverage count masks are packed into atlas(es) alongside normal DrawPathOps.
class ClipPath {
public:
ClipPath() = default;
ClipPath(const ClipPath&) = delete;
~ClipPath() {
// Ensure no clip FPs exist with a dangling pointer back into this class.
SkASSERT(!fAtlasLazyProxy || fAtlasLazyProxy->isUnique_debugOnly());
// Ensure no lazy proxy callbacks exist with a dangling pointer back into this class.
SkASSERT(fHasAtlasTransform);
}
bool isUninitialized() const { return !fAtlasLazyProxy; }
void init(const SkPath& deviceSpacePath, const SkIRect& accessRect, int rtWidth,
int rtHeight);
void addAccess(const SkIRect& accessRect) {
SkASSERT(!this->isUninitialized());
fAccessRect.join(accessRect);
}
GrTextureProxy* atlasLazyProxy() const {
SkASSERT(!this->isUninitialized());
return fAtlasLazyProxy.get();
}
const SkPath& deviceSpacePath() const {
SkASSERT(!this->isUninitialized());
return fDeviceSpacePath;
}
const SkIRect& pathDevIBounds() const {
SkASSERT(!this->isUninitialized());
return fPathDevIBounds;
}
void placePathInAtlas(GrCoverageCountingPathRenderer*, GrOnFlushResourceProvider*,
GrCCPRCoverageOpsBuilder*);
const SkVector& atlasScale() const { SkASSERT(fHasAtlasTransform); return fAtlasScale; }
const SkVector& atlasTranslate() const {
SkASSERT(fHasAtlasTransform);
return fAtlasTranslate;
}
private:
sk_sp<GrTextureProxy> fAtlasLazyProxy;
SkPath fDeviceSpacePath;
SkIRect fPathDevIBounds;
SkIRect fAccessRect;
const GrCCPRAtlas* fAtlas = nullptr;
int16_t fAtlasOffsetX;
int16_t fAtlasOffsetY;
SkDEBUGCODE(bool fHasAtlas = false);
SkVector fAtlasScale;
SkVector fAtlasTranslate;
SkDEBUGCODE(bool fHasAtlasTransform = false);
};
bool canMakeClipProcessor(const SkPath& deviceSpacePath) const;
std::unique_ptr<GrFragmentProcessor> makeClipProcessor(uint32_t oplistID,
const SkPath& deviceSpacePath,
const SkIRect& accessRect,
int rtWidth, int rtHeight);
// GrOnFlushCallbackObject overrides.
void preFlush(GrOnFlushResourceProvider*, const uint32_t* opListIDs, int numOpListIDs,
SkTArray<sk_sp<GrRenderTargetContext>>* results) override;
void postFlush(GrDeferredUploadToken, const uint32_t* opListIDs, int numOpListIDs) override;
private:
GrCoverageCountingPathRenderer(bool drawCachablePaths)
: fDrawCachablePaths(drawCachablePaths) {}
void setupPerFlushResources(GrOnFlushResourceProvider*, const uint32_t* opListIDs,
int numOpListIDs, SkTArray<sk_sp<GrRenderTargetContext>>* results);
GrCCPRAtlas* placeParsedPathInAtlas(GrOnFlushResourceProvider*, const SkIRect& accessRect,
const SkIRect& pathIBounds, int16_t* atlasOffsetX,
int16_t* atlasOffsetY, GrCCPRCoverageOpsBuilder*);
struct RTPendingOps {
SkTInternalLList<DrawPathsOp> fOpList;
GrSTAllocator<256, DrawPathsOp::SingleDraw> fDrawsAllocator;
struct RTPendingPaths {
~RTPendingPaths() {
// Ensure all DrawPathsOps in this opList have been deleted.
SkASSERT(fDrawOps.isEmpty());
}
SkTInternalLList<DrawPathsOp> fDrawOps;
std::map<uint32_t, ClipPath> fClipPaths;
GrSTAllocator<256, DrawPathsOp::SingleDraw> fDrawsAllocator;
};
// Map from render target ID to the individual render target's pending path ops.
std::map<uint32_t, RTPendingOps> fRTPendingOpsMap;
SkDEBUGCODE(int fPendingDrawOpsCount = 0;)
// A map from render target ID to the individual render target's pending paths.
std::map<uint32_t, RTPendingPaths> fRTPendingPathsMap;
SkDEBUGCODE(int fPendingDrawOpsCount = 0;)
sk_sp<GrBuffer> fPerFlushIndexBuffer;
sk_sp<GrBuffer> fPerFlushVertexBuffer;
sk_sp<GrBuffer> fPerFlushInstanceBuffer;
GrSTAllocator<4, GrCCPRAtlas> fPerFlushAtlases;
bool fPerFlushResourcesAreValid;
SkDEBUGCODE(bool fFlushing = false;)
sk_sp<GrBuffer> fPerFlushIndexBuffer;
sk_sp<GrBuffer> fPerFlushVertexBuffer;
sk_sp<GrBuffer> fPerFlushInstanceBuffer;
GrSTAllocator<4, GrCCPRAtlas> fPerFlushAtlases;
bool fPerFlushResourcesAreValid;
SkDEBUGCODE(bool fFlushing = false;)
const bool fDrawCachablePaths;
const bool fDrawCachablePaths;
};
#endif

View File

@ -28,6 +28,30 @@
static constexpr int kCanvasSize = 100;
class CCPRClip : public GrClip {
public:
CCPRClip(GrCoverageCountingPathRenderer* ccpr, const SkPath& path) : fCCPR(ccpr), fPath(path) {}
private:
bool apply(GrContext*, GrRenderTargetContext* rtc, bool, bool, GrAppliedClip* out,
SkRect* bounds) const override {
out->addCoverageFP(fCCPR->makeClipProcessor(rtc->priv().testingOnly_getOpListID(), fPath,
SkIRect::MakeWH(rtc->width(), rtc->height()),
rtc->width(), rtc->height()));
return true;
}
bool quickContains(const SkRect&) const final { return false; }
bool isRRect(const SkRect& rtBounds, SkRRect* rr, GrAA*) const final { return false; }
void getConservativeBounds(int width, int height, SkIRect* rect, bool* iior) const final {
rect->set(0, 0, width, height);
if (iior) {
*iior = false;
}
}
GrCoverageCountingPathRenderer* const fCCPR;
const SkPath fPath;
};
class CCPRPathDrawer {
public:
CCPRPathDrawer(GrContext* ctx, skiatest::Reporter* reporter)
@ -66,6 +90,16 @@ public:
&noClip, &clipBounds, &matrix, &shape, GrAAType::kCoverage, false});
}
void clipFullscreenRect(SkPath clipPath, GrColor4f color = GrColor4f(0, 1, 0, 1)) {
SkASSERT(this->valid());
GrPaint paint;
paint.setColor4f(color);
fRTC->drawRect(CCPRClip(fCCPR, clipPath), std::move(paint), GrAA::kYes, SkMatrix::I(),
SkRect::MakeIWH(kCanvasSize, kCanvasSize));
}
void flush() const {
SkASSERT(this->valid());
fCtx->flush();
@ -137,6 +171,7 @@ class GrCCPRTest_cleanup : public CCPRTest {
// Ensure paths get unreffed.
for (int i = 0; i < 10; ++i) {
ccpr.drawPath(fPath);
ccpr.clipFullscreenRect(fPath);
}
REPORTER_ASSERT(reporter, !SkPathPriv::TestingOnly_unique(fPath));
ccpr.flush();
@ -145,6 +180,7 @@ class GrCCPRTest_cleanup : public CCPRTest {
// Ensure paths get unreffed when we delete the context without flushing.
for (int i = 0; i < 10; ++i) {
ccpr.drawPath(fPath);
ccpr.clipFullscreenRect(fPath);
}
ccpr.abandonGrContext();
REPORTER_ASSERT(reporter, !SkPathPriv::TestingOnly_unique(fPath));
@ -196,6 +232,18 @@ class GrCCPRTest_parseEmptyPath : public CCPRTest {
// This is the test. It will exercise various internal asserts and verify we do not crash.
ccpr.flush();
// Now try again with clips.
ccpr.clipFullscreenRect(largeOutsidePath);
ccpr.clipFullscreenRect(emptyPath);
ccpr.flush();
// ... and both.
ccpr.drawPath(largeOutsidePath);
ccpr.clipFullscreenRect(largeOutsidePath);
ccpr.drawPath(emptyPath);
ccpr.clipFullscreenRect(emptyPath);
ccpr.flush();
}
};
DEF_CCPR_TEST(GrCCPRTest_parseEmptyPath)

View File

@ -275,6 +275,10 @@ int GrResourceCache::countUniqueKeysWithTag(const char* tag) const {
SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(fRenderTargetContext->singleOwner());)
uint32_t GrRenderTargetContextPriv::testingOnly_getOpListID() {
return fRenderTargetContext->getOpList()->uniqueID();
}
uint32_t GrRenderTargetContextPriv::testingOnly_addDrawOp(std::unique_ptr<GrDrawOp> op) {
return this->testingOnly_addDrawOp(GrNoClip(), std::move(op));
}