shape ops work in progress

git-svn-id: http://skia.googlecode.com/svn/trunk@4118 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
caryclark@google.com 2012-06-01 17:44:28 +00:00
parent 99840553cd
commit a3f05facab
19 changed files with 288 additions and 252 deletions

View File

@ -1,4 +1,4 @@
#include "DataTypes.h"
#include "CurveIntersection.h"
#include "Extrema.h"
static int isBoundedByEndPoints(double a, double b, double c, double d)

View File

@ -59,8 +59,7 @@ static int horizontal_line(const Cubic& cubic, Cubic& reduction) {
}
// check to see if it is a quadratic or a line
static int check_quadratic(const Cubic& cubic, Cubic& reduction,
int minX, int maxX, int minY, int maxY) {
static int check_quadratic(const Cubic& cubic, Cubic& reduction) {
double dx10 = cubic[1].x - cubic[0].x;
double dx23 = cubic[2].x - cubic[3].x;
double midX = cubic[0].x + dx10 * 3 / 2;
@ -228,7 +227,7 @@ int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQua
if (result) {
return result;
}
if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) {
if (allowQuadratics && (result = check_quadratic(cubic, reduction))) {
return result;
}
memcpy(reduction, cubic, sizeof(Cubic));

View File

@ -53,8 +53,7 @@ double t_at(const _Line& line, const _Point& pt) {
return (pt.y - line[0].y) / dy;
}
static void setMinMax(double x, double y1, double y2, int flags,
double& minX, double& maxX) {
static void setMinMax(double x, int flags, double& minX, double& maxX) {
if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) {
minX = x;
}
@ -81,13 +80,13 @@ void x_at(const _Point& p1, const _Point& p2, double top, double bottom,
if (topFlags && (top <= p1.y && top >= p2.y
|| top >= p1.y && top <= p2.y)) {
double x = p1.x + (top - p1.y) * slope;
setMinMax(x, p1.y, p2.y, topFlags, minX, maxX);
setMinMax(x, topFlags, minX, maxX);
}
int bottomFlags = flags & (kFindBottomMin | kFindBottomMax);
if (bottomFlags && (bottom <= p1.y && bottom >= p2.y
|| bottom >= p1.y && bottom <= p2.y)) {
double x = p1.x + (bottom - p1.y) * slope;
setMinMax(x, p1.y, p2.y, bottomFlags, minX, maxX);
setMinMax(x, bottomFlags, minX, maxX);
}
}

View File

@ -7,7 +7,7 @@
#include "Intersection_Tests.h"
int main(int argc, char* argv) {
int main(int /*argc*/, char* /*argv*/) {
Intersection_Tests();
return 0;
}
}

View File

@ -899,7 +899,7 @@ struct InEdge {
InEdge* edge = edges.push_back_n(1);
int verbCount = verbEnd - verbStart;
edge->fIntercepts.push_back_n(verbCount);
uint8_t* verbs = &fVerbs[verbStart];
// uint8_t* verbs = &fVerbs[verbStart];
for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) {
edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx];
}
@ -1052,7 +1052,7 @@ struct InEdge {
if (!tCount) {
continue;
}
size_t tIndex = -1;
size_t tIndex = (size_t) -1;
SkScalar y = pts[0].fY;
int lastSplit = 0;
int firstSplit = -1;
@ -1692,7 +1692,7 @@ public:
return false;
}
bool swapUnordered(const ActiveEdge* edge, SkScalar bottom) const {
bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const {
SkASSERT(fVerb != SkPath::kLine_Verb
|| edge->fVerb != SkPath::kLine_Verb);
if (fDone || edge->fDone) {
@ -1924,9 +1924,9 @@ static void addBottomT(InEdge** currentPtr, InEdge** lastPtr,
}
}
#if DEBUG_ADD_INTERSECTING_TS
static void debugShowLineIntersection(int pts, const WorkEdge& wt,
const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) {
#if DEBUG_ADD_INTERSECTING_TS
if (!pts) {
return;
}
@ -1947,8 +1947,12 @@ static void debugShowLineIntersection(int pts, const WorkEdge& wt,
if (pts == 2) {
SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
}
#endif
}
#else
static void debugShowLineIntersection(int , const WorkEdge& ,
const WorkEdge& , const double [2], const double [2]) {
}
#endif
static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
InEdge** testPtr = currentPtr - 1;
@ -2140,7 +2144,7 @@ static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
static SkScalar findBottom(InEdge** currentPtr,
InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y,
bool asFill, InEdge**& testPtr) {
bool /*asFill*/, InEdge**& testPtr) {
InEdge* current = *currentPtr;
SkScalar bottom = current->fBounds.fBottom;
@ -2445,13 +2449,17 @@ static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList,
}
// stitch edge and t range that satisfies operation
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar
#if DEBUG_STITCH_EDGE
y
#endif
,
SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) {
int winding = 0;
ActiveEdge** activeHandle = edgeList.begin() - 1;
ActiveEdge** lastActive = edgeList.end();
const int tab = 7; // FIXME: debugging only
#if DEBUG_STITCH_EDGE
const int tab = 7; // FIXME: debugging only
SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
#endif
while (++activeHandle != lastActive) {
@ -2588,15 +2596,19 @@ static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
}
}
#if DEBUG_DUMP
static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList,
const InEdge& edgeSentinel) {
#if DEBUG_DUMP
InEdge** debugPtr = edgeList.begin();
do {
(*debugPtr++)->dump();
} while (*debugPtr != &edgeSentinel);
#endif
}
#else
static void dumpEdgeList(const SkTDArray<InEdge*>& ,
const InEdge& ) {
}
#endif
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness

View File

@ -10,7 +10,7 @@
static bool gShowPath = false;
static bool gComparePaths = true;
static bool gDrawLastAsciiPaths = true;
//static bool gDrawLastAsciiPaths = true;
static bool gDrawAllAsciiPaths = false;
static bool gShowAsciiPaths = false;
static bool gComparePathsAssert = true;
@ -92,9 +92,6 @@ static int pathsDrawTheSame(const SkPath& one, const SkPath& two,
return errors;
}
void bitmapInit(SkBitmap& bits) {
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two,
bool drawPaths) {
if (!drawPaths) {
@ -149,7 +146,8 @@ bool drawAsciiPaths(const SkPath& one, const SkPath& two,
}
static int scaledDrawTheSame(const SkPath& one, const SkPath& two,
int a, int b, bool drawPaths, SkBitmap& bitmap, SkCanvas* canvas) {
SkScalar a, SkScalar b, bool drawPaths, SkBitmap& bitmap,
SkCanvas* canvas) {
SkMatrix scale;
scale.reset();
float aScale = 1.21f;

View File

@ -39,4 +39,4 @@
mantissa >>= 1;
exponent++;
}
#endif
#endif

View File

@ -1,4 +1,4 @@
#include "DataTypes.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "LineIntersection.h"
#include <algorithm> // used for std::swap
@ -170,7 +170,7 @@ int horizontalIntersect(const _Line& line, double left, double right,
return result;
}
int verticalIntersect(const _Line& line, double x, double tRange[2]) {
static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
double min = line[0].x;
double max = line[1].x;
if (min > max) {

View File

@ -51,7 +51,10 @@ void sub_divide(const _Line& line, double t1, double t2, _Line& dst) {
// =0 for P2 on the line
// <0 for P2 right of the line
// See: the January 2001 Algorithm on Area of Triangles
#if 0
float isLeft( _Point P0, _Point P1, _Point P2 )
{
return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y));
}
#endif

View File

@ -19,7 +19,7 @@ static void oneOffTest() {
bezier_clip(quad1, quad2, minT, maxT);
}
void standardTestCases() {
static void standardTestCases() {
for (size_t index = 0; index < quadraticTests_count; ++index) {
const Quadratic& quad1 = quadraticTests[index][0];
const Quadratic& quad2 = quadraticTests[index][1];

View File

@ -1,4 +1,4 @@
#include "DataTypes.h"
#include "CurveIntersection.h"
#include "Extrema.h"
static int isBoundedByEndPoints(double a, double b, double c)

View File

@ -90,4 +90,4 @@ static void oneOffTest() {
void QuadraticIntersection_Test() {
oneOffTest();
standardTestCases();
}
}

View File

@ -4,4 +4,4 @@ void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
void simplify(const SkPath& path, bool asFill, SkPath& simple);
void simplifyx(const SkPath& path, SkPath& simple);
extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete
extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete

View File

@ -424,12 +424,11 @@ public:
// is the common origin, i.e., whether the center is at pts[0] or pts[verb]
// practically, this should only be called by addAngle
void set(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
int start, int end, bool coincident) {
int start, int end) {
SkASSERT(start != end);
fSegment = segment;
fStart = start;
fEnd = end;
fCoincident = coincident;
fDx = pts[1].fX - pts[0].fX; // b - a
fDy = pts[1].fY - pts[0].fY;
if (verb == SkPath::kLine_Verb) {
@ -450,11 +449,10 @@ public:
// as lines, so must sort by derivatives as well
// if flatness turns out to be a reasonable way to sort, use the below:
void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
int start, int end, bool coincident) {
int start, int end) {
fSegment = segment;
fStart = start;
fEnd = end;
fCoincident = coincident;
fDx = pts[1].fX - pts[0].fX; // b - a
fDy = pts[1].fY - pts[0].fY;
if (verb == SkPath::kLine_Verb) {
@ -502,6 +500,11 @@ public:
int sign() const {
return SkSign32(fStart - fEnd);
}
bool slopeEquals(const Angle& rh) const {
return fDx == rh.fDx && fDy == rh.fDy;
}
int start() const {
return fStart;
@ -517,7 +520,6 @@ private:
Segment* fSegment;
int fStart;
int fEnd;
bool fCoincident;
};
static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
@ -567,6 +569,7 @@ struct Span {
double fT;
Segment* fOther;
double fOtherT; // value at fOther[fOtherIndex].fT
mutable SkPoint const * fPt; // lazily computed as needed
int fOtherIndex; // can't be used during intersection
int fWinding; // accumulated from contours surrounding this one
// OPTIMIZATION: coincident needs only 2 bits (values are -1, 0, 1)
@ -582,8 +585,7 @@ public:
#endif
}
void addAngle(SkTDArray<Angle>& angles, int start, int end,
bool coincident) {
void addAngle(SkTDArray<Angle>& angles, int start, int end) {
SkASSERT(start != end);
int smaller = SkMin32(start, end);
if (fTs[smaller].fDone) {
@ -592,7 +594,7 @@ public:
SkPoint edge[4];
(*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
Angle* angle = angles.append();
angle->set(edge, fVerb, this, start, end, coincident);
angle->set(edge, fVerb, this, start, end);
}
void addCubic(const SkPoint pts[4]) {
@ -634,9 +636,7 @@ public:
}
void addMoveTo(int tIndex, SkPath& path) {
SkPoint pt;
double firstT = t(tIndex);
xyAtT(firstT, &pt);
const SkPoint& pt = xyAtT(&fTs[tIndex]);
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
#endif
@ -655,6 +655,7 @@ public:
fBounds.setQuadBounds(pts);
}
// edges are sorted by T, then by coincidence
int addT(double newT, Segment& other, int coincident) {
// FIXME: in the pathological case where there is a ton of intercepts,
// binary search?
@ -668,7 +669,8 @@ public:
// This could later limit segment tests to the two adjacent
// neighbors, although it doesn't help with determining which
// circular direction to go in.
if (newT <= fTs[idx2].fT) {
if (newT < fTs[idx2].fT || (newT == fTs[idx2].fT &&
coincident <= fTs[idx2].fCoincident)) {
insertedAt = idx2;
span = fTs.insert(idx2);
goto finish;
@ -679,26 +681,24 @@ public:
finish:
span->fT = newT;
span->fOther = &other;
span->fPt = NULL;
span->fWinding = 0;
if (span->fDone = newT == 1) {
++fDoneSpans;
}
span->fCoincident = coincident;
fCoincident |= coincident;
fCoincident |= coincident; // OPTIMIZATION: ever used?
return insertedAt;
}
void addTwoAngles(int start, int end, const SkPoint& endLoc,
const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) {
void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) {
// add edge leading into junction
addAngle(angles, end, start, startCo);
addAngle(angles, end, start);
// add edge leading away from junction
bool coincident;
int step = SkSign32(end - start);
int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident);
int tIndex = nextSpan(end, step);
if (tIndex >= 0) {
lastSpan(tIndex, step, endLoc, endSpan->fT, coincident);
addAngle(angles, end, tIndex, coincident);
addAngle(angles, end, tIndex);
}
}
@ -706,41 +706,41 @@ finish:
return fBounds;
}
void buildAngles(int index, int last, int step, const SkPoint& loc,
SkTDArray<Angle>& angles) const {
SkASSERT(index - last != 0);
SkASSERT((index - last < 0) ^ (step < 0));
int end = last + step;
void buildAngles(int index, SkTDArray<Angle>& angles) const {
SkASSERT(!done());
double referenceT = fTs[index].fT;
int lesser = index;
while (--lesser >= 0 && referenceT == fTs[lesser].fT) {
buildAnglesInner(lesser, angles);
}
do {
Span* span = &fTs[index];
Segment* other = span->fOther;
if (other->done()) {
continue;
}
// if there is only one live crossing, and no coincidence, continue
// in the same direction
// if there is coincidence, the only choice may be to reverse direction
// find edge on either side of intersection
int oIndex = span->fOtherIndex;
Span* otherSpan = &other->fTs[oIndex];
SkASSERT(otherSpan->fOther == this);
// if done == -1, prior span has already been processed
bool otherCo;
int localStep = step;
int next = other->nextSpan(oIndex, localStep, loc, otherSpan,
NULL, otherCo);
if (next < 0) {
localStep = -step;
next = other->nextSpan(oIndex, localStep, loc, otherSpan,
NULL, otherCo);
}
other->lastSpan(next, localStep, loc, otherSpan->fT, otherCo);
// add candidate into and away from junction
other->addTwoAngles(next, oIndex, loc, span, otherCo, angles);
} while ((index += step) != end);
buildAnglesInner(index, angles);
} while (++index < fTs.count() && referenceT == fTs[index].fT);
}
void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
Span* span = &fTs[index];
Segment* other = span->fOther;
if (other->done()) {
return;
}
// if there is only one live crossing, and no coincidence, continue
// in the same direction
// if there is coincidence, the only choice may be to reverse direction
// find edge on either side of intersection
int oIndex = span->fOtherIndex;
// if done == -1, prior span has already been processed
int step = 1;
int next = other->nextSpanEnd(oIndex, step);
if (next < 0) {
step = -step;
next = other->nextSpanEnd(oIndex, step);
}
oIndex = other->coincidentEnd(oIndex, -step);
// add candidate into and away from junction
other->addTwoAngles(next, oIndex, angles);
}
// figure out if the segment's ascending T goes clockwise or not
// not enough context to write this as shown
// instead, add all segments meeting at the top
@ -752,49 +752,53 @@ finish:
return false;
}
bool coincident(int index, const Angle* angle) const {
Span* span;
double referenceT = fTs[index].fT;
int lesser = index;
while (--lesser >= 0 && referenceT == fTs[lesser].fT) {
span = &fTs[lesser];
if (span->fOther == angle->segment()) {
goto checkOther;
}
static bool Coincident(const Angle* current, const Angle* next) {
const Segment* segment = current->segment();
const Span& span = segment->fTs[current->start()];
if (!span.fCoincident) {
return false;
}
do {
span = &fTs[index];
if (span->fOther == angle->segment()) {
const Segment* nextSegment = next->segment();
const Span& nextSpan = nextSegment->fTs[next->start()];
if (!nextSpan.fCoincident) {
return false;
}
// use angle dx/dy instead of other since 3 or more may be coincident
return current->slopeEquals(*next);
}
static bool CoincidentCancels(const Angle* current, const Angle* next) {
return SkSign32(current->start() - current->end())
!= SkSign32(next->start() - next->end());
}
int coincidentEnd(int from, int step) const {
double fromT = fTs[from].fT;
int count = fTs.count();
int to = from;
while (step > 0 ? ++to < count : --to >= 0) {
const Span& span = fTs[to];
if (fromT != span.fT) {
// FIXME: we assume that if the T changes, we don't care about
// coincident -- but in nextSpan, we require that both the T
// and actual loc change to represent a span. This asymettry may
// be OK or may be trouble -- if trouble, probably will need to
// detect coincidence earlier or sort differently
break;
}
} while (++index < fTs.count() && referenceT == fTs[index].fT);
checkOther:
SkASSERT(!span->fDone);
return span->fCoincident;
if (span.fCoincident == step) {
return to;
}
SkASSERT(step > 0 || !span.fDone);
}
return from;
}
bool done() const {
SkASSERT(fDoneSpans <= fTs.count());
return fDoneSpans == fTs.count();
}
int findCoincidentEnd(int start) const {
int tCount = fTs.count();
SkASSERT(start < tCount);
const Span& span = fTs[start];
SkASSERT(span.fCoincident);
for (int index = start + 1; index < tCount; ++index) {
const Span& match = fTs[index];
if (match.fOther == span.fOther) {
SkASSERT(match.fCoincident);
return index;
}
}
SkASSERT(0); // should never get here
return -1;
}
// start is the index of the beginning T of this edge
// it is guaranteed to have an end which describes a non-zero length (?)
// winding -1 means ccw, 1 means cw
@ -806,7 +810,6 @@ finish:
int count = fTs.count();
SkASSERT(startIndex < endIndex ? startIndex < count - 1
: startIndex > 0);
Span* startSpan = &fTs[startIndex];
// FIXME:
// since Ts can be stepped either way, done markers must be careful
// not to assume that segment was only ascending in T. This shouldn't
@ -815,27 +818,19 @@ finish:
int step = SkSign32(endIndex - startIndex);
SkPoint startLoc; // OPTIMIZATION: store this in the t span?
xyAtT(startSpan->fT, &startLoc);
SkPoint endLoc;
bool startCo;
int end = nextSpan(startIndex, step, startLoc, startSpan, &endLoc,
startCo);
int end = nextSpanEnd(startIndex, step);
SkASSERT(end >= 0);
// preflight for coincidence -- if present, it may change winding
// considerations and whether reversed edges can be followed
bool many;
int last = lastSpan(end, step, endLoc, fTs[end].fT, startCo, &many);
// Discard opposing direction candidates if no coincidence was found.
Span* endSpan = &fTs[end];
Segment* other;
if (!many) {
if (isSimple(end, step)) {
// mark the smaller of startIndex, endIndex done, and all adjacent
// spans with the same T value (but not 'other' spans)
markDone(SkMin32(startIndex, endIndex), winding);
SkASSERT(!startCo);
// move in winding direction until edge in correct direction
// balance wrong direction edges before finding correct one
// this requres that the intersection is angularly sorted
@ -847,13 +842,12 @@ finish:
SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
return other;
}
// more than one viable candidate -- measure angles to find best
SkTDArray<Angle> angles;
SkASSERT(startIndex - endIndex != 0);
SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
addTwoAngles(startIndex, end, endLoc, endSpan, startCo, angles);
buildAngles(end, last, step, endLoc, angles);
addTwoAngles(startIndex, end, angles);
buildAngles(end, angles);
SkTDArray<Angle*> sorted;
sortAngles(angles, sorted);
// find the starting edge
@ -881,38 +875,50 @@ finish:
int startWinding = winding;
int nextIndex = firstIndex;
const Angle* nextAngle;
Segment* nextSegment;
do {
if (++nextIndex == angleCount) {
nextIndex = 0;
}
SkASSERT(nextIndex != firstIndex); // should never wrap around
nextAngle = sorted[nextIndex];
nextSegment = nextAngle->segment();
bool pairCoincides = Coincident(angle, nextAngle);
int maxWinding = winding;
winding -= nextAngle->sign();
if (abs(maxWinding) < abs(winding)) {
maxWinding = winding;
}
other = nextAngle->segment();
if (!winding) {
if (!startCo || !coincident(startIndex, nextAngle)) {
if (!pairCoincides || !CoincidentCancels(angle, nextAngle)) {
break;
}
markAndChaseCoincident(startIndex, endIndex, other);
markAndChaseCoincident(startIndex, endIndex, nextSegment);
return NULL;
}
if (pairCoincides) {
bool markNext = abs(maxWinding) < abs(winding);
if (markNext) {
nextSegment->markDone(SkMin32(nextAngle->start(),
nextAngle->end()), winding);
} else {
angle->segment()->markDone(SkMin32(angle->start(),
angle->end()), maxWinding);
}
}
// if the winding is non-zero, nextAngle does not connect to
// current chain. If we haven't done so already, mark the angle
// as done, record the winding value, and mark connected unambiguous
// segments as well.
if (other->winding(nextAngle) == 0) {
other->markAndChaseWinding(nextAngle, maxWinding);
else if (nextSegment->winding(nextAngle) == 0) {
if (abs(maxWinding) < abs(winding)) {
maxWinding = winding;
}
nextSegment->markAndChaseWinding(nextAngle, maxWinding);
}
angle = nextAngle;
} while (true);
markDone(SkMin32(startIndex, endIndex), startWinding);
nextStart = nextAngle->start();
nextEnd = nextAngle->end();
return other;
return nextSegment;
}
@ -958,9 +964,8 @@ finish:
return;
}
} while (true); // require t=0, x, 1 at minimum
SkPoint matchPt;
// OPTIMIZATION: defer matchPt until qualifying toCount is found?
xyAtT(match->fT, &matchPt);
const SkPoint* matchPt = &xyAtT(match);
// look for a pair of nearby T values that map to the same (x,y) value
// if found, see if the pair of other segments share a common point. If
// so, the span from here to there is coincident.
@ -974,9 +979,8 @@ finish:
if (toCount < 3) { // require t=0, x, 1 at minimum
continue;
}
SkPoint testPt;
xyAtT(test->fT, &testPt);
if (matchPt != testPt) {
const SkPoint* testPt = &xyAtT(test);
if (*matchPt != *testPt) {
matchIndex = index;
moCount = toCount;
match = test;
@ -1042,6 +1046,7 @@ finish:
|| !tOther->isLinear(toStart, toEnd)) {
continue;
}
// FIXME: may need to resort if we depend on coincidence first, last
mOther->fTs[moStart].fCoincident = -1;
tOther->fTs[toStart].fCoincident = -1;
mOther->fTs[moEnd].fCoincident = 1;
@ -1057,6 +1062,7 @@ finish:
// topmost tangent from y-min to first pt is closer to horizontal
int firstT = 0;
int lastT = 0;
int firstCoinT = 0;
SkScalar topY = fPts[0].fY;
int count = fTs.count();
int index;
@ -1066,9 +1072,12 @@ finish:
SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t);
if (topY > yIntercept) {
topY = yIntercept;
firstT = lastT = index;
firstT = lastT = firstCoinT = index;
} else if (topY == yIntercept) {
lastT = index;
if (span.fCoincident) {
firstCoinT = index;
}
}
}
// if there's only a pair of segments, go with the endpoint chosen above
@ -1078,22 +1087,19 @@ finish:
return this;
}
// sort the edges to find the leftmost
SkPoint startLoc; // OPTIMIZATION: store this in the t span?
const Span* startSpan = &fTs[firstT];
xyAtT(startSpan->fT, &startLoc);
SkPoint endLoc;
bool nextCo;
int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo);
int step = 1;
int end = nextSpan(firstT, step);
if (end == -1) {
end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo);
step = -1;
end = nextSpan(firstT, step);
SkASSERT(end != -1);
}
// if the topmost T is not on end, or is three-way or more, find left
// look for left-ness from tLeft to firstT (matching y of other)
SkTDArray<Angle> angles;
SkASSERT(firstT - end != 0);
addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles);
buildAngles(firstT, lastT, 1, startLoc, angles);
addTwoAngles(end, firstCoinT, angles);
buildAngles(firstT, angles);
SkTDArray<Angle*> sorted;
sortAngles(angles, sorted);
Segment* leftSegment = sorted[0]->segment();
@ -1155,11 +1161,11 @@ finish:
Segment* next;
Segment* nextOther;
if (step < 0) {
next = start->fT <= 0 ? NULL : this;
nextOther = other->fTs[start->fOtherIndex].fT >= 1 ? NULL : other;
next = start->fT == 0 ? NULL : this;
nextOther = other->fTs[start->fOtherIndex].fT == 1 ? NULL : other;
} else {
next = end->fT >= 1 ? NULL : this;
nextOther = other->fTs[end->fOtherIndex].fT <= 0 ? NULL : other;
next = end->fT == 1 ? NULL : this;
nextOther = other->fTs[end->fOtherIndex].fT == 0 ? NULL : other;
}
SkASSERT(!next || !nextOther);
for (index = 0; index < count; ++index) {
@ -1167,10 +1173,10 @@ finish:
if (span.fCoincident || span.fOther == other) {
continue;
}
bool checkNext = !next && (step < 0 ? span.fT <= 0
&& span.fOtherT >= 1 : span.fT >= 1 && span.fOtherT <= 0);
bool checkNext = !next && (step < 0 ? span.fT == 0
&& span.fOtherT == 1 : span.fT == 1 && span.fOtherT == 0);
bool checkOther = !nextOther && (step < 0 ? span.fT == start->fT
&& span.fOtherT <= 0 : span.fT == end->fT && span.fOtherT >= 1);
&& span.fOtherT == 0 : span.fT == end->fT && span.fOtherT == 1);
if (!checkNext && !checkOther) {
continue;
}
@ -1187,11 +1193,11 @@ finish:
if (!oSpan.fCoincident) {
continue;
}
if (checkNext && (oSpan.fT <= 0 ^ step < 0)) {
if (checkNext && (oSpan.fT == 0 ^ step < 0)) {
next = oSegment;
checkNext = false;
}
if (checkOther && (oSpan.fT >= 1 ^ step < 0)) {
if (checkOther && (oSpan.fT == 1 ^ step < 0)) {
nextOther = oSegment;
checkOther = false;
}
@ -1206,18 +1212,16 @@ finish:
// OPTIMIZATION: uses tail recursion. Unwise?
void innerChase(int index, int step, int winding) {
SkPoint loc; // OPTIMIZATION: store this in the t span?
bool coincident;
int end = nextSpan(index, step, &loc, coincident);
int end = nextSpan(index, step);
bool many;
lastSpan(end, step, loc, fTs[end].fT, coincident, &many);
lastSpan(end, step, &many);
if (many) {
return;
}
Span* endSpan = &fTs[end];
Segment* other = endSpan->fOther;
index = endSpan->fOtherIndex;
int otherEnd = other->nextSpan(index, step, &loc, coincident);
int otherEnd = other->nextSpan(index, step);
other->innerChase(index, step, winding);
other->markDone(SkMin32(index, otherEnd), winding);
}
@ -1248,6 +1252,29 @@ finish:
return CubicIsLinear(cPart);
}
}
bool isSimple(int index, int step) const {
int count = fTs.count();
if (count == 2) {
return true;
}
double spanT = fTs[index].fT;
if (spanT > 0 && spanT < 1) {
return false;
}
if (step < 0) {
const Span& secondSpan = fTs[1];
if (secondSpan.fT == 0) {
return false;
}
return xyAtT(&fTs[0]) != xyAtT(&secondSpan);
}
const Span& penultimateSpan = fTs[count - 2];
if (penultimateSpan.fT == 1) {
return false;
}
return xyAtT(&fTs[count - 1]) != xyAtT(&penultimateSpan);
}
bool isHorizontal() const {
return fBounds.fTop == fBounds.fBottom;
@ -1258,27 +1285,25 @@ finish:
}
// last does not check for done spans because done is only set for the start
int lastSpan(int end, int step, const SkPoint& startLoc,
double startT, bool& coincident, bool* manyPtr = NULL) const {
int lastSpan(int end, int step, bool* manyPtr = NULL) const {
int last = end;
int count = fTs.count();
SkPoint lastLoc;
int found = 0;
const Span& endSpan = fTs[end];
double endT = endSpan.fT;
do {
end = last;
if (fTs[end].fCoincident == -step) {
coincident = true;
}
if (step > 0 ? ++last >= count : --last < 0) {
break;
}
const Span& lastSpan = fTs[last];
if (lastSpan.fT == startT) {
if (lastSpan.fT == endT) {
++found;
continue;
}
xyAtT(lastSpan.fT, &lastLoc);
if (startLoc != lastLoc) {
const SkPoint& lastLoc = xyAtT(&lastSpan);
const SkPoint& endLoc = xyAtT(&endSpan);
if (endLoc != lastLoc) {
break;
}
++found;
@ -1333,70 +1358,45 @@ finish:
}
// note the assert logic looks for unexpected done of span start
// FIXME: compute fromLoc on the fly
int nextSpan(int from, int step, const SkPoint& fromLoc,
const Span* fromSpan, SkPoint* toLoc, bool& coincident) const {
coincident = false;
SkASSERT(!done());
int count = fTs.count();
int to = from;
while (step > 0 ? ++to < count : --to >= 0) {
Span* span = &fTs[to];
if (span->fCoincident == step) {
coincident = true;
}
if (fromSpan->fT == span->fT) {
continue;
}
SkPoint loc;
xyAtT(span->fT, &loc);
if (fromLoc == loc) {
continue;
}
SkASSERT(step < 0 || !fTs[from].fDone);
SkASSERT(step > 0 || !span->fDone);
if (toLoc) {
*toLoc = loc;
}
return to;
}
return -1;
}
// This has callers for two different situations: one establishes the end
// of the current span, and one establishes the beginning of the next span
// (thus the name). When this is looking for the end of the current span,
// coincidence is found when the beginning Ts contain -step and the end
// contains step. When it is looking for the beginning of the next, the
// first Ts found can be ignored and the last Ts should contain -step.
int nextSpan(int from, int step, SkPoint* toLoc, bool& coincident) const {
const Span& fromSpan = fTs[from];
coincident = false;
int nextSpan(int from, int step) const {
SkASSERT(!done());
const Span& fromSpan = fTs[from];
int count = fTs.count();
int to = from;
SkPoint fromLoc;
fromLoc.fX = SK_ScalarNaN;
while (step > 0 ? ++to < count : --to >= 0) {
const Span& span = fTs[to];
if (span.fCoincident == step) {
coincident = true;
}
if (fromSpan.fT == span.fT) {
continue;
}
SkPoint loc;
xyAtT(span.fT, &loc);
if (SkScalarIsNaN(fromLoc.fX)) {
xyAtT(fromSpan.fT, &fromLoc);
}
const SkPoint& loc = xyAtT(&span);
const SkPoint& fromLoc = xyAtT(&fromSpan);
if (fromLoc == loc) {
continue;
}
SkASSERT(step < 0 || !fromSpan.fDone);
SkASSERT(step > 0 || !span.fDone);
if (toLoc) {
*toLoc = loc;
}
return to;
}
return -1;
}
// once past current span, if step>0, look for coicident==1
// if step<0, look for coincident==-1
int nextSpanEnd(int from, int step) const {
int result = nextSpan(from, step);
if (result < 0) {
return result;
}
return coincidentEnd(result, step);
}
const SkPoint* pts() const {
return fPts;
}
@ -1407,10 +1407,13 @@ finish:
fTs.reset();
}
// OPTIMIZATION: mark as debugging only if used solely by tests
const Span& span(int tIndex) const {
return fTs[tIndex];
}
// OPTIMIZATION: mark as debugging only if used solely by tests
double t(int tIndex) const {
SkASSERT(tIndex >= 0);
SkASSERT(tIndex < fTs.count());
return fTs[tIndex].fT;
}
@ -1435,9 +1438,19 @@ finish:
return (*SegmentXAtT[fVerb])(fPts, t);
}
void xyAtT(double t, SkPoint* pt) const {
SkASSERT(t >= 0 && t <= 1);
(*SegmentXYAtT[fVerb])(fPts, t, pt);
const SkPoint& xyAtT(const Span* span) const {
if (!span->fPt) {
if (span->fT == 0) {
span->fPt = &fPts[0];
} else if (span->fT == 1) {
span->fPt = &fPts[fVerb];
} else {
SkPoint* pt = fIntersections.append();
(*SegmentXYAtT[fVerb])(fPts, span->fT, pt);
span->fPt = pt;
}
}
return *span->fPt;
}
SkScalar yAtT(double t) const {
@ -1469,6 +1482,10 @@ private:
SkPath::Verb fVerb;
Bounds fBounds;
SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
// OPTIMIZATION:if intersections array is a pointer, the it could only
// be allocated as needed instead of always initialized -- though maybe
// the initialization is lightweight enough that it hardly matters
mutable SkTDArray<SkPoint> fIntersections;
// FIXME: coincident only needs two bits (-1, 0, 1)
int fCoincident; // non-zero if some coincident span inside
int fDoneSpans; // used for quick check that segment is finished
@ -2100,16 +2117,25 @@ static bool addIntersectTs(Contour* test, Contour* next) {
SkASSERT(0);
}
// in addition to recording T values, record matching segment
int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
&& wt.segmentType() <= Work::kLine_Segment ? -1 :0;
int testCoin;
int nextCoin;
if (pts == 2 && wn.segmentType() <= Work::kLine_Segment
&& wt.segmentType() <= Work::kLine_Segment) {
// pass coincident so that smaller T is -1, larger T is 1
testCoin = ts.fT[swap][0] < ts.fT[swap][1] ? -1 : 1;
nextCoin = ts.fT[!swap][0] < ts.fT[!swap][1] ? -1 : 1;
} else {
testCoin = nextCoin = 0;
}
for (int pt = 0; pt < pts; ++pt) {
SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
int testTAt = wt.addT(ts.fT[swap][pt], wn, testCoin);
int nextTAt = wn.addT(ts.fT[!swap][pt], wt, nextCoin);
wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
coincident = -coincident;
testCoin = -testCoin;
nextCoin = -nextCoin;
}
} while (wn.advance());
} while (wt.advance());

View File

@ -61,9 +61,9 @@ static void testLines(bool testFlat) {
for (x = 0; x < lineCount; ++x) {
SimplifyAngleTest::Angle* angle = angles.append();
if (testFlat) {
angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false);
angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1);
} else {
angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false);
angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1);
}
double arcTan = atan2(lines[x][0].fX - lines[x][1].fX,
lines[x][0].fY - lines[x][1].fY);
@ -112,9 +112,9 @@ static void testQuads(bool testFlat) {
for (x = 0; x < quadCount; ++x) {
SimplifyAngleTest::Angle* angle = angles.append();
if (testFlat) {
angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false);
angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1);
} else {
angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false);
angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1);
}
}
for (x = 0; x < quadCount; ++x) {
@ -138,9 +138,9 @@ static void testCubics(bool testFlat) {
for (size_t x = 0; x < cubicCount; ++x) {
SimplifyAngleTest::Angle* angle = angles.append();
if (testFlat) {
angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false);
angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1);
} else {
angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false);
angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1);
}
angleList.push(angle);
}
@ -180,4 +180,4 @@ void SimplifyAngle_Test() {
(*tests[index])(true);
firstTestComplete = true;
}
}
}

View File

@ -29,13 +29,11 @@ static const SimplifyFindNextTest::Segment* testCommon(
fixOtherTIndex(contourList);
SimplifyFindNextTest::Segment& segment = contours[0].fSegments[0];
SkPoint pts[2];
double startT = segment.t(endIndex);
segment.xyAtT(startT, &pts[0]);
pts[0] = segment.xyAtT(&segment.span(endIndex));
int nextStart, nextEnd;
SimplifyFindNextTest::Segment* next = segment.findNext(winding,
startIndex, endIndex, nextStart, nextEnd);
double endT = next->t(nextStart);
next->xyAtT(endT, &pts[1]);
pts[1] = next->xyAtT(&segment.span(nextStart));
SkASSERT(pts[0] == pts[1]);
return next;
}

View File

@ -51,7 +51,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1,
testCommon(contours, index, end);
SkPoint pts[2];
double firstT = topSegment->t(index);
topSegment->xyAtT(firstT, &pts[0]);
pts[0] = topSegment->xyAtT(&topSegment->span(index));
int direction = index < end ? 1 : -1;
do {
index += direction;
@ -59,7 +59,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1,
if (nextT == firstT) {
continue;
}
topSegment->xyAtT(nextT, &pts[1]);
pts[1] = topSegment->xyAtT(&topSegment->span(index));
if (pts[0] != pts[1]) {
break;
}

View File

@ -104,7 +104,7 @@ static void (*tests[])() = {
static const size_t testCount = sizeof(tests) / sizeof(tests[0]);
static void (*firstTest)() = testLine5;
static void (*firstTest)() = 0;
static bool skipAll = false;
void SimplifyNew_Test() {
@ -119,6 +119,7 @@ void SimplifyNew_Test() {
}
bool firstTestComplete = false;
for ( ; index < testCount; ++index) {
SkDebugf("%s [%d]\n", __FUNCTION__, index + 1);
(*tests[index])();
firstTestComplete = true;
}

View File

@ -163,4 +163,4 @@ and/or to determine whether one curve is to the inside or outside of another.
According to Mike/Rob, the flatness for quadratics increases by 4 for each
subdivision, and a crude guess of the curvature can be had by comparing P1 to
(P0+P2)/2. By looking at the ULPS of the numbers, I can guess what value of
T may be far enough that the curves diverge but don't cross.
T may be far enough that the curves diverge but don't cross.