Revert of Convert Color32 code to perfect blend. (patchset #6 id:100001 of https://codereview.chromium.org/1098913002/)
Reason for revert: Xfermode_SrcOver not looking encouraging. Up to 50% regressions. https://perf.skia.org/#3242 Original issue's description: > Convert Color32 code to perfect blend. > > Before we commit to blend_256_round_alt, let's make sure blend_perfect is > really slower in practice (i.e. regresses on perf.skia.org). > > blend_perfect is really the most desirable algorithm if we can afford it. Not > only is it correct, but it's easy to think about and break into correct pieces: > for instance, its div255() doesn't require any coordination with the multiply. > > This looks like a 30% hit according to microbenches. That said, microbenches > said my previous change would be a 20-25% perf improvement, but it didn't end > up showing a significant effect at a high level. > > As for correctness, I see a bunch of off-by-1 compared to blend_256_round_alt > (exactly what we'd expect), and one off-by-3 in a GM that looks like it has a > bunch of overdraw. > > BUG=skia: > > Committed: https://skia.googlesource.com/skia/+/61221e7f87a99765b0e034020e06bb018e2a08c2 TBR=reed@google.com,fmalita@chromium.org,mtklein@chromium.org NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG=skia: Review URL: https://codereview.chromium.org/1083923006
This commit is contained in:
parent
8672f4dffa
commit
a4a0aeb748
@ -142,8 +142,11 @@ SkBlitRow::Proc32 SkBlitRow::ColorProcFactory() {
|
||||
|
||||
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
|
||||
|
||||
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
|
||||
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
|
||||
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
|
||||
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
|
||||
// interesting edge cases, and it's quite a bit faster than blend_perfect.
|
||||
//
|
||||
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
|
||||
void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
|
||||
const SkPMColor* SK_RESTRICT src,
|
||||
int count, SkPMColor color) {
|
||||
@ -153,19 +156,19 @@ void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
|
||||
}
|
||||
|
||||
unsigned invA = 255 - SkGetPackedA32(color);
|
||||
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
||||
unsigned round = 0;
|
||||
#else // blend_256_round_alt, good
|
||||
invA += invA >> 7;
|
||||
unsigned round = (128 << 16) + (128 << 0);
|
||||
#endif
|
||||
|
||||
while (count --> 0) {
|
||||
// Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers.
|
||||
const uint32_t mask = 0x00FF00FF;
|
||||
uint32_t rb = (((*src >> 0) & mask) * invA), // r_b_
|
||||
ag = (((*src >> 8) & mask) * invA); // a_g_
|
||||
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
|
||||
uint32_t round = (128 << 16) + (128 << 0);
|
||||
rb += round;
|
||||
ag += round;
|
||||
rb += (rb & ~mask) >> 8;
|
||||
ag += (ag & ~mask) >> 8;
|
||||
#endif
|
||||
*dst = color + (((rb>>8) & mask) | ((ag>>0) & ~mask));
|
||||
uint32_t rb = (((*src >> 0) & mask) * invA + round) >> 8, // _r_b
|
||||
ag = (((*src >> 8) & mask) * invA + round) >> 0; // a_g_
|
||||
*dst = color + ((rb & mask) | (ag & ~mask));
|
||||
src++;
|
||||
dst++;
|
||||
}
|
||||
|
@ -234,30 +234,41 @@ void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
|
||||
|
||||
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
|
||||
|
||||
/* SSE2 version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
|
||||
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
|
||||
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
|
||||
/* SSE2 version of Color32()
|
||||
* portable version is in core/SkBlitRow_D32.cpp
|
||||
*/
|
||||
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
|
||||
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
|
||||
// interesting edge cases, and it's quite a bit faster than blend_perfect.
|
||||
//
|
||||
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
|
||||
void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) {
|
||||
switch (SkGetPackedA32(color)) {
|
||||
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
|
||||
case 255: sk_memset32(dst, color, count); return;
|
||||
}
|
||||
|
||||
__m128i color_2x_high = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color)),
|
||||
invA_8x = _mm_set1_epi16(255 - SkGetPackedA32(color));
|
||||
__m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color));
|
||||
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
||||
__m128i colorAndRound = colorHigh;
|
||||
#else // blend_256_round_alt, good
|
||||
__m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128));
|
||||
#endif
|
||||
|
||||
unsigned invA = 255 - SkGetPackedA32(color);
|
||||
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
||||
__m128i invA16 = _mm_set1_epi16(invA);
|
||||
#else // blend_256_round_alt, good
|
||||
SkASSERT(invA + (invA >> 7) < 256); // We should still fit in the low byte here.
|
||||
__m128i invA16 = _mm_set1_epi16(invA + (invA >> 7));
|
||||
#endif
|
||||
|
||||
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
|
||||
auto kernel = [&](const __m128i& src_4x) -> __m128i {
|
||||
__m128i lo = _mm_mullo_epi16(invA_8x, _mm_unpacklo_epi8(src_4x, _mm_setzero_si128())),
|
||||
hi = _mm_mullo_epi16(invA_8x, _mm_unpackhi_epi8(src_4x, _mm_setzero_si128()));
|
||||
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
|
||||
lo = _mm_add_epi16(lo, _mm_set1_epi16(128));
|
||||
hi = _mm_add_epi16(hi, _mm_set1_epi16(128));
|
||||
lo = _mm_add_epi16(lo, _mm_srli_epi16(lo, 8));
|
||||
hi = _mm_add_epi16(hi, _mm_srli_epi16(hi, 8));
|
||||
#endif
|
||||
return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(color_2x_high, lo), 8),
|
||||
_mm_srli_epi16(_mm_add_epi16(color_2x_high, hi), 8));
|
||||
auto kernel = [&](const __m128i& src4) -> __m128i {
|
||||
__m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())),
|
||||
hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128()));
|
||||
return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8),
|
||||
_mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8));
|
||||
};
|
||||
|
||||
while (count >= 8) {
|
||||
|
@ -1681,30 +1681,38 @@ void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
|
||||
|
||||
#define SK_SUPPORT_LEGACY_COLOR32_MATHx
|
||||
|
||||
/* NEON version of Color32(), portable version is in core/SkBlitRow_D32.cpp */
|
||||
// Color32 and its SIMD specializations use the blend_perfect algorithm from tests/BlendTest.cpp.
|
||||
// An acceptable alternative is blend_256_round_alt, which is faster but not quite perfect.
|
||||
// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
|
||||
// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
|
||||
// interesting edge cases, and it's quite a bit faster than blend_perfect.
|
||||
//
|
||||
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
|
||||
void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
|
||||
switch (SkGetPackedA32(color)) {
|
||||
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
|
||||
case 255: sk_memset32(dst, color, count); return;
|
||||
}
|
||||
|
||||
uint16x8_t color_2x_high = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
|
||||
uint8x8_t invA_8x = vdup_n_u8(255 - SkGetPackedA32(color));
|
||||
uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
|
||||
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
||||
uint16x8_t colorAndRound = colorHigh;
|
||||
#else // blend_256_round_alt, good
|
||||
uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
|
||||
#endif
|
||||
|
||||
unsigned invA = 255 - SkGetPackedA32(color);
|
||||
#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
||||
uint8x8_t invA8 = vdup_n_u8(invA);
|
||||
#else // blend_256_round_alt, good
|
||||
SkASSERT(invA + (invA >> 7) < 256); // This next part only works if alpha is not 0.
|
||||
uint8x8_t invA8 = vdup_n_u8(invA + (invA >> 7));
|
||||
#endif
|
||||
|
||||
// Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
|
||||
auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
|
||||
uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA_8x),
|
||||
hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA_8x);
|
||||
#ifndef SK_SUPPORT_LEGACY_COLOR32_MATH
|
||||
lo = vaddq_u16(lo, vdupq_n_u16(128));
|
||||
hi = vaddq_u16(hi, vdupq_n_u16(128));
|
||||
lo = vaddq_u16(lo, vshrq_n_u16(lo, 8));
|
||||
hi = vaddq_u16(hi, vshrq_n_u16(hi, 8));
|
||||
#endif
|
||||
uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
|
||||
hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
|
||||
return (uint32x4_t)
|
||||
vcombine_u8(vaddhn_u16(color_2x_high, lo), vaddhn_u16(color_2x_high, hi));
|
||||
vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
|
||||
};
|
||||
|
||||
while (count >= 8) {
|
||||
|
Loading…
Reference in New Issue
Block a user