diff --git a/src/core/SkPx.h b/src/core/SkPx.h new file mode 100644 index 0000000000..129fc07fbc --- /dev/null +++ b/src/core/SkPx.h @@ -0,0 +1,89 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkPx_DEFINED +#define SkPx_DEFINED + +#include "SkTypes.h" +#include "SkColorPriv.h" + +// We'll include one of src/opts/SkPx_{sse,neon,none}.h to define a type SkPx. +// +// SkPx represents up to SkPx::N 8888 pixels. It's agnostic to whether these +// are SkColors or SkPMColors; it only assumes that alpha is the high byte. +static_assert(SK_A32_SHIFT == 24, "For both SkColor and SkPMColor, alpha is always the high byte."); +// +// SkPx::Alpha represents up to SkPx::N 8-bit values, usually coverage or alpha. +// SkPx::Wide represents up to SkPx::N pixels with 16 bits per component. +// +// SkPx supports the following methods: +// static SkPx Dup(uint32_t); +// static SkPx Load(const uint32_t*); +// static SkPx Load(const uint32_t*, int n); // where 0 a +// Wide widenLo() const; // argb -> 0a0r0g0b +// Wide widenHi() const; // argb -> a0r0g0b0 +// Wide widenLoHi() const; // argb -> aarrggbb +// +// SkPx operator+(const SkPx&) const; +// SkPx operator-(const SkPx&) const; +// SkPx saturatedAdd(const SkPx&) const; +// +// Wide operator*(const Alpha&) const; // argb * A -> (a*A)(r*A)(g*A)(b*A) +// +// // Fast approximate (px*a+127)/255. +// // Never off by more than 1, and always correct when px or a is 0 or 255. +// // We use the approximation (px*a+px)/256. +// SkPx approxMulDiv255(const Alpha&) const; +// +// SkPx addAlpha(const Alpha&) const; // argb + A -> (a+A)rgb +// +// SkPx::Alpha supports the following methods: +// static Alpha Dup(uint8_t); +// static Alpha Load(const uint8_t*); +// static Alpha Load(const uint8_t*, int n); // where 0 255-a +// +// SkPx::Wide supports the following methods: +// Wide operator+(const Wide&); +// Wide operator-(const Wide&); +// Wide operator<<(int bits); +// Wide operator>>(int bits); +// +// // Return the high byte of each component of (*this + o.widenLo()). +// SkPx addNarrowHi(const SkPx& o); +// +// Methods left unwritten, but certainly to come: +// SkPx SkPx::operator<(const SkPx&) const; +// SkPx SkPx::thenElse(const SkPx& then, const SkPx& else) const; +// Wide Wide::operator<(const Wide&) const; +// Wide Wide::thenElse(const Wide& then, const Wide& else) const; +// +// SkPx Wide::div255() const; // Rounds, think (*this + 127) / 255. +// +// The different implementations of SkPx have complete freedom to choose +// SkPx::N and how they represent SkPx, SkPx::Alpha, and SkPx::Wide. +// +// All observable math must remain identical. + +#if defined(SKNX_NO_SIMD) + #include "../opts/SkPx_none.h" +#else + #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 + #include "../opts/SkPx_sse.h" + #elif defined(SK_ARM_HAS_NEON) + #include "../opts/SkPx_neon.h" + #else + #include "../opts/SkPx_none.h" + #endif +#endif + +#endif//SkPx_DEFINED diff --git a/src/opts/SkBlitMask_opts.h b/src/opts/SkBlitMask_opts.h index 2f4fe6ffb8..f4d7e7973f 100644 --- a/src/opts/SkBlitMask_opts.h +++ b/src/opts/SkBlitMask_opts.h @@ -9,195 +9,62 @@ #define SkBlitMask_opts_DEFINED #include "Sk4px.h" +#include "SkPx.h" namespace SK_OPTS_NS { -#if defined(SK_ARM_HAS_NEON) - // The Sk4px versions below will work fine with NEON, but we have had many indications - // that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why? - #include "SkColor_opts_neon.h" - - template - static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB, - const void* SK_RESTRICT maskPtr, size_t maskRB, - SkColor color, int width, int height) { - SkPMColor pmc = SkPreMultiplyColor(color); - SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; - const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; - uint8x8x4_t vpmc; - - maskRB -= width; - dstRB -= (width << 2); - - if (width >= 8) { - vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc)); - vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc)); - vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc)); - vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc)); +template +static void blit_mask_d32_a8(const Fn& fn, SkPMColor* dst, size_t dstRB, + const SkAlpha* mask, size_t maskRB, + int w, int h) { + while (h --> 0) { + int n = w; + while (n >= SkPx::N) { + fn(SkPx::Load(dst), SkPx::Alpha::Load(mask)).store(dst); + dst += SkPx::N; mask += SkPx::N; n -= SkPx::N; } - do { - int w = width; - while (w >= 8) { - uint8x8_t vmask = vld1_u8(mask); - uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask); - if (isColor) { - vscale = vsubw_u8(vdupq_n_u16(256), - SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)); - } else { - vscale = vsubw_u8(vdupq_n_u16(256), vmask); - } - uint8x8x4_t vdev = vld4_u8((uint8_t*)device); - - vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256) - + SkAlphaMul_neon8(vdev.val[NEON_A], vscale); - vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256) - + SkAlphaMul_neon8(vdev.val[NEON_R], vscale); - vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256) - + SkAlphaMul_neon8(vdev.val[NEON_G], vscale); - vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256) - + SkAlphaMul_neon8(vdev.val[NEON_B], vscale); - - vst4_u8((uint8_t*)device, vdev); - - mask += 8; - device += 8; - w -= 8; - } - - while (w--) { - unsigned aa = *mask++; - if (isColor) { - *device = SkBlendARGB32(pmc, *device, aa); - } else { - *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) - + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); - } - device += 1; - }; - - device = (uint32_t*)((char*)device + dstRB); - mask += maskRB; - - } while (--height != 0); + if (n > 0) { + fn(SkPx::Load(dst, n), SkPx::Alpha::Load(mask, n)).store(dst, n); + dst += n; mask += n; + } + dst += dstRB / sizeof(*dst) - w; + mask += maskRB / sizeof(*mask) - w; } +} - static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - SkColor color, int w, int h) { - D32_A8_Opaque_Color_neon(dst, dstRB, mask, maskRB, color, w, h); - } +static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, + const SkAlpha* mask, size_t maskRB, + SkColor color, int w, int h) { + auto s = SkPx::Dup(SkPreMultiplyColor(color)); - // As above, but made slightly simpler by requiring that color is opaque. - static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - SkColor color, int w, int h) { - D32_A8_Opaque_Color_neon(dst, dstRB, mask, maskRB, color, w, h); - } - - // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. - static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, - const SkAlpha* maskPtr, size_t maskRB, - int width, int height) { - SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; - const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; - - maskRB -= width; - dstRB -= (width << 2); - do { - int w = width; - while (w >= 8) { - uint8x8_t vmask = vld1_u8(mask); - uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask); - uint8x8x4_t vdevice = vld4_u8((uint8_t*)device); - - vdevice = SkAlphaMulQ_neon8(vdevice, vscale); - vdevice.val[NEON_A] += vmask; - - vst4_u8((uint8_t*)device, vdevice); - - mask += 8; - device += 8; - w -= 8; - } - while (w-- > 0) { - unsigned aa = *mask++; - *device = (aa << SK_A32_SHIFT) - + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); - device += 1; - }; - device = (uint32_t*)((char*)device + dstRB); - mask += maskRB; - } while (--height != 0); - } - -#else - static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - SkColor color, int w, int h) { - auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); - auto fn = [&](const Sk4px& d, const Sk4px& aa) { - // = (s + d(1-sa))aa + d(1-aa) - // = s*aa + d(1-sa*aa) - auto left = s.approxMulDiv255(aa), - right = d.approxMulDiv255(left.alphas().inv()); - return left + right; // This does not overflow (exhaustively checked). + if (color == SK_ColorBLACK) { + auto fn = [](const SkPx& d, const SkPx::Alpha& aa) { + // = (s + d(1-sa))aa + d(1-aa) + // = s*aa + d(1-sa*aa) + // ~~~> + // a = 1*aa + d(1-1*aa) = aa + d(1-aa) + // c = 0*aa + d(1-1*aa) = d(1-aa) + return d.approxMulDiv255(aa.inv()).addAlpha(aa); }; - while (h --> 0) { - Sk4px::MapDstAlpha(w, dst, mask, fn); - dst += dstRB / sizeof(*dst); - mask += maskRB / sizeof(*mask); - } - } - - // As above, but made slightly simpler by requiring that color is opaque. - static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - SkColor color, int w, int h) { - SkASSERT(SkColorGetA(color) == 0xFF); - auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); - auto fn = [&](const Sk4px& d, const Sk4px& aa) { + blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h); + } else if (SkColorGetA(color) == 0xFF) { + auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) // ~~~> // = s*aa + d(1-aa) return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv()); }; - while (h --> 0) { - Sk4px::MapDstAlpha(w, dst, mask, fn); - dst += dstRB / sizeof(*dst); - mask += maskRB / sizeof(*mask); - } - } - - // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. - static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - int w, int h) { - auto fn = [](const Sk4px& d, const Sk4px& aa) { - // = (s + d(1-sa))aa + d(1-aa) - // = s*aa + d(1-sa*aa) - // ~~~> - // a = 1*aa + d(1-1*aa) = aa + d(1-aa) - // c = 0*aa + d(1-1*aa) = d(1-aa) - return aa.zeroColors() + d.approxMulDiv255(aa.inv()); - }; - while (h --> 0) { - Sk4px::MapDstAlpha(w, dst, mask, fn); - dst += dstRB / sizeof(*dst); - mask += maskRB / sizeof(*mask); - } - } -#endif - -static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, - const SkAlpha* mask, size_t maskRB, - SkColor color, int w, int h) { - if (color == SK_ColorBLACK) { - blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h); - } else if (SkColorGetA(color) == 0xFF) { - blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h); + blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h); } else { - blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h); + auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) { + // = (s + d(1-sa))aa + d(1-aa) + // = s*aa + d(1-sa*aa) + auto left = s.approxMulDiv255(aa), + right = d.approxMulDiv255(left.alpha().inv()); + return left + right; // This does not overflow (exhaustively checked). + }; + blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h); } } diff --git a/src/opts/SkPx_neon.h b/src/opts/SkPx_neon.h new file mode 100644 index 0000000000..8daa5297f1 --- /dev/null +++ b/src/opts/SkPx_neon.h @@ -0,0 +1,214 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkPx_neon_DEFINED +#define SkPx_neon_DEFINED + +// When we have NEON, we like to work 8 pixels at a time. +// This lets us exploit vld4/vst4 and represent SkPx as planar uint8x8x4_t, +// Wide as planar uint16x8x4_t, and Alpha as a single uint8x8_t plane. + +struct SkPx_neon { + static const int N = 8; + + uint8x8x4_t fVec; + SkPx_neon(uint8x8x4_t vec) : fVec(vec) {} + + static SkPx_neon Dup(uint32_t px) { return vld4_dup_u8((const uint8_t*)&px); } + static SkPx_neon Load(const uint32_t* px) { return vld4_u8((const uint8_t*)px); } + static SkPx_neon Load(const uint32_t* px, int n) { + SkASSERT(0 < n && n < 8); + uint8x8x4_t v = vld4_dup_u8((const uint8_t*)px); // n>=1, so start all lanes with pixel 0. + switch (n) { + case 7: v = vld4_lane_u8((const uint8_t*)(px+6), v, 6); // fall through + case 6: v = vld4_lane_u8((const uint8_t*)(px+5), v, 5); // fall through + case 5: v = vld4_lane_u8((const uint8_t*)(px+4), v, 4); // fall through + case 4: v = vld4_lane_u8((const uint8_t*)(px+3), v, 3); // fall through + case 3: v = vld4_lane_u8((const uint8_t*)(px+2), v, 2); // fall through + case 2: v = vld4_lane_u8((const uint8_t*)(px+1), v, 1); + } + return v; + } + + void store(uint32_t* px) const { vst4_u8((uint8_t*)px, fVec); } + void store(uint32_t* px, int n) const { + SkASSERT(0 < n && n < 8); + switch (n) { + case 7: vst4_lane_u8((uint8_t*)(px+6), fVec, 6); + case 6: vst4_lane_u8((uint8_t*)(px+5), fVec, 5); + case 5: vst4_lane_u8((uint8_t*)(px+4), fVec, 4); + case 4: vst4_lane_u8((uint8_t*)(px+3), fVec, 3); + case 3: vst4_lane_u8((uint8_t*)(px+2), fVec, 2); + case 2: vst4_lane_u8((uint8_t*)(px+1), fVec, 1); + case 1: vst4_lane_u8((uint8_t*)(px+0), fVec, 0); + } + } + + struct Alpha { + uint8x8_t fA; + Alpha(uint8x8_t a) : fA(a) {} + + static Alpha Dup(uint8_t a) { return vdup_n_u8(a); } + static Alpha Load(const uint8_t* a) { return vld1_u8(a); } + static Alpha Load(const uint8_t* a, int n) { + SkASSERT(0 < n && n < 8); + uint8x8_t v = vld1_dup_u8(a); // n>=1, so start all lanes with alpha 0. + switch (n) { + case 7: v = vld1_lane_u8(a+6, v, 6); // fall through + case 6: v = vld1_lane_u8(a+5, v, 5); // fall through + case 5: v = vld1_lane_u8(a+4, v, 4); // fall through + case 4: v = vld1_lane_u8(a+3, v, 3); // fall through + case 3: v = vld1_lane_u8(a+2, v, 2); // fall through + case 2: v = vld1_lane_u8(a+1, v, 1); + } + return v; + } + Alpha inv() const { return vsub_u8(vdup_n_u8(255), fA); } + }; + + struct Wide { + uint16x8x4_t fVec; + Wide(uint16x8x4_t vec) : fVec(vec) {} + + Wide operator+(const Wide& o) const { + return (uint16x8x4_t) {{ + vaddq_u16(fVec.val[0], o.fVec.val[0]), + vaddq_u16(fVec.val[1], o.fVec.val[1]), + vaddq_u16(fVec.val[2], o.fVec.val[2]), + vaddq_u16(fVec.val[3], o.fVec.val[3]), + }}; + } + Wide operator-(const Wide& o) const { + return (uint16x8x4_t) {{ + vsubq_u16(fVec.val[0], o.fVec.val[0]), + vsubq_u16(fVec.val[1], o.fVec.val[1]), + vsubq_u16(fVec.val[2], o.fVec.val[2]), + vsubq_u16(fVec.val[3], o.fVec.val[3]), + }}; + } + Wide operator<<(int bits) const { + #if defined(SK_DEBUG) + return (uint16x8x4_t) {{ + shift_slow(fVec.val[0], -bits), + shift_slow(fVec.val[1], -bits), + shift_slow(fVec.val[2], -bits), + shift_slow(fVec.val[3], -bits), + }}; + #else + return (uint16x8x4_t) {{ + vshlq_n_u16(fVec.val[0], bits), + vshlq_n_u16(fVec.val[1], bits), + vshlq_n_u16(fVec.val[2], bits), + vshlq_n_u16(fVec.val[3], bits), + }}; + #endif + } + Wide operator>>(int bits) const { + #if defined(SK_DEBUG) + return (uint16x8x4_t) {{ + shift_slow(fVec.val[0], bits), + shift_slow(fVec.val[1], bits), + shift_slow(fVec.val[2], bits), + shift_slow(fVec.val[3], bits), + }}; + #else + return (uint16x8x4_t) {{ + vshrq_n_u16(fVec.val[0], bits), + vshrq_n_u16(fVec.val[1], bits), + vshrq_n_u16(fVec.val[2], bits), + vshrq_n_u16(fVec.val[3], bits), + }}; + #endif + } + + // v >> bits, for bits in [-15, 16]. + static uint16x8_t shift_slow(uint16x8_t v, int bits) { + SkASSERT(bits >= -16 && bits <= 16); + switch (bits) { + #define L(n) case -n: return vshlq_n_u16(v, n); + #define R(n) case n: return vshrq_n_u16(v, n); + L(15) L(14) L(13) L(10) L(9) L(8) L(7) L(6) L(5) L(4) L(3) L(2) L(1) + R(16) R(15) R(14) R(13) R(10) R(9) R(8) R(7) R(6) R(5) R(4) R(3) R(2) R(1) + #undef L + #undef R + } + return v; + } + + SkPx_neon addNarrowHi(const SkPx_neon& o) const { + return (uint8x8x4_t) {{ + vshrn_n_u16(vaddw_u8(fVec.val[0], o.fVec.val[0]), 8), + vshrn_n_u16(vaddw_u8(fVec.val[1], o.fVec.val[1]), 8), + vshrn_n_u16(vaddw_u8(fVec.val[2], o.fVec.val[2]), 8), + vshrn_n_u16(vaddw_u8(fVec.val[3], o.fVec.val[3]), 8), + }}; + } + }; + + Alpha alpha() const { return fVec.val[3]; } + + Wide widenLo() const { + return (uint16x8x4_t) {{ + vmovl_u8(fVec.val[0]), + vmovl_u8(fVec.val[1]), + vmovl_u8(fVec.val[2]), + vmovl_u8(fVec.val[3]), + }}; + } + // TODO: these two can probably be done faster. + Wide widenHi() const { return this->widenLo() << 8; } + Wide widenLoHi() const { return this->widenLo() + this->widenHi(); } + + SkPx_neon operator+(const SkPx_neon& o) const { + return (uint8x8x4_t) {{ + vadd_u8(fVec.val[0], o.fVec.val[0]), + vadd_u8(fVec.val[1], o.fVec.val[1]), + vadd_u8(fVec.val[2], o.fVec.val[2]), + vadd_u8(fVec.val[3], o.fVec.val[3]), + }}; + } + SkPx_neon operator-(const SkPx_neon& o) const { + return (uint8x8x4_t) {{ + vsub_u8(fVec.val[0], o.fVec.val[0]), + vsub_u8(fVec.val[1], o.fVec.val[1]), + vsub_u8(fVec.val[2], o.fVec.val[2]), + vsub_u8(fVec.val[3], o.fVec.val[3]), + }}; + } + SkPx_neon saturatedAdd(const SkPx_neon& o) const { + return (uint8x8x4_t) {{ + vqadd_u8(fVec.val[0], o.fVec.val[0]), + vqadd_u8(fVec.val[1], o.fVec.val[1]), + vqadd_u8(fVec.val[2], o.fVec.val[2]), + vqadd_u8(fVec.val[3], o.fVec.val[3]), + }}; + } + + Wide operator*(const Alpha& a) const { + return (uint16x8x4_t) {{ + vmull_u8(fVec.val[0], a.fA), + vmull_u8(fVec.val[1], a.fA), + vmull_u8(fVec.val[2], a.fA), + vmull_u8(fVec.val[3], a.fA), + }}; + } + SkPx_neon approxMulDiv255(const Alpha& a) const { + return (*this * a).addNarrowHi(*this); + } + + SkPx_neon addAlpha(const Alpha& a) const { + return (uint8x8x4_t) {{ + fVec.val[0], + fVec.val[1], + fVec.val[2], + vadd_u8(fVec.val[3], a.fA), + }}; + } +}; +typedef SkPx_neon SkPx; + +#endif//SkPx_neon_DEFINED diff --git a/src/opts/SkPx_none.h b/src/opts/SkPx_none.h new file mode 100644 index 0000000000..3825f03dde --- /dev/null +++ b/src/opts/SkPx_none.h @@ -0,0 +1,106 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkPx_none_DEFINED +#define SkPx_none_DEFINED + +// Nothing fancy here. We're the backup _none case after all. +// Our declared sweet spot is simply a single pixel at a time. + +struct SkPx_none { + static const int N = 1; + uint8_t f8[4]; + + SkPx_none(uint32_t px) { memcpy(f8, &px, 4); } + SkPx_none(uint8_t x, uint8_t y, uint8_t z, uint8_t a) { + f8[0] = x; f8[1] = y; f8[2] = z; f8[3] = a; + } + + static SkPx_none Dup(uint32_t px) { return px; } + static SkPx_none Load(const uint32_t* px) { return *px; } + static SkPx_none Load(const uint32_t* px, int n) { + SkASSERT(false); // There are no 0>(int bits) const { + return Wide(f16[0]>>bits, f16[1]>>bits, f16[2]>>bits, f16[3]>>bits); + } + + SkPx_none addNarrowHi(const SkPx_none& o) const { + Wide sum = (*this + o.widenLo()) >> 8; + return SkPx_none(sum.f16[0], sum.f16[1], sum.f16[2], sum.f16[3]); + } + }; + + Alpha alpha() const { return f8[3]; } + + Wide widenLo() const { return Wide(f8[0], f8[1], f8[2], f8[3]); } + Wide widenHi() const { return this->widenLo() << 8; } + Wide widenLoHi() const { return this->widenLo() + this->widenHi(); } + + SkPx_none operator+(const SkPx_none& o) const { + return SkPx_none(f8[0]+o.f8[0], f8[1]+o.f8[1], f8[2]+o.f8[2], f8[3]+o.f8[3]); + } + SkPx_none operator-(const SkPx_none& o) const { + return SkPx_none(f8[0]-o.f8[0], f8[1]-o.f8[1], f8[2]-o.f8[2], f8[3]-o.f8[3]); + } + SkPx_none saturatedAdd(const SkPx_none& o) const { + return SkPx_none(SkTMax(0, SkTMin(255, f8[0]+o.f8[0])), + SkTMax(0, SkTMin(255, f8[1]+o.f8[1])), + SkTMax(0, SkTMin(255, f8[2]+o.f8[2])), + SkTMax(0, SkTMin(255, f8[3]+o.f8[3]))); + } + + Wide operator*(const Alpha& a) const { + return Wide(f8[0]*a.fA, f8[1]*a.fA, f8[2]*a.fA, f8[3]*a.fA); + } + SkPx_none approxMulDiv255(const Alpha& a) const { + return (*this * a).addNarrowHi(*this); + } + + SkPx_none addAlpha(const Alpha& a) const { + return SkPx_none(f8[0], f8[1], f8[2], f8[3]+a.fA); + } +}; +typedef SkPx_none SkPx; + +#endif//SkPx_none_DEFINED diff --git a/src/opts/SkPx_sse.h b/src/opts/SkPx_sse.h new file mode 100644 index 0000000000..b82d4e5f93 --- /dev/null +++ b/src/opts/SkPx_sse.h @@ -0,0 +1,150 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkPx_sse_DEFINED +#define SkPx_sse_DEFINED + +// SkPx_sse's sweet spot is to work with 4 pixels at a time, +// stored interlaced, just as they sit in memory: rgba rgba rgba rgba. + +// SkPx_sse's best way to work with alphas is similar, +// replicating the 4 alphas 4 times each across the pixel: aaaa aaaa aaaa aaaa. + +// When working with fewer than 4 pixels, we load the pixels in the low lanes, +// usually filling the top lanes with zeros (but who cares, might be junk). + +struct SkPx_sse { + static const int N = 4; + + __m128i fVec; + SkPx_sse(__m128i vec) : fVec(vec) {} + + static SkPx_sse Dup(uint32_t px) { return _mm_set1_epi32(px); } + static SkPx_sse Load(const uint32_t* px) { return _mm_loadu_si128((const __m128i*)px); } + static SkPx_sse Load(const uint32_t* px, int n) { + SkASSERT(n > 0 && n < 4); + switch (n) { + case 1: return _mm_cvtsi32_si128(px[0]); + case 2: return _mm_loadl_epi64((const __m128i*)px); + case 3: return _mm_or_si128(_mm_loadl_epi64((const __m128i*)px), + _mm_slli_si128(_mm_cvtsi32_si128(px[2]), 8)); + } + return _mm_setzero_si128(); // Not actually reachable. + } + + void store(uint32_t* px) const { _mm_storeu_si128((__m128i*)px, fVec); } + void store(uint32_t* px, int n) const { + SkASSERT(n > 0 && n < 4); + __m128i v = fVec; + if (n & 1) { + *px++ = _mm_cvtsi128_si32(v); + v = _mm_srli_si128(v, 4); + } + if (n & 2) { + _mm_storel_epi64((__m128i*)px, v); + } + } + + struct Alpha { + __m128i fVec; + Alpha(__m128i vec) : fVec(vec) {} + + static Alpha Dup(uint8_t a) { return _mm_set1_epi8(a); } + static Alpha Load(const uint8_t* a) { + __m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210 + #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 + return _mm_shuffle_epi8(as, _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0)); + #else + as = _mm_unpacklo_epi8 (as, _mm_setzero_si128()); // ____ ____ _3_2 _1_0 + as = _mm_unpacklo_epi16(as, _mm_setzero_si128()); // ___3 ___2 ___1 ___0 + as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00 + return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000 + #endif + } + static Alpha Load(const uint8_t* a, int n) { + SkASSERT(n > 0 && n < 4); + uint8_t a4[] = { 0,0,0,0 }; + switch (n) { + case 3: a4[2] = a[2]; // fall through + case 2: a4[1] = a[1]; // fall through + case 1: a4[0] = a[0]; + } + return Load(a4); + } + + Alpha inv() const { return _mm_sub_epi8(_mm_set1_epi8(~0), fVec); } + }; + + struct Wide { + __m128i fLo, fHi; + Wide(__m128i lo, __m128i hi) : fLo(lo), fHi(hi) {} + + Wide operator+(const Wide& o) const { + return Wide(_mm_add_epi16(fLo, o.fLo), _mm_add_epi16(fHi, o.fHi)); + } + Wide operator-(const Wide& o) const { + return Wide(_mm_sub_epi16(fLo, o.fLo), _mm_sub_epi16(fHi, o.fHi)); + } + Wide operator<<(int bits) const { + return Wide(_mm_slli_epi16(fLo, bits), _mm_slli_epi16(fHi, bits)); + } + Wide operator>>(int bits) const { + return Wide(_mm_srli_epi16(fLo, bits), _mm_srli_epi16(fHi, bits)); + } + + SkPx_sse addNarrowHi(const SkPx_sse& o) const { + Wide sum = (*this + o.widenLo()) >> 8; + return _mm_packus_epi16(sum.fLo, sum.fHi); + } + }; + + Alpha alpha() const { + #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 + return _mm_shuffle_epi8(fVec, _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3)); + #else + __m128i as = _mm_srli_epi32(fVec, 24); // ___3 ___2 ___1 ___0 + as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00 + return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000 + #endif + } + + Wide widenLo() const { + return Wide(_mm_unpacklo_epi8(fVec, _mm_setzero_si128()), + _mm_unpackhi_epi8(fVec, _mm_setzero_si128())); + } + Wide widenHi() const { + return Wide(_mm_unpacklo_epi8(_mm_setzero_si128(), fVec), + _mm_unpackhi_epi8(_mm_setzero_si128(), fVec)); + } + Wide widenLoHi() const { + return Wide(_mm_unpacklo_epi8(fVec, fVec), + _mm_unpackhi_epi8(fVec, fVec)); + } + + SkPx_sse operator+(const SkPx_sse& o) const { return _mm_add_epi8(fVec, o.fVec); } + SkPx_sse operator-(const SkPx_sse& o) const { return _mm_sub_epi8(fVec, o.fVec); } + SkPx_sse saturatedAdd(const SkPx_sse& o) const { return _mm_adds_epi8(fVec, o.fVec); } + + Wide operator*(const Alpha& a) const { + __m128i pLo = _mm_unpacklo_epi8( fVec, _mm_setzero_si128()), + aLo = _mm_unpacklo_epi8(a.fVec, _mm_setzero_si128()), + pHi = _mm_unpackhi_epi8( fVec, _mm_setzero_si128()), + aHi = _mm_unpackhi_epi8(a.fVec, _mm_setzero_si128()); + return Wide(_mm_mullo_epi16(pLo, aLo), _mm_mullo_epi16(pHi, aHi)); + } + SkPx_sse approxMulDiv255(const Alpha& a) const { + return (*this * a).addNarrowHi(*this); + } + + SkPx_sse addAlpha(const Alpha& a) const { + return _mm_add_epi8(fVec, _mm_and_si128(a.fVec, _mm_set1_epi32(0xFF000000))); + } +}; + +typedef SkPx_sse SkPx; + +#endif//SkPx_sse_DEFINED