Better encapsulation and vector calling convention.

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1723683002

Review URL: https://codereview.chromium.org/1723683002
This commit is contained in:
herb 2016-02-22 14:48:21 -08:00 committed by Commit bot
parent bc9a9b4cdc
commit a856e25ba1
3 changed files with 110 additions and 100 deletions

View File

@ -14,6 +14,63 @@
#include "SkColor.h"
#include "SkSize.h"
// Tweak ABI of functions that pass Sk4f by value to pass them via registers.
#if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define VECTORCALL __vectorcall
#elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON)
#define VECTORCALL __attribute__((pcs("aapcs-vfp")))
#else
#define VECTORCALL
#endif
class SkLinearBitmapPipeline::PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
virtual void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) = 0;
virtual void VECTORCALL pointList4(Sk4f xs, Sk4f ys) = 0;
// The pointSpan method efficiently process horizontal spans of pixels.
// * start - the point where to start the span.
// * length - the number of pixels to traverse in source space.
// * count - the number of pixels to produce in destination space.
// Both start and length are mapped through the inversion matrix to produce values in source
// space. After the matrix operation, the tilers may break the spans up into smaller spans.
// The tilers can produce spans that seem nonsensical.
// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
// to the edge of the destination scan.
// * The mirror tiler can produce spans with negative length. This indicates that the source
// should be traversed in the opposite direction to the destination pixels.
virtual void pointSpan(SkPoint start, SkScalar length, int count) = 0;
};
class SkLinearBitmapPipeline::BilerpProcessorInterface
: public SkLinearBitmapPipeline::PointProcessorInterface {
public:
// The x's and y's are setup in the following order:
// +--------+--------+
// | | |
// | px00 | px10 |
// | 0 | 1 |
// +--------+--------+
// | | |
// | px01 | px11 |
// | 2 | 3 |
// +--------+--------+
// These pixels coordinates are arranged in the following order in xs and ys:
// px00 px10 px01 px11
virtual void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) = 0;
};
class SkLinearBitmapPipeline::PixelPlacerInterface {
public:
virtual ~PixelPlacerInterface() { }
virtual void setDestination(SkPM4f* dst) = 0;
virtual void VECTORCALL placePixel(Sk4f pixel0) = 0;
virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};
namespace {
struct X {
explicit X(SkScalar val) : fVal{val} { }
explicit X(SkPoint pt) : fVal{pt.fX} { }
@ -68,21 +125,21 @@ void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) {
// maybeProcessSpan - returns false if it can not process the span and needs to fallback to
// point lists for processing.
template<typename Strategy, typename Next>
class PointProcessor final : public PointProcessorInterface {
class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
template <typename... Args>
PointProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
fNext->pointListFew(n, newXs, newYs);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
@ -102,28 +159,28 @@ private:
// See PointProcessor for responsibilities of Strategy.
template<typename Strategy, typename Next>
class BilerpProcessor final : public BilerpProcessorInterface {
class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
BilerpProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
fNext->pointListFew(n, newXs, newYs);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
fNext->pointList4(newXs, newYs);
}
void bilerpList(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
Sk4f newXs = xs;
Sk4f newYs = ys;
fStrategy.processPoints(&newXs, &newYs);
@ -141,14 +198,14 @@ private:
Strategy fStrategy;
};
class SkippedStage final : public BilerpProcessorInterface {
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkFAIL("Skipped stage.");
}
void pointList4(Sk4fArg Xs, Sk4fArg Ys) override {
void VECTORCALL pointList4(Sk4f Xs, Sk4f Ys) override {
SkFAIL("Skipped stage.");
}
void bilerpList(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
SkFAIL("Skipped stage.");
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
@ -176,7 +233,7 @@ public:
private:
const Sk4f fXOffset, fYOffset;
};
template <typename Next = PointProcessorInterface>
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>;
class ScaleMatrixStrategy {
@ -202,7 +259,7 @@ private:
const Sk4f fXOffset, fYOffset;
const Sk4f fXScale, fYScale;
};
template <typename Next = PointProcessorInterface>
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>;
class AffineMatrixStrategy {
@ -229,11 +286,11 @@ private:
const Sk4f fXScale, fYScale;
const Sk4f fXSkew, fYSkew;
};
template <typename Next = PointProcessorInterface>
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>;
static PointProcessorInterface* choose_matrix(
PointProcessorInterface* next,
static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix(
SkLinearBitmapPipeline::PointProcessorInterface* next,
const SkMatrix& inverse,
SkLinearBitmapPipeline::MatrixStage* matrixProc) {
if (inverse.hasPerspective()) {
@ -260,12 +317,12 @@ static PointProcessorInterface* choose_matrix(
return matrixProc->get();
}
template <typename Next = BilerpProcessorInterface>
class ExpandBilerp final : public PointProcessorInterface {
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
ExpandBilerp(Next* next) : fNext{next} { }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkASSERT(0 < n && n < 4);
// px00 px10 px01 px11
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
@ -275,7 +332,7 @@ public:
if (n >= 3) fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
// px00 px10 px01 px11
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f};
@ -293,8 +350,8 @@ private:
Next* const fNext;
};
static PointProcessorInterface* choose_filter(
BilerpProcessorInterface* next,
static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkFilterQuality filterQuailty,
SkLinearBitmapPipeline::FilterStage* filterProc) {
if (SkFilterQuality::kNone_SkFilterQuality == filterQuailty) {
@ -336,7 +393,7 @@ private:
const Sk4f fXMax{SK_FloatInfinity};
const Sk4f fYMax{SK_FloatInfinity};
};
template <typename Next = BilerpProcessorInterface>
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Clamp = BilerpProcessor<ClampStrategy, Next>;
class RepeatStrategy {
@ -370,11 +427,11 @@ private:
const Sk4f fYInvMax{0.0f};
};
template <typename Next = BilerpProcessorInterface>
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Repeat = BilerpProcessor<RepeatStrategy, Next>;
static BilerpProcessorInterface* choose_tiler(
BilerpProcessorInterface* next,
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkSize dimensions,
SkShader::TileMode xMode,
SkShader::TileMode yMode,
@ -422,7 +479,7 @@ static BilerpProcessorInterface* choose_tiler(
class sRGBFast {
public:
static Sk4f sRGBToLinear(Sk4fArg pixel) {
static Sk4f VECTORCALL sRGBToLinear(Sk4f pixel) {
Sk4f l = pixel * pixel;
return Sk4f{l[0], l[1], l[2], pixel[3]};
}
@ -434,7 +491,7 @@ public:
Passthrough8888(int width, const uint32_t* src)
: fSrc{src}, fWidth{width}{ }
void getFewPixels(int n, Sk4fArg xs, Sk4fArg ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
void VECTORCALL getFewPixels(int n, Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
@ -450,7 +507,7 @@ public:
}
}
void get4Pixels(Sk4fArg xs, Sk4fArg ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
void VECTORCALL get4Pixels(Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
@ -496,8 +553,8 @@ private:
// * px01 -> (1 - x)y = y - xy
// * px11 -> xy
// So x * y is calculated first and then used to calculate all the other factors.
static Sk4f bilerp4(Sk4fArg xs, Sk4fArg ys, Sk4fArg px00, Sk4fArg px10,
Sk4fArg px01, Sk4fArg px11) {
static Sk4f VECTORCALL bilerp4(Sk4f xs, Sk4f ys, Sk4f px00, Sk4f px10,
Sk4f px01, Sk4f px11) {
// Calculate fractional xs and ys.
Sk4f fxs = xs - xs.floor();
Sk4f fys = ys - ys.floor();
@ -510,14 +567,14 @@ static Sk4f bilerp4(Sk4fArg xs, Sk4fArg ys, Sk4fArg px00, Sk4fArg px10,
}
template <typename SourceStrategy>
class Sampler final : public BilerpProcessorInterface {
class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
Sampler(PixelPlacerInterface* next, Args&&... args)
Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...} { }
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkASSERT(0 < n && n < 4);
Sk4f px0, px1, px2;
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
@ -526,13 +583,13 @@ public:
if (n >= 3) fNext->placePixel(px2);
}
void pointList4(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
fNext->place4Pixels(px0, px1, px2, px3);
}
void bilerpList(Sk4fArg xs, Sk4fArg ys) override {
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
Sk4f px00, px10, px01, px11;
fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11);
Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
@ -544,12 +601,12 @@ public:
}
private:
PixelPlacerInterface* const fNext;
SkLinearBitmapPipeline::PixelPlacerInterface* const fNext;
SourceStrategy fStrategy;
};
static BilerpProcessorInterface* choose_pixel_sampler(
PixelPlacerInterface* next,
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler(
SkLinearBitmapPipeline::PixelPlacerInterface* next,
const SkPixmap& srcPixmap,
SkLinearBitmapPipeline::SampleStage* sampleStage) {
const SkImageInfo& imageInfo = srcPixmap.info();
@ -578,14 +635,14 @@ static BilerpProcessorInterface* choose_pixel_sampler(
}
template <SkAlphaType alphaType>
class PlaceFPPixel final : public PixelPlacerInterface {
class PlaceFPPixel final : public SkLinearBitmapPipeline::PixelPlacerInterface {
public:
void placePixel(Sk4fArg pixel) override {
void VECTORCALL placePixel(Sk4f pixel) override {
PlacePixel(fDst, pixel, 0);
fDst += 1;
}
void place4Pixels(Sk4fArg p0, Sk4fArg p1, Sk4fArg p2, Sk4fArg p3) override {
void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
SkPM4f* dst = fDst;
PlacePixel(dst, p0, 0);
PlacePixel(dst, p1, 1);
@ -599,14 +656,14 @@ public:
}
private:
static void PlacePixel(SkPM4f* dst, Sk4fArg pixel, int index) {
static void VECTORCALL PlacePixel(SkPM4f* dst, Sk4f pixel, int index) {
Sk4f newPixel = pixel;
if (alphaType == kUnpremul_SkAlphaType) {
newPixel = Premultiply(pixel);
}
newPixel.store(dst + index);
}
static Sk4f Premultiply(Sk4fArg pixel) {
static Sk4f VECTORCALL Premultiply(Sk4f pixel) {
float alpha = pixel[3];
return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
}
@ -614,7 +671,7 @@ private:
SkPM4f* fDst;
};
static PixelPlacerInterface* choose_pixel_placer(
static SkLinearBitmapPipeline::PixelPlacerInterface* choose_pixel_placer(
SkAlphaType alphaType,
SkLinearBitmapPipeline::PixelStage* placerStage) {
if (alphaType == kUnpremul_SkAlphaType) {
@ -625,6 +682,9 @@ static PixelPlacerInterface* choose_pixel_placer(
}
return placerStage->get();
}
} // namespace
SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkMatrix& inverse,

View File

@ -15,53 +15,6 @@
#include "SkNx.h"
#include "SkShader.h"
using Sk4fArg = const Sk4f&;
class PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
virtual void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) = 0;
virtual void pointList4(Sk4fArg xs, Sk4fArg ys) = 0;
// The pointSpan method efficiently process horizontal spans of pixels.
// * start - the point where to start the span.
// * length - the number of pixels to traverse in source space.
// * count - the number of pixels to produce in destination space.
// Both start and length are mapped through the inversion matrix to produce values in source
// space. After the matrix operation, the tilers may break the spans up into smaller spans.
// The tilers can produce spans that seem nonsensical.
// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
// to the edge of the destination scan.
// * The mirror tiler can produce spans with negative length. This indicates that the source
// should be traversed in the opposite direction to the destination pixels.
virtual void pointSpan(SkPoint start, SkScalar length, int count) = 0;
};
class BilerpProcessorInterface : public PointProcessorInterface {
public:
// The x's and y's are setup in the following order:
// +--------+--------+
// | | |
// | px00 | px10 |
// | 0 | 1 |
// +--------+--------+
// | | |
// | px01 | px11 |
// | 2 | 3 |
// +--------+--------+
// These pixels coordinates are arranged in the following order in xs and ys:
// px00 px10 px01 px11
virtual void bilerpList(Sk4fArg xs, Sk4fArg ys) = 0;
};
class PixelPlacerInterface {
public:
virtual ~PixelPlacerInterface() { }
virtual void setDestination(SkPM4f* dst) = 0;
virtual void placePixel(Sk4fArg pixel0) = 0;
virtual void place4Pixels(Sk4fArg p0, Sk4fArg p1, Sk4fArg p2, Sk4fArg p3) = 0;
};
class SkLinearBitmapPipeline {
public:
SkLinearBitmapPipeline(
@ -69,6 +22,7 @@ public:
SkFilterQuality filterQuality,
SkShader::TileMode xTile, SkShader::TileMode yTile,
const SkPixmap& srcPixmap);
~SkLinearBitmapPipeline();
void shadeSpan4f(int x, int y, SkPM4f* dst, int count);
@ -98,6 +52,10 @@ public:
mutable Space fSpace;
};
class PointProcessorInterface;
class BilerpProcessorInterface;
class PixelPlacerInterface;
using MatrixStage = PolymorphicUnion<PointProcessorInterface, 112>;
using FilterStage = PolymorphicUnion<PointProcessorInterface, 8>;
using TileStage = PolymorphicUnion<BilerpProcessorInterface, 96>;

View File

@ -10,14 +10,6 @@
#include "SkPM4f.h"
#include "Test.h"
struct SinkBilerpProcessor final : public PointProcessorInterface {
void pointListFew(int n, Sk4fArg xs, Sk4fArg ys) override { fXs = xs; fYs = ys; }
void pointList4(Sk4fArg Xs, Sk4fArg Ys) override { fXs = Xs; fYs = Ys; }
void pointSpan(SkPoint start, SkScalar length, int count) override { }
Sk4f fXs;
Sk4f fYs;
};
using Pixel = float[4];
DEF_TEST(SkBitmapFP, reporter) {