Sk4x_sse.h

CQ_EXTRA_TRYBOTS=client.skia:Test-Mac10.6-MacMini4.1-GeForce320M-x86_64-Release-Trybot,Test-Mac10.7-MacMini4.1-GeForce320M-x86_64-Release-Trybot,Test-Win7-ShuttleA-HD2000-x86-Debug-GDI-Trybot

BUG=skia:

Committed: https://skia.googlesource.com/skia/+/e4bf793120d3bfc9b003d11880a3fb73ff2b89e9

Review URL: https://codereview.chromium.org/698873003
This commit is contained in:
mtklein 2014-11-25 11:00:38 -08:00 committed by Commit bot
parent f8449babdc
commit b116619028
3 changed files with 212 additions and 4 deletions

View File

@ -4,13 +4,22 @@
#include "SkTypes.h"
#define SK4X_PREAMBLE 1
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "Sk4x_sse.h"
#else
#include "Sk4x_portable.h"
#endif
#undef SK4X_PREAMBLE
template <typename T> class Sk4x;
typedef Sk4x<float> Sk4f;
typedef Sk4x<int32_t> Sk4i;
// Some Sk4x methods are implemented only for Sk4f or Sk4i.
// They might be unavailable, really slow, or just a bad idea.
// Talk to mtklein if you find yourself unable to link and
// really need one of those methods.
template <typename T> class Sk4x {
public:
Sk4x(); // Uninitialized; use Sk4x(0,0,0,0) for zero.
@ -34,6 +43,7 @@ public:
Sk4x bitNot() const;
Sk4x bitAnd(const Sk4x&) const;
Sk4x bitOr(const Sk4x&) const;
// TODO: Sk4x bitAndNot(const Sk4x&) const; is efficient in SSE.
Sk4x add(const Sk4x&) const;
Sk4x subtract(const Sk4x&) const;
Sk4x multiply(const Sk4x&) const;
@ -56,15 +66,27 @@ public:
static Sk4x XYAB(const Sk4x& xyzw, const Sk4x& abcd);
static Sk4x ZWCD(const Sk4x& xyzw, const Sk4x& abcd);
// TODO: these are particularly efficient in SSE. Useful? Also efficient in NEON?
// static Sk4x XAYB(const Sk4x& xyzw, const Sk4x& abcd);
// static Sk4x ZCWD(const Sk4x& xyzw, const Sk4x& abcd);
private:
// It's handy to have Sk4f and Sk4i be mutual friends.
template <typename S> friend class Sk4x;
#define SK4X_PRIVATE 1
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "Sk4x_sse.h"
#else
#include "Sk4x_portable.h"
#endif
#undef SK4X_PRIVATE
};
#include "Sk4x_portable.h"
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "Sk4x_sse.h"
#else
#include "Sk4x_portable.h"
#endif
#endif//Sk4x_DEFINED

177
src/core/Sk4x_sse.h Normal file
View File

@ -0,0 +1,177 @@
// It is important _not_ to put header guards here.
// This file will be intentionally included three times.
// Useful reading:
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/
#if defined(SK4X_PREAMBLE)
// Code in this file may assume SSE and SSE2.
#include <emmintrin.h>
// It must check for later instruction sets.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#include <immintrin.h>
#endif
// A little bit of template metaprogramming to map
// float to __m128 and int32_t to __m128i.
template <typename T> struct SkScalarToSIMD;
template <> struct SkScalarToSIMD<float> { typedef __m128 Type; };
template <> struct SkScalarToSIMD<int32_t> { typedef __m128i Type; };
// These are all free, zero instructions.
// MSVC insists we use _mm_castA_B(a) instead of (B)a.
static __m128 as_4f(__m128i v) { return _mm_castsi128_ps(v); }
static __m128 as_4f(__m128 v) { return v ; }
static __m128i as_4i(__m128i v) { return v ; }
static __m128i as_4i(__m128 v) { return _mm_castps_si128(v); }
#elif defined(SK4X_PRIVATE)
// It'd be slightly faster to call _mm_cmpeq_epi32() on an unintialized register and itself,
// but that has caused hard to debug issues when compilers recognize dealing with uninitialized
// memory as undefined behavior that can be optimized away.
static __m128i True() { return _mm_set1_epi8(~0); }
// Leaving these implicit makes the rest of the code below a bit less noisy to read.
Sk4x(__m128i);
Sk4x(__m128);
Sk4x andNot(const Sk4x&) const;
typename SkScalarToSIMD<T>::Type fVec;
#else//Method definitions.
// Helps to get these in before anything else.
template <> inline Sk4f::Sk4x(__m128i v) : fVec(as_4f(v)) {}
template <> inline Sk4f::Sk4x(__m128 v) : fVec( v ) {}
template <> inline Sk4i::Sk4x(__m128i v) : fVec( v ) {}
template <> inline Sk4i::Sk4x(__m128 v) : fVec(as_4i(v)) {}
// Next, methods whose implementation is the same for Sk4f and Sk4i.
template <typename T> Sk4x<T>::Sk4x() {}
template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; }
template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) {
fVec = other.fVec;
return *this;
}
// We pun in these _mm_shuffle_* methods a little to use the fastest / most available methods.
// They're all bit-preserving operations so it shouldn't matter.
template <typename T>
Sk4x<T> Sk4x<T>::zwxy() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(1,0,3,2)); }
template <typename T>
Sk4x<T> Sk4x<T>::XYAB(const Sk4x<T>& a, const Sk4x<T>& b) {
return _mm_movelh_ps(as_4f(a.fVec), as_4f(b.fVec));
}
template <typename T>
Sk4x<T> Sk4x<T>::ZWCD(const Sk4x<T>& a, const Sk4x<T>& b) {
return _mm_movehl_ps(as_4f(b.fVec), as_4f(a.fVec));
}
// Now we'll write all Sk4f specific methods. This M() macro will remove some noise.
#define M(...) template <> inline __VA_ARGS__ Sk4f::
M() Sk4x(float a, float b, float c, float d) : fVec(_mm_set_ps(d,c,b,a)) {}
M(Sk4f) Load (const float fs[4]) { return _mm_loadu_ps(fs); }
M(Sk4f) LoadAligned(const float fs[4]) { return _mm_load_ps (fs); }
M(void) store (float fs[4]) const { _mm_storeu_ps(fs, fVec); }
M(void) storeAligned(float fs[4]) const { _mm_store_ps (fs, fVec); }
template <> template <>
Sk4i Sk4f::reinterpret<Sk4i>() const { return as_4i(fVec); }
template <> template <>
Sk4i Sk4f::cast<Sk4i>() const { return _mm_cvtps_epi32(fVec); }
// We're going to try a little experiment here and skip allTrue(), anyTrue(), and bit-manipulators
// for Sk4f. Code that calls them probably does so accidentally.
// Ask mtklein to fill these in if you really need them.
M(Sk4f) add (const Sk4f& o) const { return _mm_add_ps(fVec, o.fVec); }
M(Sk4f) subtract(const Sk4f& o) const { return _mm_sub_ps(fVec, o.fVec); }
M(Sk4f) multiply(const Sk4f& o) const { return _mm_mul_ps(fVec, o.fVec); }
M(Sk4f) divide (const Sk4f& o) const { return _mm_div_ps(fVec, o.fVec); }
M(Sk4i) equal (const Sk4f& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
M(Sk4i) notEqual (const Sk4f& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
M(Sk4i) lessThan (const Sk4f& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
M(Sk4i) greaterThan (const Sk4f& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
M(Sk4i) lessThanEqual (const Sk4f& o) const { return _mm_cmple_ps (fVec, o.fVec); }
M(Sk4i) greaterThanEqual(const Sk4f& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return _mm_min_ps(a.fVec, b.fVec); }
M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return _mm_max_ps(a.fVec, b.fVec); }
// Now we'll write all the Sk4i specific methods. Same deal for M().
#undef M
#define M(...) template <> inline __VA_ARGS__ Sk4i::
M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_set_epi32(d,c,b,a)) {}
M(Sk4i) Load (const int32_t is[4]) { return _mm_loadu_si128((const __m128i*)is); }
M(Sk4i) LoadAligned(const int32_t is[4]) { return _mm_load_si128 ((const __m128i*)is); }
M(void) store (int32_t is[4]) const { _mm_storeu_si128((__m128i*)is, fVec); }
M(void) storeAligned(int32_t is[4]) const { _mm_store_si128 ((__m128i*)is, fVec); }
template <> template <>
Sk4f Sk4i::reinterpret<Sk4f>() const { return as_4f(fVec); }
template <> template <>
Sk4f Sk4i::cast<Sk4f>() const { return _mm_cvtepi32_ps(fVec); }
M(bool) allTrue() const { return 0xf == _mm_movemask_ps(as_4f(fVec)); }
M(bool) anyTrue() const { return 0x0 != _mm_movemask_ps(as_4f(fVec)); }
M(Sk4i) bitNot() const { return _mm_xor_si128(fVec, True()); }
M(Sk4i) bitAnd(const Sk4i& o) const { return _mm_and_si128(fVec, o.fVec); }
M(Sk4i) bitOr (const Sk4i& o) const { return _mm_or_si128 (fVec, o.fVec); }
M(Sk4i) equal (const Sk4i& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); }
M(Sk4i) lessThan (const Sk4i& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); }
M(Sk4i) greaterThan (const Sk4i& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); }
M(Sk4i) notEqual (const Sk4i& o) const { return this-> equal(o).bitNot(); }
M(Sk4i) lessThanEqual (const Sk4i& o) const { return this->greaterThan(o).bitNot(); }
M(Sk4i) greaterThanEqual(const Sk4i& o) const { return this-> lessThan(o).bitNot(); }
M(Sk4i) add (const Sk4i& o) const { return _mm_add_epi32(fVec, o.fVec); }
M(Sk4i) subtract(const Sk4i& o) const { return _mm_sub_epi32(fVec, o.fVec); }
// SSE doesn't have integer division. Let's see how far we can get without Sk4i::divide().
// Sk4i's multiply(), Min(), and Max() all improve significantly with SSE4.1.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
M(Sk4i) multiply(const Sk4i& o) const { return _mm_mullo_epi32(fVec, o.fVec); }
M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return _mm_min_epi32(a.fVec, b.fVec); }
M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return _mm_max_epi32(a.fVec, b.fVec); }
#else
M(Sk4i) multiply(const Sk4i& o) const {
// First 2 32->64 bit multiplies.
__m128i mul02 = _mm_mul_epu32(fVec, o.fVec),
mul13 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4));
// Now recombine the high bits of the two products.
return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul02, _MM_SHUFFLE(0,0,2,0)),
_mm_shuffle_epi32(mul13, _MM_SHUFFLE(0,0,2,0)));
}
M(Sk4i) andNot(const Sk4i& o) const { return _mm_andnot_si128(o.fVec, fVec); }
M(Sk4i) Min(const Sk4i& a, const Sk4i& b) {
Sk4i less = a.lessThan(b);
return a.bitAnd(less).bitOr(b.andNot(less));
}
M(Sk4i) Max(const Sk4i& a, const Sk4i& b) {
Sk4i less = a.lessThan(b);
return b.bitAnd(less).bitOr(a.andNot(less));
}
#endif
#undef M
#endif//Method definitions.

View File

@ -15,9 +15,18 @@ DEF_TEST(Sk4x_Construction, r) {
ASSERT_EQ(baz, foo);
}
struct AlignedFloats {
Sk4f forces16ByteAlignment; // On 64-bit machines, the stack starts 128-bit aligned,
float fs[5]; // but not necessarily so on 32-bit. Adding an Sk4f forces it.
};
DEF_TEST(Sk4x_LoadStore, r) {
AlignedFloats aligned;
// fs will be 16-byte aligned, fs+1 not.
float fs[] = { 5,6,7,8,9 };
float* fs = aligned.fs;
for (int i = 0; i < 5; i++) { // set to 5,6,7,8,9
fs[i] = float(i+5);
}
Sk4f foo = Sk4f::Load(fs);
Sk4f bar = Sk4f::LoadAligned(fs);